
Efficient Higher-Order Clustering on the Grassmann Manifold

Suraj Jain

Microsoft Research
suraj.jain28@gmail.com

Venu Madhav Govindu∗

Department of Electrical Engineering
Indian Institute of Science, Bengaluru, INDIA

venu@ee.iisc.ernet.in

Abstract

The higher-order clustering problem arises when data
is drawn from multiple subspaces or when observations fit
a higher-order parametric model. Most solutions to this
problem either decompose higher-order similarity measures
for use in spectral clustering or explicitly use low-rank ma-
trix representations. In this paper we present our approach
of Sparse Grassmann Clustering (SGC) that combines at-
tributes of both categories. While we decompose the higher-
order similarity tensor, we cluster data by directly finding
a low dimensional representation without explicitly build-
ing a similarity matrix. By exploiting recent advances in
online estimation on the Grassmann manifold (GROUSE)
we develop an efficient and accurate algorithm that works
with individual columns of similarities or partial observa-
tions thereof. Since it avoids the storage and decomposition
of large similarity matrices, our method is efficient, scal-
able and has low memory requirements even for large-scale
data. We demonstrate the performance of our SGC method
on a variety of segmentation problems including planar seg-
mentation of Kinect depth maps and motion segmentation of
the Hopkins 155 dataset for which we achieve performance
comparable to the state-of-the-art.

1. Introduction

In computer vision, the most common scenario requir-

ing higher-order clustering arises when observation vectors

are drawn from multiple subspaces of a given vector space

or when data fits multi-dimensional parametric forms. For

instance, see Fig. 1 where the observed points need to be

clustered into 5 independent circles. Evidently, such clus-

tering cannot be achieved using conventional methods that

measure distances between or similarities of point pairs.

∗Corresponding Author. This work was carried out when Suraj Jain

was a graduate student at the Indian Institute of Science.

1.1. Review of Literature

Since the literature on clustering is very extensive, in

the following we will limit ourselves to a brief review of

methods that are of directly relevance to our approach for

higher-order clustering. For a recent survey of methods for

subspace clustering the reader may refer to [16]. All the

methods we consider use spectral clustering, see [12] for

a tutorial on spectral clustering and [17] for a discussion

of related methods in computer vision. The methods of

interest can be classified into two categories. Methods

in the first category work with higher-order similarity

measures [8, 3, 1, 13]. [8] defines a similarity measure

for an n-tuple of data points which leads to a multiway

similarity tensor. A similarity matrix is estimated by

sampling columns from the flattened form of the similarity

tensor and spectral clustering is applied. The Spectral

Curvature Clustering (SCC) method of [3], inter alia,

presented an iterative sampling technique that significantly

improved upon the uniform sampling of [8].

While the spectral clustering approach works with a

few eigen-vectors of the similarity matrix, our second

category of methods explicitly model the low-rank nature

of similarity representations. In a dataset, even when

the number of points (N) is large, often the number

of clusters (K) is far smaller, i.e. K � N . Methods

that utilise the low-rank property of similarity matrices

include [6, 18, 11, 7]. In [18], the low-rank representation

of observed data is combined with a locality property

whereby points in a neighbourhood tend to lie in the same

linear subspace. In [11] (LRR), subspace clustering is

achieved by finding the lowest-rank representation of the

data matrix using itself as the dictionary. Similarly, the

Sparse Subspace Clustering (SSC) method of [6] expresses

each observation as the sparsest linear combination of the

other observations that act as a dictionary. The Low-Rank

Subspace Clustering (LRSC) method of [7] has a similar

goal of building a sparse representation, except that LRSC

assumes that the observations are obtained by adding noise

to a clean dictionary. All these methods exploit recent ad-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.436

3504

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.436

3511

Figure 1. The overlapping circles cannot be clustered into 5 differ-

ent geometric models using standard methods.

vances in convex optimization and can achieve the desired

clustering in the presence of outliers. While the methods

of [18, 11, 6] can effectively solve the clustering problem,

they are computationally expensive. For instance, SSC

solves an optimization problem for each data point which

can become prohibitively large as N grows. Additionally,

while using different approaches, these methods eventually

build a similarity matrix for spectral clustering, implying

that the memory and computational load for these methods

can become very large. All of these factors imply that

despite the desirable property of robustness to outliers, the

methods of [18, 11, 6] cannot solve the clustering problem

for large datasets.

