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Abstract

We propose an exact, general and efficient coarse-to-fine
energy minimization strategy for semantic video segmenta-
tion. Our strategy is based on a hierarchical abstraction of
the supervoxel graph that allows us to minimize an energy
defined at the finest level of the hierarchy by minimizing a
series of simpler energies defined over coarser graphs. The
strategy is exact, i.e., it produces the same solution as mini-
mizing over the finest graph. It is general, i.e., it can be used
to minimize any energy function (e.g., unary, pairwise, and
higher-order terms) with any existing energy minimization
algorithm (e.g., graph cuts and belief propagation). It also
gives significant speedups in inference for several datasets
with varying degrees of spatio-temporal continuity. We also
discuss the strengths and weaknesses of our strategy rela-
tive to existing hierarchical approaches, and the kinds of
image and video data that provide the best speedups.

1. Introduction
Segmenting moving objects in a video sequence is a key

step in video interpretation. Most of the prior work on mo-

tion segmentation (see, e.g., [12, 28, 11, 30]) uses local mo-

tion and appearance cues to segment the video in a bottom-

up, unsupervised manner. However, the use of category-

specific information about the object being segmented can

be really helpful in the segmentation task.

This has motivated the development of semantic motion

segmentation algorithms, which use supervision to label the

pixels in a video according to the object class they belong to.

Most existing approaches to semantic video segmentation

are graph based [18, 17]. Usually, an over-segmentation

of the video is obtained using standard methods [15] and a

random field (RF) is defined on a graph whose nodes are

the resulting supervoxels. The segmentation of the video is

then obtained by minimizing a cost defined on this RF.

However, existing image and video segmentation algo-

rithms allow every adjoining pixel (superpixel) or voxel (su-

pervoxel) to have a different label. As a consequence, the
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optimization procedure is typically very slow because of the

exponentially large number of possible labelings in a video.

For instance, for a video with 100 frames, where each frame

has 100× 100 superpixels and 10 possible labels, the num-

ber of possible segmentations is 101000000.

Many efficient inference approaches have been proposed

in the past, including iterated conditional modes, mean field

approximations, graph cuts, and belief propagation. In gen-

eral, these approaches trade-off accuracy for efficiency by

finding an approximate solution. While successful for many

tasks in image segmentation, these approximate inference

methods continue to be very slow for video applications.

Paper contributions. In this paper, we propose an ex-

act, general and efficient coarse-to-fine energy minimiza-

tion strategy for image and video segmentation, which can

be used to speedup any approximate energy minimization

approach (e.g., graph cuts and belief propagation). The pro-

posed strategy exploits the fact that real images and videos

are both spatially and temporally coherent. Therefore, con-

tiguous supervoxels (both in space and in time) are very

likely to have the same label. As a consequence, the space
of coherent labelings is significantly smaller than the space
of all possible labelings. For instance, if we consider super-

voxels of size k×k superpixels spanning k frames, then the

number of possible segmentations for the example above

reduces to 10
1000000

k3 , which is significant even for k = 2.

To capture the spatial and temporal continuity of a video,

we define a hierarchical abstraction of the supervoxel graph

such that most supervoxels at a coarse level correspond to a

single label. This will allow us to solve a much smaller opti-

mization problem over a coarser graph and to refine this so-

lution only when needed. We use a hierarchical graph-based

supervoxel segmentation method (see [31] for an overview)

to identify the supervoxels (at various scales) that are likely

to have the same label. Such methods create a supervoxel

tree with the biggest (coarsest) supervoxels at the highest

level. The top row of Figure 1 shows the hierarchy for one

of the frames from a video of the SUNY Buffalo-Xiph.org

dataset [9]. The second row shows the set of superpixels

used by our coarse-to-fine inference scheme. At each ab-

straction level, the blacked out portions denote superpixels
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Original image Level 5(coarsest) Level 4 Level 3 Level 2 Level 1 (finest)

Figure 1. Supervoxel hierarchy for an image. The top row shows the various abstraction levels in the supervoxel tree. The second row

shows the portion of the supervoxel tree explored by our coarse-to-fine scheme to find the optimal labeling of segments.

whose refinements were not required to find the optimal la-

beling. It is clear that large portions of the search space can

be pruned by assigning several labels at the coarser levels.

