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Abstract

Recently, hashing techniques have been widely applied
to solve the approximate nearest neighbors search prob-
lem in many vision applications. Generally, these hash-
ing approaches generate 2c buckets, where c is the length
of the hash code. A good hashing method should satisfy
the following two requirements: 1) mapping the nearby
data points into the same bucket or nearby (measured by
the Hamming distance) buckets. 2) all the data points are
evenly distributed among all the buckets. In this paper,
we propose a novel algorithm named Complementary Pro-

jection Hashing (CPH) to find the optimal hashing func-
tions which explicitly considers the above two requirements.
Specifically, CPH aims at sequentially finding a series of hy-
perplanes (hashing functions) which cross the sparse region
of the data. At the same time, the data points are evenly dis-
tributed in the hypercubes generated by these hyperplanes.
The experiments comparing with the state-of-the-art hash-
ing methods demonstrate the effectiveness of the proposed
method.

1. Introduction

Nearest Neighbors (NN) search is a fundamental prob-

lem and has found applications in many computer vision

tasks [23, 10, 29]. A number of efficient algorithms, based

on pre-built index structures (e.g. KD-tree [4] and R-

tree [2]), have been proposed for nearest neighbors search.

Unfortunately, these approaches perform worse than a lin-

ear scan when the dimensionality of the space is high [5],

which is often the case of computer vision applications.

Given the intrinsic difficulty of exact nearest neighbors

search, many hashing algorithms are proposed for Approxi-

mate Nearest Neighbors (ANN) search [1, 25, 27, 16, 7, 9].
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Figure 1. Illustration for the first motivation. (a) The hyperplane a
crosses the sparse region and the neighbors are quantized into the

same bucket; (b) The hyperplane b crosses the dense region and

the neighbors are quantized into the different buckets. Apparently,

the hyperplane a is more suitable as a hashing function.

The key idea of these approaches is to represent data points

by binary codes which can preserve the pairwise similari-

ties.

Given a data set X ∈ R
d×n containing n d-dimensional

points, a hashing algorithm uses c hash functions to gener-

ate a c-bit Hamming embedding Y ∈ B
c×n. The k-th hash

function can be expressed as: hk(x) = sgn(wT
k x − bk)

1.

Each hash function can be seen as a hyperplane to split the

feature space into two regions. Using c hash functions, a

hash index can be built by assigning each point into a c-bit

hash bucket corresponding to its c-bit binary code. Given

a query point, the hashing approaches use three stages to

perform the search: 1) coding stage: the query point is

compressed into a c-bit binary code using the c hash func-

tions; 2) locating stage: all the points in the buckets that

fall within a hamming radius r of the hamming code of the

query are returned. 3) linear scan stage: a linear scan over

these points is performed to return the required neighbors.

1The corresponding binary hash bit can be simply computed as:

yk(x) = (1 + hk(x))/2.
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The above procedure shows that a good hashing method

should satisfy two requirements: 1) mapping the nearby

data points into the same bucket or nearby (measured by the

hamming distance) buckets to ensure the accuracy. 2) all the

data points are evenly distributed among all the buckets to

reduce the linear scan time.

To satisfy the first requirement, the hyperplanes associ-

ated with the hash functions should cross the sparse region

of the data distribution. In Fig. 1, the hyperplane a crosses

the sparse region and the neighbors are quantized into the

same bucket while the hyperplane b crosses the dense region

and the neighbors are quantized into the different buckets.

Apparently, the hyperplane a is more suitable as a hash-

ing function. However, many popular hashing algorithms

(e.g., Locality Sensitive Hashing (LSH) [1], Entropy based

LSH [22], Multi-Probe LSH [11, 17], Kernelized Locality

Sensitive Hashing (KLSH) [13]) are based on the random

projection. These methods generate the hash functions ran-

domly and fail to consider this requirement.