Our approach of Sparse Grassmann Clustering (SGC)

presented in this paper shares attributes with both of

the abovementioned categories. For representing the

relationships between data points, we use the higher-order

similarities of [8, 3] that is discussed in Sec. 2. For efficient

computation, we develop an approximation to the similarity

measures that is presented in Sec. 3. Instead of applying

spectral clustering to a similarity matrix, we utilise its

low-rank properties to directly solve for clustering without

explicitly building a similarity matrix. This allows for

an efficient and scalable method that can handle large

amounts of data. In Sec. 4 we develop our arguments for

this purpose that relies on the geometry of the Grassmann

manifold and discuss the GROUSE algorithm that provides

an efficient method for estimation on the Grassmann

manifold. In Sec. 5 we present our method of Sparse

Grassmann Clustering (SGC) and the results of applying

our method on a variety of problems are presented in Sec. 6.

2. Higher-Order Grouping using Tensors

In this Section, we summarise the higher-order ten-

sor decomposition of similarity relationships as presented

in [8, 3]. We are given data points X = {x1, · · · ,xN} in

R
D where N is the number of observations and D is the

dimensionality of the observed feature vectors. Further, we

assume that data is to be classified into K clusters, where

K � N . The N×N similarity matrix S uses the similarity

between xi and xj ,

S(i, j) = e−
φ2(xi,xj)

2σ2 (1)

where φ(., .) is an appropriate distance measure

between two feature vectors. The spectral clustering

problem is solved by using the K leading eigen-vectors

U = {u1, · · · ,uK} of S or equivalently in terms of a

normalized Laplacian form. While there are many variants,

a common solution uses the rows of the N ×K matrix U ,

i.e. the i-th row of U is the feature vector for xi which are

clustered using K-means [12].

The similarity measure of Eqn. 1 cannot account for

higher-order similarities. Consider the illustrative example

in Fig. 1 of points belonging to K = 5 circles, i.e. each

point xi is drawn from a 3-parameter geometric model (two

for centre and one for radius). For clustering data into cir-

cles, φ(xi,xj) will always be equal to zero since we can

always find a circle that passes through any two points xi

and xj . In general, if we wish to cluster data according

to a d-parameter model, we need n > d independent ob-

servations. Similarly, for fitting data to a d-dimensional

linear subspace, we need n > d + 1 observations as a d-

dimensional linear subspace needs (d + 1) parameters to

specify it. Therefore, to cluster such data, we need to test

whether an n-tuple of points belongs to the same cluster for

n ≥ d + 2. In other words, similarity or affinity cannot be

defined for two points at a time but has to be defined for a

set of n points at a time. For an n-tuple of points indexed by

S = {i1, · · · , in}, i.e. xS = {xi1 , · · · ,xin} we can define

the n-tuple similarity or affinity tensor as

P(i1, · · · , in) =
{

e
−λ

∣
∣
∣
φ(xS)

σ

∣
∣
∣

p

, if S are distinct

0, otherwise.
(2)

where φ(xS) is the residual error of fitting a d-

dimensional model to the n-tuple of distinct points xS , i.e.

P(i1, · · · , in) is the probability the n-tuple xS belongs to

the same cluster. In Eqn. 2, σ is the expected noise level for

the fit, λ is an appropriate scale factor and the exponent p
allows for a greater variety of probability models than the

Gaussian distribution for p = 2.

Evidently, the problem of clustering using the N ×N ×
· · · × N similarity tensor P cannot be addressed by spec-

tral clustering developed for similarity matrices. In [8],

the problem of higher-order grouping was solved by de-

composing the similarity tensor P into a two-dimensional

similarity matrix S. Utilising the fact that P is an n-

dimensional super-symmetric tensor, [8] showed that con-

ventional spectral clustering can be applied to the similarity

matrix S = PPT where P is the flattened matrix form of

35053512

the tensor P , i.e.

S = PPT =

Nc∑
j=1

P(:, j)P(:, j)
T

(3)

From Eqn. 3 we note that S is constructed by adding up

the individual rank-1 outer product forms of the columns of

P. Each column of P is obtained by fixing (n− 1) indices

of the tensor P and varying the n-th index from 1 to N .