Given this hierarchy, we construct a series of energy

functions for different levels of abstraction and propose a

coarse-to-fine inference scheme that minimizes these en-

ergies to find an optimal segmentation at the finest level

of the hierarchy. To define the different energy functions,

we first augment the set of labels with an auxiliary label

called mixed, which accounts for the fact that coarse super-

voxels may contain finer supervoxels with more than one

pure label. We then define the unary, pairwise and higher-

order costs of the energy at any level of the hierarchy as

lower bounds for the costs at the finest level. By virtue of

this choice, we can guarantee that the optimal segmentation

upon termination is identical to the segmentation we would

have obtained had we solved the original, non-hierarchical

problem, which is exponentially larger in size. Our coarse-

to-fine inference scheme starts by performing inference at

the coarsest level of the supervoxel hierarchy using any in-

ference method (e.g., graph cuts or belief propagation). If

the solution at the current level of refinement is such that

no supervoxel is assigned the mixed label, then an optimal

solution at the finest level has been found by performing in-

ference over a very coarse graph. Otherwise, the mixed su-

pervoxels are refined into its constituent (finer) supervoxels,

and a new inference problem is solved over both coarse and

fine supervoxels. This process is repeated until an optimal

labeling does not assign the mixed label to any supervoxel.

In general, it is very hard to know if the proposed scheme

is more efficient that direct inference over the finest layer.

Clearly if the hierarchy of supervoxels is poorly constructed

so that many refinement cycles are needed, our method

could be less efficient because it solves too many small in-

ference problems. In practice, we observe that the speedup

of our approach increases with the spatio-temporal conti-

nuity of the data. Our experiments show a speedup of be-

tween 2x–10x on videos from the SUNY Buffalo-Xiph.org

[9] and CamVid [7] datasets using the proposed coarse-to-

fine inference scheme as opposed to the corresponding flat

algorithm (graph-cuts or belief propagation).

Related work. There are several existing approaches

to hierarchical image and video segmentation. One line

of work in hierarchical video segmentation is a bottom-

up approach based on merging supervoxels using similarity

metrics based on variation of intensity inside a supervoxel

[13, 18]. However, these approaches do not aim to mini-

mize a specific energy function, which makes it difficult to

compare with our method. Nonetheless, the supervoxel tree

obtained by these approaches can be used as the abstraction

hierarchy in our framework.

Another line of work defines a hierarchical cost func-

tion over supervoxels at all levels. This includes the Pylon

model [25] and associative hierarchical CRFs [22]. This ap-

proach differs from our work in two key aspects. First, [22]

uses mixed labels to enforce label continuity via a higher-

order cost. In sharp contrast, we use mixed labels to distin-

guish between the very large set of unlikely segmentations

and a much smaller set of more likely segmentations, and

to prune the former set. Second, the tree inference methods

used in [22, 25] are very different from the one we pro-

pose. Specifically, the works of [22, 25] solve a multilayer

optimization problem, while we optimize a cost function

defined at the finest layer only. To do this more efficiently,

we use the supervoxel tree to iteratively refine the parts of

the video that could have more than one label. In addition,

we use lower bounds on the energy to ensure the exactness

of our solution, similar to what is done in the coarse-to-fine

dynamic programming [26] and temporally abstract Viterbi

[8] algorithms.

There is a third line of work on hierarchical inference al-

gorithms which do not guarantee convergence to the same

solution as the corresponding flat version. [21] introduces

an inference algorithm that aims to produce better solu-

tions than α-expansion, but is much slower than the actual

α-expansion. [14] proposes a version of hierarchical be-

lief propagation for images. However, unlike our method,

the abstraction used is image-agnostic and the messages at
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a coarse level are only used to initialize messages at the

finer level and not to prevent expanding all nodes. In addi-

tion there are no theoretical guarantees that the inference

method will converge to the same solution as flat belief

propagation. Similarly [10] introduces the inference algo-

rithm which uses an image based hierarchy to perform in-

ference. However, there are no guarantees on convergence

of the algorithm to the actual minimum.