In order to satisfy the second requirement, many exist-

ing hashing algorithms (e.g., [7, 25, 24]) require that the

data points are evenly separated by each hash function (hy-

perplane). However, this does not guarantee that the data

points are evenly distributed among all the hypercubes gen-

erated by the hyperplanes (hash functions). Fig. 2 gives an

example: Both the hyperplane a and the hyperplane b par-

tition the data evenly and they are both good one bit hash

functions. However, putting them together does not gener-

ate a good two bits hash function, as shown in Fig. 2(c). A

better choice for two bits hash functions are hyperplanes c
and d in Fig. 2(d).

In this paper, we propose a novel algorithm named Com-
plementary Projection Hashing (CPH) to find the optimal

hashing functions which explicitly considering the above

two requirements. Specifically, CPH aims at sequentially

finding a series of hyperplanes (hashing functions) which

cross the sparse region of the data. At the same time, the

data points are evenly distributed in the hypercubes gen-

erated by these hyperplanes. The experiments comparing

with the state-of-the-art hashing methods demonstrate the

effectiveness of the proposed method.

2. Background and Related Work
The generic hashing problem is as follows: Given n data

points X = [x1, ...,xn] ∈ R
d×n, find c hash functions to

map a data point x to a c-bits hash code

H(x) = [(1 + h1(x))/2, · · · , (1 + hc(x))/2],

where hk(x) ∈ {−1, 1} is the k-th hash function. For the

linear projection-based hashing, we have [24]

hk(x) = sgn(wT
k x− bk)
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Figure 2. Illustration for the second motivation. (a) (b) Both the

hyperplane a and the hyperplane b can evenly separated the data.

(c) However, putting them together does not generate a good two

bits hash function. (d) A better example for two bits hash function.

where wk is the projection vector and bk is the threshold.

Different hashing algorithms aim at finding different wk

and bk with respect to the different objective functions.

One of the most popular hashing algorithms is Locality

Sensitive Hashing (LSH) [1]. LSH is fundamentally based

on the random projection and uses randomly generated wk.

Empirical studies [1] showed that the LSH is significantly

more efficient than the methods based on hierarchical tree

decomposition. It has been successfully used in various

computer vision applications [26, 25]. There are many ex-

tensions for LSH [11, 22, 17, 15]. Entropy based LSH [22]

and Multi-Probe LSH [11, 17] are proposed to reduce the

space requirement in LSH but need much longer time to

deal with the query. Kernelized Locality Sensitive Hashing

(KLSH) [13] is introduced in the case of high-dimensional

kernelized data when the underlying feature embedding for

the kernel is unknown. All these methods are fundamen-

tally based on the random projection and do not aware of

the data distribution.

Recently, many learning-based hashing methods [27, 16,

7, 9, 28, 14] are proposed to make use of the data distribu-

tion. Many of them [27, 24, 16] exploit the spectral prop-

erties of the data affinity (i.e., item-item similarity) matrix

for binary coding. The spectral analysis of the data affinity

matrix is usually time consuming. To avoid the high com-

putational cost, Weiss et al. [27] made a strong assump-

tion that data is uniformly distributed and proposed a Spec-

tral Hashing method (SH). The assumption in SH leads to a

simple analytical eigenfunction solution of 1-D Laplacians,

but the geometric structure of the original data is almost ig-

nored, leading to a suboptimal performance. Anchor Graph
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Hashing (AGH) [16] is a recently proposed method to over-

come this shortcoming. AGH generates k anchor points

from the data and represent all the data points by sparse

linear combinations of the anchors. In this way, the spectral

analysis of the data affinity can be efficiently performed.

Some other learning based hashing methods include Itera-

tive Quantization (ITQ) [7] which finds a rotation of zero-

centered data so as to minimize the quantization error of

mapping this data to the vertices of a zero-centered binary

hypercube and Spherical Hashing (SPH) [9] which learns

hypersphere-based hash functions. There are also many ef-

forts on leveraging the label information into hash function

learning, which leads to supervised hashing [20, 15] and

semi-supervised hashing [25, 18].