Accordingly, each column index ‘j’ corresponds to a unique

choice of (n − 1) distinct indices I = {i1, · · · , in−1} and

the n-tuple similarity is defined as

P(i, j) = P(i, I), ∀i /∈ I
⇒ P(i, j) = Prob({xi,xI}|cluster) (4)

where Prob(.|cluster) is the probability that the

set of points belong to the same cluster as defined by

Eqn. 2. Since the index set I corresponds to a selection

of (n − 1) distinct points, we have Nc = NCn−1 choices

of I, each of which corresponds to a column of P. It

must also be noted that the probability of a set of points

belonging to the same cluster is independent of their

ordering, i.e. P(i1, · · · , in) = P(π(i1, · · · , in)) for all

permutations π(.). Owing to this property of P , known as

super-symmetry, we can choose to fix any of the (n − 1)
indices, and that S is independent of the ordering of the

column index ‘j’ in Eqn. 3.

Although P is of an exceedingly large size N ×Nc, the

similarity matrix S = PPT is a low-rank matrix of effective

rank equal to K � N . As a result, [8] argued that the

low-rank matrix S can be efficiently estimated by randomly

selecting a few columns of P which are one-dimensional

‘fibres’ of P , i.e.

S ≈
∑
j∈C

P(:, j)P(:, j)
T

(5)

where C is a subset of integers selected from between

1 and Nc. In [8], the author proposed to randomly select

columns of P with uniform probability to construct the

similarity matrix S. Although efficient, such uniform

sampling suffers from some serious drawbacks. We

distinguish between pure and mixed columns as columns

that draw I from a single cluster or multiple clusters

respectively. Ideally, we would like to construct S only

from pure columns but a uniform sampling strategy fails

in this regard, especially for large N . Thus, in Fig. 1 if

each circle has 100 points and we let n = 5, then only
5×100C4

500C4
= 0.76% of columns are pure, implying that

uniform sampling would not work well. To ameliorate

this situation, the SCC method of [3] proposed an iterative

method to refine the sampling of columns. SCC starts

by uniformly sampling the columns and clustering the

data. Subsequently, a fixed number (say 1000) of columns

are drawn from within the current cluster. Using these

columns, the clusters are updated and the process is

repeated till convergence. This approach progressively

refines the sampling to increasingly draw from the set of

pure columns. The reader may refer to [3] for details.

While the SCC method of [3] does effectively address the

sampling drawbacks of [8], both these methods suffer from

some significant limitations that we address in this paper.

3. Approximating Similarity Measures

It will be noted from Eqn. 5 that although the approxi-

mation for S uses fewer columns of P than the full estimate

of Eqn. 3, the computational load of estimating the entries

in an individual column of P can be significant. We recall

here that a single column of P is nothing but the entries in

the similarity tensor P(i, I), where I is the selected set of

(n − 1) distinct indices and i is the index of the column.

Now for all i /∈ I, computing P(i, I) involves estimating

the probability of n points belonging to a single cluster.

Let us compare two individual entries in a given column,

say the r-th and s-th entries, i.e. P(r, I) and P(s, I)
respectively. These two similarity measures differ only to

the extent that 1 out of n data points are different, i.e. xr is

replaced by xs. The remaining (n− 1) data points indexed

by I are common to all estimates in a given column of

P. As a result, for the N − (n − 1) non-zero entries in

a column of P, all similarity measures are estimated by

changing only one point xi out of n points. Such repeated

estimation on n-tuple data points with (n − 1) common

data points is wasteful and the similarity measure can be

efficiently approximated in the following manner.

Since n ≥ (d + 2), the data points indexed by I will

themselves fit the parametric model as (n − 1) ≥ d + 1
data points are sufficient to fit a d-dimensional parametric

or subspace model. We denote the parameters of the fitted

model for a given set of data points as θ(I) indicating that

the parameters θ are obtained by fitting the data indexed by

the set I, i.e. θ(I) denotes the model estimated for data

points {xi1 , · · · ,xin−1
}. Therefore, we can efficiently ap-

proximate the similarity P(i, I) as the likelihood of the in-

dividual points xi belong to the parametric model defined

by the index set I, i.e.,

P(i, I) = Prob(xi,xi1 , · · · ,xin−1
|cluster)

≈ Prob(xi|θ(I)) (6)

35063513

It will be noted that Eqn. 6 results in a significant reduc-

tion in computational load since for each column in P we

compute a single θ and then score all other points in X with

respect to θ. Consider our example in Fig. 1 with n = 5 for

N = 500 points. For each column in P, the SCC method

of [3] will select 4 points to form the set I and estimate

the similarity for all other points by carrying out the circle

fitting for n = 5 points, a total of N − (n − 1) = 496
times. In contrast, for our approach in Eqn. 6, we fit a

circle only once and then simply measure the distance of

all the remaining 496 points from this circle. This results

in substantial savings of computation especially in the case

where the number of data points N is large or when the

cost of fitting a model to data is high. It may also be noted

here that although Eqn. 6 is an approximation to the true

similarity measure, when we select a pure set of indices I,

the resulting model θ(I) will be close to the true model.