Also, we can use any of these algorithms [21, 14, 10, 4]

to solve the energy minimization problem in each iteration

(at the current level of refinement of the graph) and hence

they can complement our hierarchical inference algorithm.

In that case, our algorithm converges to the solution that

would be obtained by running the corresponding algorithm

on the flat graph. We would like to emphasize that further
advances in supervoxel tree creation and energy minimiza-
tion (both being integral components of our approach) will
further increase the speedup of our hierarchical algorithm.

2. Problem formulation
Most existing graph-based segmentation algorithms de-

fine a random field (RF) whose nodes correspond to pixels

(superpixels) or voxels (supervoxels) in the image or video.

For the sake of concreteness, we will describe our formula-

tion using a RF whose nodes are the supervoxels in a video.

However, the formulation is valid in the other cases as well.

Let V be the set of supervoxels in a video V . Each node

of the RF is associated with a state xi ∈ L = {1, . . . , L},
which represents the category label at supervoxel vi ∈ V .

Let E ⊂ V ×V denote the set of edges of the RF. The edges

are defined by using the neighborhood structure of the su-

pervoxels, i.e., eij ∈ E if supervoxels i and j share a com-

mon boundary. Let C ⊂ 2V be set of cliques involving three

or more supervoxels. These cliques are defined to capture

higher-order interactions among regions in the video, such

as label consistency [20] or top-down information [29, 19].

The labeling of all the nodes in clique c is denoted by a vec-

tor xc ∈ L|c|, while the labeling of all the supervoxels in a

video is denoted by x ∈ L|V|.
Given the structure of the RF, (V, E , C), we define an

energy function (or segmentation cost), E(x, V ), as

λU
∑
vi∈V

ψU
i (xi,V )+λP

∑
eij∈E

ψP
i,j(xi, xj ,V )+λH

∑
c∈C

ψH
c (xc, V ).

(1)

The unary potential, ψU
i (xi, V ), captures the cost of assign-

ing the label xi ∈ L to the supervoxel vi in video V . Unary

potentials are usually obtained by training a classifier for

every class on appropriate supervoxel descriptors extracted

from the videos in the training data. The pairwise potential

ψP
ij(xi, xj , V ) for an edge eij ∈ E in video V captures the

cost of interaction for vi and vj for label assignments xi and

xj . The pairwise potentials are usually designed to enforce

spatial smoothness and temporal continuity of the labels.

The higher-order potential ψH
c (xc, V ) for video V captures

the cost of assigning a label xc to all the supervoxels in-

side clique c, and can be used to measure the consistency of

the labels of all supervoxels inside c. Finally, λU , λP and

λH are weights representing the relative importance of the

unary, pairwise and higher-order potentials. These weights

are learnt using structural SVMs [16]. We will provide more

details of the specific form of these potentials in Section 4.

Given an energy function, the segmentation x∗ of a video

V is obtained by minimizing E(x, V ). In general, find-

ing the global minimum is an intractable problem. There-

fore, energy minimization is usually done using approxi-

mate inference methods such as graph cuts, belief propaga-

tion, and their extensions to higher-order potentials. While

these methods have been generally successful in image seg-

mentation, they continue to be fairly slow for video segmen-

tation due to the huge number of possible labelings a video

can take. For instance, in the case of a video with around

100 frames, each one having a resolution of 960× 720 pix-

els, the number of supervoxels could easily be on the order

100, 000. Thus, the number of labelings could be |L|100,000.

3. Coarse-to-fine strategy
In this section we propose a coarse-to-fine approach for

solving the energy minimization problem more efficiently.

Our approach exploits the fact that labels are coherent both

in space and in time, hence we expect many large, contigu-

ous patches of supervoxels to have the same category label.