There are some key points indicate the differences be-

tween our method and the previous methods. In [7, 25, 24],

the orthogonality constraint of projections has been pro-

posed. For obtaining more balanced buckets, we use a pair-

wise hash buckets balance condition to formulate the con-

straint of hyperplanes. Mu et al. [18] proposed a maximum

margin based method. But, we use a soft constraint of min-

imizing the number of data points which nearby the hyper-

planes to find the hyperplanes which cross the sparse region

of the data. Liu et al. [15] proposed a supervised hashing

method, which used a label matrix involving three differ-

ent kinds of labels (i.e., similar label, dissimilar label and

unknown label). The optimization of the proposed method

is motivated by [15], including spectral relaxation and sig-

moid smoothing. But, our algorithm is an unsupervised

hashing method and does not use this label matrix. Heo

et al. [9] proposed a hypersphere based hashing method

and mainly focused on the pair-wise hash buckets balance.

However, [9] fails to consider the first requirement we de-

scribed. Our method is a hyperplane based hashing method

and explicitly considers the two requirements. Xu et al. [29]

also proposed a complementary information based hashing

method. But, [29] uses it between hash tables. The comple-

mentary information of the proposed method is dependent

on the two requirements we described, which is different

from [29] and used between projections in one hash table.

3. Complementary Projection Hashing
In this section, we give the detailed description of our

proposed Complementary Projection Hashing (CPH).

3.1. Crossing The Sparse Region

Given a hyperplane f(x) = wTx−b crossing the sparse

region, the number of data points in the boundary region of

this hyperplane should be small. It is easy to check that the

distance of a point xi to the hyperplane [21] is

di =
|wTxi − b|
‖w‖ .

Without loss of generality, we assume ‖w‖ = 1. Then di =
|wTxi − b|.

Given the boundary parameter ε > 0, we can find the

hyperplane which cross the sparse region by solving the op-

timization problem as follows:

min
w,b

n∑
i=1

H(ε− |wTxi − b|)

whereH() is the unit step function.

We compute the first hash function (hyperplane) by solv-

ing the above optimization problem. If one point is inside

the small region around previous learned hyperplanes, it is

obvious that this data point should receive a large penalty

when learning the new hyperplane. To compute the k-th

hash function, the penalty uk
i for data point xi is defined as:

uk
i = 1 +

k−1∑
j=1

H(ε− |wT
j xi − bj |). (1)

It is easy to check that u1
i = 1 (i = 1 · · ·n).

The final objective function to learn the k-th bit hashing

function can be written as:

min
wk,bk

n∑
i=1

uk
iH(ε− |wT

k xi − bk|). (2)

By using the accumulative penalty uk
i , the hashing function

for a new bit is complementary to the hashing functions of

previous bits.

3.2. Approximating Balanced Buckets

When we learn c-bits hashing functions, we have no-

ticed that all the single bit hashing functions evenly sepa-

rate the data set do not guarantee balanced buckets (all the

data points are evenly distributed among all the 2c buckets).

Thus requiring one bit hashing function to evenly separate

the data is not enough. However, learning c hyperplanes

which distributes all the data points into 2c hypercubes is

generally NP-hard [8]. We use a pair-wise hash buckets bal-
ance condition [9] to get a reasonable approximation. The

pair-wise hash buckets balance requires that every two hy-

perplanes split the whole space into four regions and each

region has n/4 data points. This requirement can be nicely

formulated as suggested by the following lemma:

Lemma 1. (pair-wise hash buckets balance condition).
Suppose we have two hash functions h1(x) = sgn(wT

1 x−
b1) and h2(x) = sgn(wT

2 x− b2), if we have:⎧⎪⎨
⎪⎩
∑n

i=1 h1(xi) = 0∑n
i=1 h2(xi) = 0∑n
i=1 h1(xi)h2(xi) = 0
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Then, n−1,−1 = n1,−1 = n−1,1 = n1,1 = n/4, where na,b

is the number of points which are satisfied h1(x) = a and
h2(x) = b.