As a result, the approximated similarity of Prob(xi|θ(I))
will be an accurate reflection of whether xi belongs to the

same cluster as I. To summarise our argument here, since

we will be using an iterative sampling technique to refine

the selected columns to be drawn from pure cluster models,

Eqn. 6 accurately represents the underlying similarity

measure while greatly reducing the computational expense

involved when compared to the computational load of

estimating individual entries of a column in P as defined in

both [8] and [3].

4. Low Rank Representations for Clustering
As mentioned in Sec. 1, much of the recent work on

higher-order grouping presents different methods that

build a similarity matrix between data points and then use

spectral clustering. As a result, all of them suffer from

an important limitation in that these methods do not scale

well with increasing amounts of data. We recall that for a

dataset of N points, spectral clustering requires an N × N
similarity matrix S of which the K leading eigen-vectors

are estimated. It is evident that as the data size N increases,

so does the requirement for storage of S as well as the

computational load for both estimating the entries of S and

its eigen-decomposition.

Although S is of size N × N , we note that it is a

low-rank matrix with its effective rank equal to the number

of data clusters, K. In the following we describe our

second contribution that builds on this observation of the

low-rank property of S to greatly reduce both memory and

computational requirements, thereby making our method

efficient and scalable with increasing amounts of data. If

S is of rank K, from Eqn. 5 it is evident that P is itself a

rank-K matrix. Moreover, if U = {u1, · · · ,uK} are the

eigen-vectors of S, U is also a K-dimensional basis of the

column space of matrix P, implying that we could solve for

clustering using P instead of S. However, for large N , the

eigen-decomposition of even the N × C approximation of

P used in Eqn. 5 is expensive. Nevertheless, we can exploit

the geometry of low-rank matrices to derive an efficient

method for estimating U . Our solution utilises the geomet-

ric structure of the Grassmann manifold which we briefly

describe below. In Sec. 4.2, we describe the GROUSE

algorithm that we use for the requisite computation on the

Grassmann manifold.

4.1. Grassmann Manifolds

A natural representation for low-rank subspaces of a

vector space is the Grassmann manifold. For a vector space

R
N , the space of all linear subspaces of K dimensions

forms a compact Riemannian manifold known as the

Grassmann manifold which is denoted as G(N,K). The

Grassmann manifold is also identified as the quotient space

of the Stiefel manifold V(N,K), i.e. V(N,K)\O(K).
More informally, every point on the Grassmann manifold

G(N,K) corresponds to a K-dimensional subspace of RN

and can be represented by an N × K matrix U where the

columns of U span a K-dimensional subspace. Therefore

if U ∈ G(N,K), so is UR where R ∈ SO(K) the space

of all K × K orthonormal matrices.The reader may refer

to [5, 4] for details on properties and computations on

Grassmann manifolds. For our purposes, we note that

since P is an N × C matrix of effective rank equal to

K, the eigen-vectors U = {u1, · · · ,uK} that we seek

span a K-dimensional subspace of RN , i.e. a point on the

Grassmann manifold G(N,K). Therefore, our clustering

problem is equivalent to identifying a point U ∈ G(N,K).

4.2. The GROUSE Algorithm

In recent years, geometric estimation on the Grass-

mann manifold has attracted a fair amount of atten-

tion [5, 4, 15, 2, 10]. Of particular interest to us is the

GROUSE algorithm described in [2] that provides a highly

efficient method of estimating a Grassmann representation

for the column space of a given matrix, i.e. P in our

case. GROUSE was specifically designed to track a

K-dimensional subspace of RN and uses matrix columns

as input to incrementally update the subspace U on the

Grassmann manifold G(N,K). Since GROUSE processes

individual columns of P one at a time, it does not suffer

from the large memory requirement of storing the N × N
matrix S or N × C matrix P as is required by the methods

that use spectral clustering. We can compute individual

columns of P on the fly and the only storage requirement

is for U of size N × K where K � N . Moreover,

the low-rank property of P implies that its entries are

35073514

redundant. In a manner similar to recent advances in matrix

completion, GROUSE can efficiently learn the basis U
even when only some of the entries of the columns of P are

available. This is a great advantage for our problem since

by using GROUSE, we need not compute all the entries

of a column of P. In the following we briefly describe the

GROUSE algorithm, see [2] for details.