3.1. Supervoxel hierarchy
The first step in our approach is the construction of a hi-

erarchical supervoxel tree [13, 18]. The coarsest level of the

tree (i.e., level m) contains the biggest supervoxels and the

finest level (i.e., level 1) contains the smallest supervoxels.

A supervoxel at site i and level j is denoted by vi
j and its

label by xi
j . The set of all supervoxels at level j is denoted

by Vj and its labeling by xj . The refinement of a supervoxel

vi
j (j ≥ 2) is the set of supervoxels at the next finer level

(j−1) that occupy the same set of voxels in the video as vi
j .

We denote the refinement of vji as R(i, j, j − 1) ⊂ Vj−1.

For k < j, we also let R(i, j, k) ⊂ Vk denote the set of

supervoxels obtained by refining vji for j − k times. The

reverse function Parent : Vj → Vj+1 maps a supervoxel

to its parent supervoxel at the next coarser level. In this pa-

per, we will only consider hierarchical supervoxel trees, and

hence each supervoxel has a unique parent.

The supervoxel hierarchy can be obtained by running

any of the existing hierarchical video segmentation algo-

rithms, such as those in [18, 31]. These algorithms provide

an option of either creating very large and few supervox-

els or very fine and numerous supervoxels. By varying this

parameter, we can get the desired supervoxel hierarchy.
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3.2. Coarse-to-fine inference scheme

Given a hierarchical supervoxel tree, we propose a

coarse-to-fine algorithm for efficient inference. The algo-

rithm is designed to distinguish between two scenarios. The

likely scenario is when all the (contiguous) supervoxels at

level j − 1 that constitute a supervoxel at level j get the

same label from the set L. The unlikely scenario is when a

supervoxel at level j has constituents with different labels.

To represent the latter scenario, we introduce a new label

L + 1, to denote the case where a supervoxel vi
j (j ≥ 2)

has constituents with more than one label. We refer to label

L+1 as the mixed label, and to the original L labels as pure.

Of course, only supervoxels that can be further refined can

have the mixed label, i.e., xi
1 �= L + 1. The augmented

label set is denoted by LA = L ∪ {L+ 1}. A similar label

augmentation scheme was used in [8].

The proposed coarse-to-fine inference scheme proceeds

as follows. Let EVm(x, V ) be an energy function defined at

level m. This energy will be constructed from E(x, V ), as

described in Section 3.4. We start by finding a labeling for

the coarsest supervoxels in Vm from the augmented label

set LA. This labeling is found by minimizing EVm(x, V )
using some inference algorithmA, which can be graph cuts,

belief propagation or some linear program, depending on

the form of the energy function being optimized. All current

supervoxels (in Vm) that receive a label L+ 1 are replaced

in the current optimization problem (at level m) by their

constituent supervoxels from the next finer level (m − 1).

This refinement is always possible, since a supervoxel can

only receive the mixed label if it can be further refined.

After a refinement is done, a new RF RVcurr is defined

by the set of current nodes Vcurr and the set of edges Ecurr
and cliques Ccurr connecting these nodes. Notice that Vcurr

need not coincide with the set of nodes at any level j, Vj ,

because the nodes in Vcurr could correspond to supervox-

els at different levels of refinement. For example, we can

have a pair of neighboring supervoxels vi1
j1 and vi2

j2 with

j1 �= j2. LetEVcurr (x, V ) be an energy function defined on

the current RF, which will be constructed from the energy

E(x, V ) as described in Section 3.4. As before, we can ob-

tain a labeling for the supervoxels in Vcurr by minimizing

EVcurr (x, V ) using algorithm A. We can then refine a su-

pervoxel vji that receives the mixed label L+1 by replacing

it by its constituent supervoxels inR(i, j, j− 1). We repeat

this process iteratively, until all supervoxels receive pure la-

bels. Since every supervoxel eventually refines to its finest

constituents, which in turn can only take pure labels, this

process is guaranteed to terminate. Also, at any point in the

algorithm, there exists exactly one ancestor of every finest

level supervoxel vi
1 in the current set of supervoxels.

The pseudocode of the proposed coarse-to-fine inference

algorithm is provided in Algorithm 1.