Proof. According to the conditions, we have:⎧⎪⎨
⎪⎩
(n−1,−1 + n−1,1) = (n1,−1 + n1,1) . . . (a)

(n−1,−1 + n1,−1) = (n−1,1 + n1,1) . . . (b)

(n−1,1 + n1,−1) = (n−1,−1 + n1,1) . . . (c)

Now, we have⎧⎪⎨
⎪⎩
(a) + (b) ⇒ n−1,−1 = n1,1

(a) + (c) ⇒ n−1,1 = n1,1

(b) + (c) ⇒ n1,−1 = n1,1

and n−1,−1 + n1,−1 + n−1,1 + n1,1 = n, so we get:

n−1,−1 = n1,−1 = n−1,1 = n1,1 = n/4.

To learn the k-th bit hashing function, the pair-wise hash
buckets balance condition can be formulated as:{∑n

i=1 sgn(w
T
k xi − bk) = 0∑n

i=1 sgn(w
T
j xi − bj)sgn(w

T
k xi − bk) = 0, j = 1 · · · k − 1

Define n-dimensional vector vk as

vk = [sgn(wT
k x1 − bk), · · · , sgn(wT

k xn − bk)]
T (3)

and n× k matrix Vk−1 as

Vk−1 = [1, v1, · · · , vk−1], (4)

the pair-wise hash buckets balance condition has the matrix

formulation:

VT
k−1vk = 0,

where 1 is an n-dimensional vector of all ones and 0 is a k-

dimensional vector of all zeros. This suggests that the pair-
wise hash buckets balance condition has a close connec-

tions to the orthogonal constrains of the graph-based hash-

ing methods [27, 16]. vTj vk = 0 (j = 1, · · · , k − 1) forces

two bits to be mutually uncorrelated in order to minimize

redundancy among bits [27, 16].

In reality, it is hard to ensure perfect balanced partitions

for a real data set. Thus, we replace the above “hard” con-

straint by a “soft” constraint as follow:

min
wk,bk

‖VT
k−1vk‖2 (5)

3.3. The Objective Function

Combining the above two requirements, the objective

function to learn the k-th bit hashing function can be for-

mulated as:

min
wk,bk

n∑
i=1

uk
iH(ε− |wT

k xi − bk|) + α‖VT
k−1vk‖2 (6)

where uk
i is defined in Eq. (1), vk is defined in Eq. (3),

Vk−1 is defined in Eq. (4), and α is a balancing parameter

to find a good trade-off between the two requirements.

In real applications, it is hard to find a set of linear
hashing functions which achieve a good minimizer of Eq.

(6). Motivated by Kernelized Locality Sensitive Hashing

(KLSH) [13], we instead try to find a set of nonlinear hash-

ing functions using the kernel trick.

For some unknown embedding function ψ(·), we can use

a kernel function K to present the dot product of two data

points in this unknown embedding [13]:

K(xi,xj) = ψ(xi)
Tψ(xj).

Suppose we uniformly randomly selected m(m � n)
samples Θ in X and denote the k-th projection in kernel

space as zk. According to [13], we can compute the pro-

jection:

zTk ψ(xi) =
m∑
j=1

pk(j)ψ(xj)
Tψ(xi)

=

m∑
j=1

pk(j)K(xj ,xi) = pT
k k(xi)

where pk(j) denotes j-th element of pk which is a coeffi-

cient vector we need to learn. k(x): Rd �→ R
m is a vectorial

map defined by: k(x) = [K(x, Θ1), . . . ,K(x, Θm)]T .

Thus, the k-th bit nonlinear function can be written as

fk(x) = pT
k k(x) − bk and the objective function of CPH

in the kernel space can be written as:

min
fk

n∑
i=1

ũk
iH(ε− |fk(xi)|) + α‖ṼT

k−1ṽk‖2

where

ũk
i = 1 +

k−1∑
j=1

H(ε− |fj(xi)|),

ṽk = [sgn(fk(x1)), · · · , sgn(fk(xn))]
T ,

Ṽk−1 = [1, ṽ1, · · · , ṽk−1].