Given U ∈ G(N,K), the optimal fit for the N × C ob-

servation matrix P can be defined as

F (U) = min
W∈RK×C

||UW −P||2 (7)

We can now adapt this cost function to incrementally up-

date U as we observe the columns of P one at a time. Given

a current U , let us observe a new column P(:, j) for a ran-

domly selected index set I. In the following, for notation

convenience we shall denote P(:, j) as pj . For the new ob-

served column pj , the optimal co-efficients w are given by

the minimiser of F (U, j) = ||Uw − pj ||2. We can update

U to account for the information about the subspace pro-

vided by pj by using a gradient descent step on the Grass-

mann manifold G(N,K). The gradient on G(N,K) (see

Eqn. 2.70 of [5]) can be defined as

F (U, j) = min
w
||Uw − pj ||2 (8)

⇒ ∇F = (I − UUT)
dF

dU
= −2rwT (9)

where r = (pj − Uw) is the residual vector. We skip

some details here for notational simplicity, but in the case

where only some entries of pj are available, the fitting error

F (U, j) and residual vector r can be suitably modified to

be defined using only the available entries of pj . Using the

fact that ∇F is of rank one, [2] shows that the update of

the U can be carried out in a remarkably simple fashion.

For a gradient descent in the direction∇F with step size of

η > 0, the updated basis matrix U is given as

U(η) = U +

(
sin(ση)

r

||r|| + (cos(ση)− 1)
q

||q||
)

wT

||w||
(10)

where σ is the singular value of ∇F and q = Uw.

Eqn. 10 is remarkable in its simplicity as this Grassmann

Rank-One Update Subspace Estimation (GROUSE) en-

sures that the updated U(η) lies on the Grassmann manifold

G(N,K). For a suitably chosen sequence of step sizes η,

the GROUSE algorithm is guaranteed to converge to the

locally optimal estimate of U . Since this estimation process

only needs to store the N ×K matrix U and can work with

a few of the entries in columns pj , GROUSE has a low

memory overhead and is also computationally efficient.

Algorithm 1 Sparse Grassmann Clustering (SGC)

Input: X = {x1 · · ·xN} ∈ R
D.

Output: Classification of X into K clusters.

Initialisation: Set column sampling to be uniform.

1: while Not Converged do
2: for T trials do
3: Randomly select I from within cluster

4: Construct sparse pj by estimating random en-

tries of P(i, I) using Eqn. 6

5: Update U(η) using Eqn. 10

6: end for
7: Classify points in X using K-means on rows of U
8: Update sampling to current clusters

9: end while

5. Sparse Grassmann Clustering (SGC)

We can now state our algorithm that carries out higher-

order clustering by combining an iterative refinement of col-

umn sampling with an incremental Grassmann update of U .

As we do not need all the entries of a column of P to update

U , we can sparsely estimate a few of the entries in a given

column pj . Our method of Sparse Grassmann Clustering

(SGC) can be summarised as given in Algorithm 1. We ini-

tially use uniform random sampling to draw columns from

P to build an initial clustering estimate. Subsequently, dur-

ing each iteration, we draw T columns according to the cur-

rent cluster estimates. For each column we estimate a few

of the entries using the approximate similarity of Eqn. 6.

This makes for efficient estimation of individual columns

that are used to drive the GROUSE algorithm. After each

iteration, we carry out the K-means clustering of the rows

of the Grassmann estimate U ∈ G(N,K) and update the

sampling for the next iteration to be based on the current

clusters. This process of interleaved iterative updating of

sampling and the incremental Grassmann update of the low-

rank representation is carried on till convergence. Conver-

gence is achieved when either the fitting error of the data

with respect to the estimated U falls below a threshold or

when the change of U between iterations falls below an-

other threshold. Due to the efficiency of the GROUSE al-

gorithm, in all of our experiments we have found that our

SGC algorithm rapidly converges to the final clustering es-

timate. We note that while the initial random sampling pro-

duces a rough clustering estimate, over subsequent itera-

tions, this estimate is progressively refined by our algorithm

thus yielding increasingly pure columns.