Algorithm 1 Coarse-to-fine Inference Algorithm (V1:m, ψ)

1: Vcurr ← Vm

2: repeat
3: Find xVcurr which minimizes EVcurr

4: for all vij ∈ Vcurr such that xi
j = L+ 1 do

5: Refine vi
j

6: Vcurr ← Vcurr ∪R(i, j, j − 1) \ vij
7: end for
8: until L+ 1 /∈ xVcurr

9: return xVcurr

3.3. Exactness of the coarse-to-fine solution
To make our coarse-to-fine inference scheme converge to

the same labeling as that obtained by runningA on the finest

level of the supervoxel hierarchy (e.g., a flat graph cuts algo-

rithm), the potentials of the energy at a coarse level,EVcurr ,

need to be chosen in a specific manner. We will use the

notion of admissible heuristics in the A∗ algorithm [27] to

define the potentials of EVcurr . Since our goal is to min-

imize the energy function E, the admissible heuristics for

the unary, pairwise and higher-order potentials of EVcurr

need to be chosen as lower bounds for the values of the cor-

responding potentials of E. Specifically, let x denote any

label assignment for the finest level supervoxels and let x∗

denote the optimal labeling. Let xcf and x∗cf denote the

same for the coarse-to-fine setting at any stage of the algo-

rithm. If we use admissible heuristic costs, then

E(x∗, V ) ≥ E(x∗cf , V ) and E(x, V ) ≥ E(xcf , V ).

These inequalities ensure that when we terminate upon find-

ing a pure labeling for the current set of supervoxels (at var-

ious levels), all other possible assignments have a higher or

equal cost (since their lower bound cost is worse than the

current optimal cost of the pure labeling).

It is important to note, however, that Algorithm 1 is exact

only with respect to the underlying optimization algorithm

A used in Step 3. One of the most popular choices for A is

graph cuts [6] via α-expansion and α-β swap moves. An-

other algorithm frequently used is belief propagation [13].

Other alternatives include various linear and non-linear op-

timization algorithms and the choice is often guided by the

particular form of the energy function we are trying to min-

imize. Since these optimization algorithms are not guaran-

teed to find the global minimum and our method will find

the exact same solution that these optimization algorithms

would find when run on the original finest level of the hier-

archy, our method enjoys the same (approximate) optimal-

ity properties as those of the chosen optimization methodA.

3.4. Admissible coarse potentials
As we discussed in Section 3.3, in order for Algorithm

1 to converge to the same solution as that obtained by run-

ning A on the finest level, the potentials associated with
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the nodes at the coarse levels should be lower-bounds on

the cost associated with the patches of fine nodes constitut-

ing these coarse nodes. In this section, we show how those

lower bounds can be computed. For the sake of simplicity,

we discuss the construction of the lower bounds for an en-

ergy function consisting of unary and pairwise terms only.

However, our methodology is applicable to higher-order po-

tentials as well, as long as lower bounds can be computed.

Coarse Unary Potentials. We define the unary cost

ψU
(i,j)(xi

j) of assigning a pure label l ∈ L to a coarse super-

voxel vi
j at level j as the sum of the unary costs of assigning

label l to all the nodes at level 1 that constitute vi
j , i.e.,

ψU
(i,j)(xi

j) =
∑

k∈R(i,j,1)

ψU
(k,1)(xi

j), xi
j ∈ L. (2)

Notice that this is an exact cost, i.e., it is a tight lower bound.

We define the unary cost of assigning a mixed label to a

coarse supervoxel as the minimum cost associated with the

RF defined by the constituent supervoxels at level 1 subject
to the constraint that all the constituent supervoxels can-
not get the same label. This minimum can be obtained by

using α-expansion on RR(i,j,1) if we do not have the con-

straint that the the nodes in this subgraph can not take the

same label. This results in a weaker lower bound. To find

the minimum cost with this constraint, we can formulate it

as an integer programming problem [5] with an extra con-

straint which prevents all the nodes from taking the same

label. While integer programing could be costly in gen-

eral, notice that here we are solving an integer program on

a small portion of the video given by the setR(i, j, 1).