(7)

Since H(x) = 1
2 (1 + sgn(x)) and H(ε− |x|) = 1

2 (1 +
sgn(ε − |x|)) = 1

2 + 1
2sgn(ε − x · sgn(x)), the objective

function of CPH in the kernel space can be rewritten as:

min
fk

n∑
i=1

ũk
i sgn(ε− fk(xi)sgn(fk(xi))) + α‖ṼT

k−1ṽk‖2

(8)

It can be easily checked that directly solving the above

optimization problem is NP-hard [16]. Inspired by [15], we

use spectral relaxation to compute an initial result and use

gradient descent in pursuit of a better result.
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3.4. Spectral Relaxation

In this subsection, we discuss how to use spectral relax-

ation to compute an initial result of fk(x) = pT
k k(x)− bk.

To simplify the relaxation, we centralize the kernel matrix

and use bk = 0 as an initial threshold. Please refer to [15]

for details. Now we have

fk(x) = pT
k k̄(x),

where k̄(x) = k(x) − 1
n

∑n
i=1 k(xi) and our goal is com-

puting the coefficient vector pk.

By dropping the sign function outside of fk(x), Eq.(8)

can be relaxed as:

min
pk

n∑
i=1

ũk
i (ε− pT

k k̄(xi)p
T
k k̄(xi)) + αṽT

k Ṽk−1Ṽ
T

k−1ṽk

which is equivalent to

max
pk

pT
k K̄(diag(ũk)− αṼk−1Ṽ

T

k−1)K̄
T
pk (9)

where

K̄ = [k̄(x1), · · · , k̄(xn)]

ũk = [ũk
1 , · · · , ũk

n]
T

Recall that we have assumed ‖pk‖2 = 1, the optimization

problem (9) can be solved by computing the eigenvector

associated with the largest eigenvalue of eigen-problem as

follows:

K̄(diag(ũk)− αṼk−1Ṽ
T

k−1)K̄
Tpk = λpk (10)

3.5. Gradient descent

The eigenvector associated with the largest eigenvalue of

eigen-problem (10) provides us an initial solution of pk (the

initial value for bk is 0), we then use the gradient descent in

pursuit of a better result.

Following [15], we use

ϕ(x) =
2

1 + e−x
− 1

to approximate the non-differentiable function sgn(x)2.

Thus, Eq. (8) can be formulated as a smooth surrogate:

min
pk,bk

J(pk, bk) =

n∑
i=1

ũk
i ϕ(ε− (pT

k k̄(x)− bk)ϕ(p
T
k k̄(x)− bk))

+ α‖ṼT

k−1ϕ(K̄
Tpk − 1bk)‖2

2For convenient presentation, we generalize ϕ() to take the element-

wise operation for any vector input.

Algorithm 1 Complementary Projection Hashing(CPH)

Input:
n training samples X = {xi ∈ R

d}ni=1;

m uniformly randomly selected samples (m� n);
c the number of bits for hashing codes;

α, ε the parameters of CPH;

K(·, ·) the kernel function.

1: Compute the kernel matrix K, then centralize it to ob-

tain K̄.

2: for k = 1, 2, · · · , c do
3: Use Eq.(7) to calculate the ũk

i and Ṽk−1.

4: Compute the eigenvector associated with the largest

eigenvalue of eigen-problem in Eq.(10) as a initial

solution of pk, bk ← 0.

5: Use the gradient descent method Eq.(11) to obtain

the k-th optimal coefficient vector p∗k and optimal

threshold b∗k.

6: end for
7: Use c hash functions {hk(x) = sgn(p∗Tk k(x) −

b∗k)}ck=1 to create binary codes of X.

Output:
c hash functions {hk(x) = sgn(p∗Tk k(x)− b∗k)}ck=1;

Binary codes for the training samples: Y ∈ {0, 1}n×c.