5.1. Properties of the SGC algorithm

Handling multiple subspaces : Most methods that

carry out estimation on the Grassmann manifold fit a single

35083515

subspace to the observations. The GROUSE algorithm

of [2] that we use is itself an example method of this type.

Other such instances include matrix completion [10] and

GRASTA which is a robust version of GROUSE [9]. A

novel attribute of our SGC algorithm is that we are able to

carry out classification of data observations into multiple
subspaces using estimation on the Grassmann manifold.

Unlike other methods that fit a single subspace to the

observations, we map the observations into a similarity

representation that measures the similarity or affinity rela-

tionships between data points. Thus, although the raw data

points belong to a union of K subspaces, independent of K,

our SGC method maps the data points into a representation

that lies in a single subspace U ∈ G(N,K). Thus, we are

able to use the power of Grassmann estimation to solve the

multiway clustering problem.

Memory and computational requirements : From the

arguments of [2], we can see that for an N point dataset to

be clustered into K subspaces, each iteration of our SGC

algorithm takes O(TNK + ρTK2) flops where ρ is the

number of entries estimated in each sampled column. In

terms of storage requirements, our approach is extremely

light-weight as it does not need to store the full N × N
similarity matrix. Instead we only need to store the N ×K
matrix U ∈ G(N,K) and one sparse column at a time.

Since K � N , as we shall demonstrate in Sec. 6 our SGC

method can solve for the clustering of very large problems

which cannot be handled by other approaches based on

spectral clustering. It is germane to remark here that the

notion of sparsity in our SGC algorithm applies to the

fact that we only need a sparse number of entries used in

individual columns and this should not be confused with

the nature of sparsity in methods such as SSC [6].

Intrinsic robustness : Our SGC algorithm is also

intrinsically robust to the presence of outliers in the data.

From Eqn. 5 we see that the similarity between the i-th and

k-th data point is given by S(i, k) =
∑

j∈C P(i, j)P(k, j).
As long as the sampled columns include a sufficient number

of pure columns, the estimated similarity S(i, k) is not

affected by the presence of outliers in X , i.e. SGC is robust

to outliers. We should emphasise here that the discussion of

S(i, k) is only to explain the behaviour of our method and

the SGC algorithm never explicitly estimates the similarity

matrix S. We present results demonstrating robustness in

Sec. 6.

6. Results
In this Section we present some qualitative and quan-

titative results to demonstrate the efficacy of our Sparse

Grassmann Clustering method. In Fig. 1 we show the

(a) Kanizsa Figure

Figure 2. Clustering results for the Kanizsa figure using our SGC

method that can naturally find multiple geometric models (circles

and lines in this case) in a single dataset. All points with the same

color belong to the same cluster. Please view this figure in color.

(a) Circles with Outliers

Figure 3. Our SGC method is robust to the presence of outliers in

the data. See text for details. All points with the same color belong

to the same cluster. Please view this figure in color.

result of clustering data points according to the model of a

circle. As can be seen our method can correctly segment

points into 5 circles which cannot be achieved by spectral

clustering using Eqn. 1. In Fig. 2, we show the clustering

results achieved on the well-known psychophysical model

of the Kanizsa triangle. Since we sample points to build a

model and score all other points with respect to this model,

in our SGC method we can simultaneously cluster data into

different types of geometric models. In this instance during

one iteration of the for-loop in Algorithm 1 we sample

columns according to both the circle and line model. All

points in Fig. 2 with the same color belong to the same

cluster and as can be seen our SGC method can correctly

classify the data. It should be noted that the correct

classification of points into circles or lines is automatically

achieved using our approach where higher-order similarity

information can be integrated across multiple types of

models. In addition, our method does not need to know

the specific number of lines and circles in the dataset. It is

sufficient to know the total number of independent models

(lines and circles in this example) and the types of models.