Pairwise Potentials. We define the pairwise potential of

coarse supervoxels vj1i1 and vj2i2 , ψP
(i1,j1)(i2,j2)

(xj1i1 , x
j2
i2
), as

{
0 if xi1

j1 = xi2
j2∑

Ê ψ
P
(i,1)(j,1)(xi1

j1 , xi2
j2), otherwise,

(3)

where the set Ê ⊆ E is defined as Ê = {e(i,1)(j,1) ∈ E :
i ∈ C(i1, j1, 1), j ∈ C(i2, j2, 1)}. Therefore, the cost of

the edge between two coarse supervoxels vj1i1 and vj2i2 is the

sum of the costs of the edges connecting the constituent su-

pervoxels of vj1i1 and vj2i2 at level 1. In the case where one

of the supervoxels gets the mixed label, the potential associ-

ated to the edge is set to zero. Although this is a loose lower

bound to the actual cost of these edges (while minimizing

the cost on RV1 ) this saves us a lot of computation time.

3.5. Practical considerations

As discussed earlier, in general it is very hard to know if

the proposed scheme is more efficient that direct inference

over the finest layer. In this section, we discuss some practi-

cal considerations to ensure the efficiency of our approach.

Trade-off between accuracy and computation time.
Consider two scenarios: all the lower bounds on potentials

in scenario 1 are tighter than the corresponding bounds in

scenario 2, for the same supervoxel hierarchy. In that case,

the number of refinements required in scenario 1 will be

strictly non-greater than the number of iterations required in

scenario 2. Hence, it is always beneficial to consider tighter
lower bounds. This is true for any algorithm using admis-

sible heuristics. However, the downside of using tighter

bounds is that they generally are more expensive to com-

pute. Thus, a trade-off exists between accuracy of heuristic

costs and time required to compute them.

On-demand supervoxel refinement. In most cases, only

a small number of nodes in the supervoxel tree are used

in the entire inference procedure. Thus, we can save com-

putation time by not computing the entire supervoxel tree

upfront, and only refining the supervoxels with the mixed
label when needed. This on-demand refinement scheme,

however, can be more expensive if we end up expanding

most of the nodes in the supervoxel tree. We see moderate

benefits using this scheme as reported in Section 4.

Extension to label hierarchy. In this work, we have only

considered a flat label hierarchy. However, it is possible

to consider a hierarchy among labels as well. For instance,

since the sky and the sea labels are (often) similar, we might

get additional computational benefits by considering them

together (and therefore eliminating them via a single con-

sideration for non-sky, non-sea nodes). Such a hierarchical

scheme would have a mixed label at every label level. For

more details on how to manage a label hierarchy simulta-

neously with a supervoxel hierarchy, we refer the reader to

[8], where such a scenario is considered.

4. Experiments

This section provides an experimental evaluation of the

proposed coarse-to-fine approach to video segmentation.

Since the goal of this paper is to reach the same segmenta-

tion quality of existing algorithms in a more efficient man-

ner, the experiments are not designed to demonstrate im-
provements in accuracy of the segmentation with respect to
state-of-the-art algorithms. Moreover, since our goal is to

find an optimal labeling for the finest layer of the hierarchy

only, the experiments are not designed to find the optimal
labeling at every layer of the hierarchy. We simply use the

more abstract layers and the associated lower bound costs

to find the optimal labeling at the finest layer. While the

proposed coarse-to-fine scheme can be exponentially faster

than flat optimization in the best case, it can also be much

slower when all the supervoxels need to be refined down

to their finest level. Hence, it is important to validate the

usefulness of our coarse-to-fine approach to see whether it

actually provides a speedup and how large this speedup is.
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It is also expected that the speedup will be much larger for

videos with greater spatio-temporal continuity. The experi-
ments are hence designed to answer these latter questions.

4.1. Dataset

Experiments are done on two datasets: the SUNY

Buffalo-Xiph.org 24-class Dataset [9] and the CamVid

dataset [7].