Since
∂ϕ(x)
∂x = 1

2 (1 − ϕ(x)2), by simple algebra, the

gradients of J respect to pk and bk are:

∂J(pk, bk)

∂pk
= K̄Q,

∂J(pk, bk)

∂bk
= (−1) · 1TQ (11)

where

Q =ũk 	 (1− q4 	 q4)	 (−q2 − q1 	 q3)

+ αṼk−1Ṽ
T

k−1q2 	 q3

and

q1 = K̄Tpk − 1bk,

q2 = ϕ(q1),

q3 =
1

2
(1− q2 	 q2),

q4 = ϕ(1ε− q1 	 q2)

The symbol 	 represents the Hadamard product(i.e.,

element-wise product).

In the gradient descent procedure, we enforce ‖pk‖2 = 1
and apply the Nesterov’s gradient method [19] for the fast

convergence. The algorithm procedure of CPH is summa-

rized in Algorithm 1.

3.6. Computational Complexity Analysis

Given n data points with the dimensionality d, we se-

lect m(m � n) samples and train c-bit hash function, the
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computational complexity of CPH in the training stage is as

follows:

1.O(nmd): Obtain the centralized kernel matrix K̄(Step

1 in Alg. 1).

2.O(nm): Compute complementary informations(Step

3 in Alg. 1).

3.O(m3 +m2n +mn): Compute the initial coefficient

vector(Step 4 in Alg. 1).

4.O(nm): Compute the optimal coefficient vector and

threshold(Step 5 in Alg. 1).

5.O(nmc): Create binary codes of X(Step 7 in Alg. 1).

So, the total computational complexity of training pro-

cess is: O(nmd+(nm+m3+m2n)c). In the testing stage,

given a query point, CPH needs O(dm +mc) to compress

the query point into a c-bit binary code.

4. Experiments

In this section, we evaluate our CPH algorithm on the

high dimensional nearest neighbors search problem. Three

large scale real-world data sets are used in our experiments.

• CIFAR-10: It consists of 60,000 images and each im-

age is represented by a 3072-dim vector. This data set

is publicly available 3 and has been used in [7, 25, 15].

• GIST-1M: It contains one million GIST descriptors

and each descriptor is represented by a 384-dim vec-

tor. This data set is publicly available 4 and has been

used in [25, 9, 15].

• SIFT-1M: It contains one million SIFT descriptors and

each descriptor is represented by a 128-dim vector.

This data set has been used in [25, 24, 12] and is pro-

vided by those authors.

As suggested in [7], all the data is centralized to produce

a better result. For each data set, we randomly select 2k

data points as the queries and use the remaining to form the

gallery database. Following [9, 12], a returned point is con-

sidered to be a true neighbor if it lies in the 1000 closest

neighbors (measured by the Euclidian distance in the origi-

nal space) of the query.

Following [25, 16, 9], we used three criteria to evaluate

different aspects of hashing algorithms as follows:

• Mean Average Precision (MAP): This is a classical

metric in IR community [6]. MAP approximates the

area under precision-recall curve [3] and evaluates the

overall performance of a hashing algorithm. This met-

ric has been widely used to evaluate the performance

of various hashing algorithms [25, 24, 7, 16, 9, 15].

3http://www.cs.utoronto.ca/∼kriz/cifar.html
4http://horatio.cs.nyu.edu/mit/tiny/data/index.html

• Hash Lookup Precision (HLP): Given a query, all the

points in the buckets that fall within a small hamming

radius r of the hamming code of the query will be re-

trieved and a linear scan over these points is performed

to return the results. If c-bits code is used, the num-

ber of buckets one should examine is
∑r

i=0

(
c
i

)
. Con-

sidering the linear scan time, r cannot be very large.

Comparing with MAP, it is more meaningful to eval-

uate the precision with a predefined hamming radius

in real scenarios. The HLP is defined as the precision

over all the points in the buckets that fall within ham-

ming radius r of the hamming code of the query [24].

Following [25, 24, 16, 15], we fixed r = 2 in our eval-

uation.