The result in Fig. 2 also demonstrates the robustness of our

method since, as far as points on circles are concerned, the

35093516

(a) Kinect Camera Image (b) Kinect Raw Depthmap (c) Segmentation

Figure 4. Large scale clustering : (a) shows the image of an indoor scene given by the Kinect’s RGB camera (b) shows the corresponding

raw depth map of size (480× 640) pixels while (c) show the segmentation of the depth map into planes using our SGC algorithm. Please

view this image in color.

points on the lines are outliers and vice-versa. Nevertheless

our estimation of classification is unaffected. In Fig. 3

we additionally demonstrate the robustness of our method

to the presence of outliers. The input data contains two

intersecting circles of 100 points each, interspersed with

100 outlier points, i.e. this dataset has 33% outliers. As

can be seen, we achieve good classification of points even

in the presence of a large number of outliers. As we set

K = 3 in this experiment, the data points are necessarily

classified into 3 clusters. In our SGC method, the measured

similarities between pairs of points that belong to the same

circle is high, leading to the correct classification of the

two circles as independent clusters. Consequently, all the

randomly scattered outlier points are assigned to the third

cluster as these points cannot be classified as belonging

to either of the two circle clusters. In other words, our

approach can correctly detect geometric models even in the

presence of a large number of outlier points.

6.1. Plane Segmentation in Depth Maps

In Fig. 4 we show the results of applying our SGC

algorithm to find planar regions in the depth map obtained

from the popular Kinect sensor. The scene observed is of a

room with the walls, floor and cupboard defining multiple

3D planes. We segment a point cloud representation of

the depth map into multiple planar regions using our SGC

method. In Fig. 4(a) we show a Kinect camera image

of the scene. The raw depth map in Fig. 4(b) is of size

640 × 480, imply that we have N = 640 × 480 = 307200
points to be classified which is very large. However,

since we neither store the individual sampled columns of

P nor actually estimate all entries of each column, our

segmentation algorithm has a small memory footprint as

we only need to estimate U ∈ G(307200,K) which is

equivalent to storing K depth maps in memory. It will be

noted that none of the methods that build the full similarity

matrix for segmentation can handle such large problems.

In our experiments, we choose n = 5, i.e. use 4 points to

fit a plane and score all other points with respect to this

plane. While N = 307200 is very large, since GROUSE

can work with sparse columns, we estimate the values for

only 20% of the entries in each column and use T = 1000
column samples per iteration in Algorithm 1. Our method

rapidly converges and as can be seen from Fig. 4(c) we

achieve excellent segmentation of the depth map into

planar regions. We remark that some points at the left

boundary of the cupboard are incorrectly classified since

the Kinect estimates at a depth discontinuity are unreliable.

Interestingly, points on the lower rack of the bookshelf

are correctly classified along with the backwall since the

shelf is empty. We also remark that the SSC method of [6]

cannot handle such a large sized problem as it will need

to solve N = 307200 individual optimizations. Similarly

direct attempts at spectral clustering will not work due to

the obvious memory bottleneck of representing an N × N
similarity matrix for large values of N .

6.2. Motion Segmentation : Hopkins 155 Dataset

In this subsection we present our quantitative results

for motion segmentation of the well-known Hopkins 155

dataset [14] that consists of 155 video sequences with 2
or 3 independent affine motions. For a video sequence

of F frames, individual tracked two-dimensional feature

points can be represented by a vector in R
2F . Under an

affine camera model, all feature tracks of a rigidly moving

object lie in an affine subspace of dimension d = 3 or

linear subspace of d = 4. Therefore, our observation

matrix of the tracks X is of size 2F × N and we wish to

cluster individual columns of X into K subspaces each of

dimension 4. For this dataset, we solve the segmentation

problem using n-tuples where n = 8. For an individual

point track X(:, i) where i /∈ I we estimate the projection

error as ei = (I − UIUIT)X(:, i), where UI is the fitted

subspace for the n-tuple of selected points indexed by I.

35103517

Method LSA SCC LRR-H LRSC SSC SGC
2 motions

Mean 4.23 2.89 2.13 3.69 1.52 1.03
Median 0.56 0.00 0.00 0.29 0.00 0.00
3 motions

Mean 7.02 8.25 4.03 7.69 4.40 5.53
Median 1.45 0.24 1.43 3.80 0.56 0.35
All

Mean 4.86 4.10 2.56 4.59 2.18 2.05
Median 0.89 0.00 0.00 0.60 0.00 0.00

Table 1. Clustering error in percentage for the Hopkins 155

dataset. The last column SGC shows the error rates for our Sparse

Grassmann Clustering method. All other results have been taken

from Table 1 of [6].