SUNY Buffalo-Xiph.org 24-class Dataset. This dataset is

a collection of general-purpose videos collected at Xiph.
org. The frame-by-frame labels in the video have a fair

bit of temporal consistency, which our algorithm is well-

equipped to exploit. For each video, we use half of the

frames for training and the remaining half for testing. We

retain all 24 labels for this dataset, although most videos

only have 5− 10 labels.

CamVid Dataset. This dataset has 700 hand segmented

frames of street scenes with varying backgrounds captured

from a video camera in a moving car. The video sequences

have been annotated into 32 classes. However, in this pa-

per we have combined some of the classes and are working

with a total of 5 classes: people, vehicles, sky, road and

background. Around 250 frames were used for training and

the rest of them were used for testing. This represents a

more challenging dataset in terms of an expected speedup.

4.2. Energy potentials

The unary potentials. The unary potential ψU
i (x, V ) is

defined as the cost of assigning a class label x to supervoxel

vi. This cost is obtained as the score of an SVM classifier

applied to the descriptor di of supervoxel vi. This classifier

is trained on the supervoxel descriptors for each class.

Supervoxel descriptors. The supervoxel descriptor needs

to be chosen such that it captures the discriminative charac-

teristics of the supervoxels (both appearance and motion at-

tributes) across various classes. Also the descriptors need to

satisfy some invariance properties like rotation invariance.

In our experiments, we found the Spatio-Temporal Interest

Points (STIP) [24, 23] descriptors to be a good fit. More

specifically, each volume is subdivided into a grid of cells.

For each cell, histograms of oriented gradients (HOG) and

histograms of optical flow (HOF) are computed and con-

catenated. This is in the spirit of the well known SIFT de-

scriptor. For our experiments, we used 5 levels (including

the coarsest and finest levels). The number of supervoxels

at the two extreme levels and time taken in minutes (using

the on-demand generation scheme) is detailed in Table 2.

Pairwise potentials. We define the pairwise potential be-

tween the sites i and j as:

ψP
ij(xi, xj) =

lij
1 + |Ii − Ij |δ(xi �= xj), (4)

where lij is the area of the common boundary between the

supervoxels vi and vj and Ii denotes the average intensity

of supervoxel vi.

4.3. Experimental setup
In our experiments, we use α-expansion (graph cuts [6])

and belief propagation [13] as the optimization method in

Step 3 of Algorithm 1. We implemented the algorithms

in Python and used various functionalities from the graph

libraries Python-graph [3] and igraph [1]. We used the

LIBSVX [2] library’s implementation of a graph-based hi-

erarchical method [18] to generate the supervoxel trees.

4.4. Results
Computational speedup. The computation time taken

by the flat algorithm (both α-expansion and belief propaga-

tion) and its coarse-to-fine counterpart are reported in Table

1. For the CamVid videos, the speedup is between 3x–5x,

while for the SUNY videos the speedup is between 7x–10x.

The increased speedup for the SUNY videos is expected

due to the increased spatio-temporal consistency in those

videos. Notice that these speedups do not account for the

supervoxel tree creation time, which is only required by our

algorithm. If we include the time of the on-demand refine-

ment scheme discussed in Section 3.5, the overall speedup

reduces to 2x–4x for CamVid and 5x–6x for the SUNY

videos. Thus, our approach provides significant speed up,

even including the time to construct the supervoxel tree.

Bbout 40% − 45% of the total inference time is spent

on the integer programming to determine the unary cost of

“mixed” labels while using α-expansion as the optimization

algorithm. The proportion decreases to 20%− 25% of total

inference time when belief propagation is used.

Reduced problem size. Besides computation time, it

is also informative to look at the explored portions of the

supervoxel tree to get a better understanding of where the

computational savings come from. In Figure 2, we show

the explored portions of the state space for one frame in

each of the three SUNY videos. The leftmost image is the

original image, followed by its ground truth labeling. The

next four images from left to right are superpixels (since we

are only looking at one frame) at different levels of abstrac-

tion (coarsest on the left). The blacked out superpixels at

each level are the ones which never received the mixed label

and hence were never refined. Eliminating entire superpixel

(supervoxel) trees rooted at these blackened superpixels (su-

pervoxels) is the key to our computational speedup.