• Recall Curve: Direct comparison of running time for

each algorithm is not practical, since different imple-

mentation may result in varied search times of the

same method. Given a fix number of corrected neigh-

bors, the search time can be measured through the

number of samples one algorithm should examined

[8]. This is exactly the recall curve and has been also

used widely in [8, 9, 25, 24, 16, 15].

4.1. Compared methods

Seven state-of-the-art hashing algorithms for high di-

mensional nearest neighbors search are compared as fol-

lows:

• LSH: Locality Sensitive Hashing [1], which is funda-

mentally based on the random projection.

• KLSH: Kernelized locality sensitive hashing [13],

which generalizes the LSH method to the kernel space.

• ITQ: Iterative quantization [7], which finds a rotation

of zero-centered data so as to minimize the quantiza-

tion error of mapping this data to the vertices of a zero-

centered binary hypercube.

• SH: Spectral Hashing [27], which is based on quantiz-

ing the values of analytical eigenfunctions computed

along PCA directions of the data.

• AGH: Anchor Graph Hashing [16], which constructs

an anchor graph to speed up the spectral analysis.

• SPH: Spherical hashing [9], which uses a hypersphere-

based hash function to map data points into binary

codes.

• CPH: Complementary Projection Hashing, which is

the proposed method in this paper.

All the codes of compared methods are provided by the

original authors.
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Figure 3. The mean average precision of all the algorithms on the three data sets.
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Figure 4. The hash lookup Precision @ hamming radius 2 of all the algorithms on the three data sets.
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Figure 5. The recall curves of all the algorithms on the three data sets with 64 bits. Given a fixed recall, the smaller of the number of the

retrieved samples, the better of the algorithm.

It is important to note that both LSH and ITQ are lin-
ear methods while the remaining five methods are nonlin-
ear methods. Specifically, KLSH, AGH, and CPH use the

kernel trick to learn the nonlinear hashing function. We use

the Gaussian kernel K(x,y) = exp(−‖x − y‖2/2σ2) and

the width parameter σ is estimated by randomly choosing

3000 samples and let σ equal to the average of the pair-wise

distances. All the three algorithms need to select m sup-

porting samples and we use the same m samples (random

selected) for all the three algorithms. m is fixed to be 300

throughout the experiment.

CPH has two essential parameters ε and α. ε controls

the size of the boundary region of each hashing function.

In the experiment, we randomly choose a hyperplane which

can evenly separate the data. Then we compute the average

distance s of all the samples to this hyperplane. We then

empirically set ε = 0.01s. α is the balancing parameter

(used to find a good tradeoff between the two requirements)

263



and was empirically set as 0.1.

4.2. Results

Fig. 3 shows the MAP curves for all the algorithms on

the three data sets. When the code length is short, the

random projection based methods (LSH and KLSH) have

a low MAP while the learning based methods (ITQ, SH,

AGH, SPH and CPH) have a relatively high MAP. As the

code length increases, the performance of LSH and KLSH

consistently increase because of the theoretical guarantee

[1]. By explicitly taking into account the two requirements

(crossing the sparse region and balanced buckets) of a good

hashing method, our CPH consistently outperforms its com-

petitors almost on all the cases.

Fig. 4 shows the hash lookup precision within hamming

radius 2 of all the algorithms. The precisions peak at 32 bits

for almost all the methods and decrease sharply as the code

length increases. This mainly because many buckets be-

come empty as the code length increase. Our CPH achieves

the best performance almost on all the cases.

Fig. 5 shows recall curves of different methods with 64

bits. Given a fixed recall, the smaller of the number of the

retrieved samples, the better of the algorithm. Fig. 5 clearly

shows the superiority of CPH over other hashing methods.

5. Conclusions
In this paper, we propose a novel hashing algorithm

named Complementary Projection Hashing (CPH) to ob-

tain high search accuracy and high search speed simultane-

ously. By learning complementary bits, CPH learns a series

of hashing functions which cross the sparse data region and

generate balanced hash buckets. Extensive experiments on

three real world data sets have demonstrated the effective-

ness of the proposed method.
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