For Eqn. 6, we use P(i, I) = exp(− ||e||σ) which is less

sensitive than the Gaussian form when p = 2. For each

iteration of Algorithm 1, we use T = 1000 columns, but

for each column we only estimate 10% of the entries of

each column. In Table 1 we present the error rates for our

method as well as that of other methods in the literature

for comparison. Except for the last column presenting the

results of our SGC method, all other columns correspond-

ing to different methods are taken from Table 1 of [6]. As

can be seen, our SGC method matches or outperforms the

state-of-the-art results of the Sparse Subspace Clustering

(SSC) method of [6]. While the mean error for 3 motions

sequences for our method is higher than that of SSC, it will

be noted that the median error is lower. This higher mean

error is due to poor classification on 3 sequences where

our classification error is somewhat higher. It will also be

noted that we outperform the Spectral Curvature Clustering

(SCC) method of [3] for the mean error in all cases.

7. Conclusion

In this paper we have presented our Sparse Grassmann

Clustering (SGC) method that can solve the higher-order

clustering problem by utilising the geometric structure of

the Grassmann manifold. As it uses partial observations

to incrementally update the clustering representation on

the Grassmann manifold, our method is computationally

efficient and has a very low memory requirement. Our

method is efficient and scalable and can solve large-scale

clustering problems such as segmenting Kinect depth maps.

The accuracy of our method is also demonstrated on the

motion segmentation problems of the Hopkins 155 dataset

where we achieve results comparable to the state-of-the-art.

8. Acknowledgments
Preliminary research for this paper was carried out

by Venu Madhav Govindu during a visit to Rama Chel-

lappa’s group at the University of Maryland, College Park,

USA. This visit was partially supported by a MURI Grant

N00014-10-1-0934 from the US Office of Naval Research.

The authors thank the reviewers and Kaushik Mitra for sug-

gesting the use of the GROUSE algorithm.

References
[1] S. Agarwal, J. Lim, L. Zelnik Manor, P. Perona, D. Krieg-

man, and S. Belongie. Beyond pairwise clustering. In CVPR,

2005.

[2] L. Balzano, R. Nowak, and B. Recht. Online identifi-

cation and tracking of subspaces from highly incomplete

information. In Proceedings of Allerton Conference on

Communication, Control and Computing, 2010.

[3] G. Chen and G. Lerman. Spectral curvature clustering (scc).

IJCV, 81(3), March 2009.

[4] Y. Chikuse. Statistics on Special Manifolds. Springer, 2003.

[5] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of

algorithms with orthogonality constraints. SIAM Journal on

Matrix Analysis and Applications, 20(2), 1998.

[6] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-

gorithm, theory, and applications. PAMI, 35(11), 2013.

[7] P. Favaro, R. Vidal, and A. Ravichandran. A closed form

solution to robust subspace estimation and clustering. In

CVPR, 2011.

[8] V. M. Govindu. A tensor decomposition for geometric

grouping and segmentation. In CVPR, 2005.

[9] J. He, L. Balzano, and A. Szlam. Incremental gradient on the

grassmannian for online foreground and background separa-

tion in subsampled video. In CVPR, 2012.

[10] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion

from noisy entries. J. Mach. Learn. Res., Aug 2010.

[11] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust

recovery of subspace structures by low-rank representation.

PAMI, 35(1), 2013.

[12] U. Luxburg. A tutorial on spectral clustering. Statistics and

Computing, 17(4), December 2007.

[13] A. Shashua, R. Zass, and T. Hazan. Multi-way clustering

using super-symmetric non-negative tensor factorization. In

ECCV, 2006.

[14] R. Tron and R. Vidal. A benchmark for the comparison of

3-d motion segmentation algorithms. In CVPR, 2007.

[15] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chel-

lappa. Statistical computations on grassmann and stiefel

manifolds for image and video-based recognition. PAMI,

33(11), November 2011.

[16] R. Vidal. Subspace clustering. IEEE Signal Processing

Magazine, May 2011.

[17] Y. Weiss. Segmentation using eigenvectors: A unifying view.

In ICCV, 1999.

[18] J. Yan and M. Pollefeys. A general framework for motion

segmentation: independent, articulated, rigid, non-rigid, de-

generate and non-degenerate. In ECCV, 2006.

35113518