Accuracy. We do not show any segmentation results in

the paper since the quality of the segmentation is the same

as what would be obtained by using α-expansion or belief

propagation with the chosen energy function.

Accuracy vs time. Another interesting metric to track is

the percentage of correctly classified voxels. When the hi-

erarchical algorithm terminates, this percentage reaches the
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Figure 2. Explored portions of the supervoxel tree. The blacked out portions in each superpixel level denotes the patch of superpixels which

were never refined during inference. The top row shows results from the “football” video, the middle row from the “bus” video and the

bottom row from the “ice” video (all from the SUNY dataset).

Algorithm CamVid SUNY
CamVid1 CamVid2 CamVid3 CamVid4 CamVid5 Bus Football Ice

α-expansion Flat 130.1 137.3 117.6 145.1 140.1 35.3 25.0 32.7

Coarse-to-fine 32.7 40.9 27.3 43.8 29.4 6.5 2.3 5.3

Belief Propagation Flat 256.0 270.1 258.3 307.0 319.2 50.3 34.7 50.9

Coarse-to-fine 50.5 79.1 61.5 107.7 90.5 9.3 4.1 8.3

Table 1. Time taken by the different inference algorithms on different data sets (in minutes). The times reported for the coarse-to-fine case

do not include supervoxel tree computation time. For the CamVid videos, the speedup is between 3x–5x, while for the SUNY videos the

speedup is between 7x–10x. If we include the time of the on-demand refinement scheme discussed in Section 3.5, the overall speedup

reduces to 2x–4x for CamVid and 5x–6x for the SUNY videos.

same value that would be obtained by running inference on

the flat problem formulation. As shown in Figure 3, this

final accuracy lies between 55% and 75%. However, there

seems to be no clear trend in how this accuracy is achieved

as a function of iterations. For the “bus” video, the accu-

racy quickly spikes up and then reaches a plateau, while for

“ice”, it spikes up after a few iterations. A surrogate for this

accuracy (the percentage accuracy is often unavailable since

there is no ground truth) is the cost function. We can use the

cost function to design an anytime version of the algorithm,

where termination could be guided by sharp spikes (or the

lack thereof) in the cost function.

5. Conclusion
We have presented a general coarse-to-fine scheme for

video segmentation. The key intuition behind the proposed

solution is the fact that the set of likely label assignments

is exponentially smaller than the set of all possible label as-

signments. A flat problem formulation works with the latter

large set, while we use an abstraction scheme (namely su-

pervoxel trees) to identify the former smaller set and work

on the smaller problem. The framework is general since it

can use any optimization algorithm to find the optimal label

Figure 3. Percentage of correctly classified supervoxels after every

iteration of the coarse-to-fine belief propagation algorithm.

for the intermediate problems. It is also exact since it uses

admissible heuristic costs for the coarser supervoxel poten-

tials. Results using α-expansion and belief propagation on

two different video datasets showed speedups ranging from

2x–10x. As expected, the speedup obtained is larger for

videos with more spatio-temporal continuity.

As with any general framework, there remains a fair bit

of exploration to do. Other abstraction schemes and op-

18711871



CamVid SUNY
CamVid1 CamVid2 CamVid3 CamVid4 CamVid5 Bus Football Ice

#supervoxels (coarsest) 215 32 54 45 47 29 18 18

#supervoxels (finest) 20528 17688 14773 14839 14393 9422 8353 10163

Time taken 9.1 7.6 7.4 8.3 7.2 2.7 2.3 3.0

Table 2. Number of supervoxels at the coarsest and finest level, alongwith the supervoxel generation time using the modified on-demand

supervoxel generation scheme.

timization algorithms could yield better results (for other

specific data sets). There is also the accuracy to compu-

tation time trade-off in the heuristics computation. Another

direction would be to compromise on the exact nature of the

solution and design really fast (and perhaps, slightly more

inaccurate) segmentation algorithms.
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