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Abstract

Classification cascades have been very effective for ob-
ject detection. Such a cascade fails to perform well in data
domains with variations in appearances that may not be
captured in the training examples. This limited generaliza-
tion severely restricts the domains for which they can be
used effectively. A common approach to address this limi-
tation is to train a new cascade of classifiers from scratch
for each of the new domains. Building separate detectors
for each of the different domains requires huge annotation
and computational effort, making it not scalable to a large
number of data domains. Here we present an algorithm for
quickly adapting a pre-trained cascade of classifiers – using
a small number of labeled positive instances from a different
yet similar data domain. In our experiments with images of
human babies and human-like characters from movies, we
demonstrate that the adapted cascade significantly outper-
forms both of the original cascade and the one trained from
scratch using the given training examples.

1. Introduction
Object detection is a problem of rare-event classification,

where the positive examples are overwhelmed by a deluge

of negative examples. Many of the negative examples are

easy to separate from the positive examples, whereas the

rest require a detailed analysis to do so. Therefore, instead

of learning a single complex classifier, a cascade of clas-

sifiers with increasing complexity is often used. This cas-

cade may employ several simple binary classifiers and ac-

cept a candidate image region as detection if and only if all

of these binary classifiers accept it. For object classes with

complex appearance models, e.g., faces, such cascades have

been found to be very effective in reducing both the com-

plexity of the detector and the processing time.

Once trained, a cascade classifier is often used in dif-

ferent, unconstrained data domains (or acquisition settings)

with variations in appearances that may not be captured in

the training examples. This classifier often fails to perform

well in domains with even minor variations from the train-

Figure 1. Narrow range of detections. In both of these images, a

standard face detector correctly identified the adult faces but failed

to detect the faces of the babies.

ing examples. For instance, a cascade trained on the im-

ages of human faces only from a particular age group (e.g.,

adults) fails to detect faces from another age group (e.g., ba-

bies) (see Figure 1). This limited generalization of the cas-

cade classifiers severely restrict the data domains for which

they can be used effectively. A common approach to ad-

dress this limitation is to train a new cascade of classifiers

from scratch for each of the new domains. Training these

multiple cascades is a formidable task. Not only do they re-

quire a long training time, but they also need a large collec-

tion of labeled – both positive and negative – instances. As

we encounter more number of different domains, this ap-

proach becomes infeasible. Instead, we need an approach

that can quickly adapt a pre-trained cascade to perform well

on a new domain.

We consider the problem of domain adaptation for cas-

cade classifiers when the positive examples available from

the target class are not sufficient to train the cascade from

scratch. Furthermore, we assume that only the pre-trained

cascade is available, and not the data used for training it.1

This setting of limited availability of training data in a new

domain arises not only for object detection but also for sev-

eral other rare-event classification problems such as med-

ical diagnosis and intrusion detection. For some of these

problems, domain adaptation and transductive learning of

general classifiers have been explored, but adaptation tech-

niques specific to cascade classifiers have not been studied.

1While it is common to make a pre-trained classification cascade avail-

able, it is sometimes not feasible to retain the examples used for training it

due to operational and copyright issues.
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We observe that the lack of robustness in the cascade

classifiers is primarily due to their over-fitting to training

examples. To address this issue, we split the trained cas-

cade into three functional components, and devise appro-

priate adaptation techniques for these components. There

are two main contributions in this paper: (a) a mathematical

model that systematically identifies and removes the clas-

sifiers in a cascade that contribute little to detection in the

new domain; and (b) an efficient generative model for an

in-domain verification of the detected regions. These two

models are used to adapt a pre-trained (base) classification

cascade to a new domain with a few training examples.

In our experiments, we consider cascade adaptation for

the problem of face detection. Here the different data

domains arise from the appearances diversity across age

groups, race, acquisition settings, and human-like charac-

ters in virtual environments and sci-fi or fantasy movies.

Considering the abundance of such images in personal

collections and online social networks, these variations

present important, practical settings for face detection. For

these settings, the detected faces are often used to improve

the performance of subsequent tasks including multimedia

search, video annotation and tracking, and moderation of

offensive content in images and videos. It is challenging

to collect representative training examples from all of these

domains. Also, some of these domains gain significance too

rapidly (e.g., after the release of a new sci-fi movie or a pop-

ular video game) to allow for a cascade to be trained from

scratch. A system that can quickly build a face detector for

a new target domain from a pre-trained face detector is use-

ful for these new domains. In this work, we consider the set

up where it is feasible to obtain only a few (hundred) posi-

tive examples of the target class, which are not sufficient to

train an effective cascade classifier from scratch.

Sections 3 and 4 describe the details of our approach

for adapting a pre-trained cascade. The image collections

comprising faces of human babies and human-like charac-

ters from movies are presented in Section 5; the related im-

provement in detection performance are shown in Section 6.

2. Related Work
We first distinguish our work from the relevant work

from the domain adaptation and transfer learning literature.

Then we discuss some of the key research related to cascade

classifiers and face detection.

Domain Adaptation. The problem formulation used

in this paper is similar to the work in domain adaptation.

In domain adaptation, labeled data from one or multiple

“source” domains is used to train models to perform well

on a different yet related “target” domain. Daumé and

Marcu [6] approach this problem by modeling the data dis-

tribution for each of these domains as a mixture of a global

and a domain-specific component. This global component

is inferred from the data of the source domain(s) and ap-

plied to the data of the target domain. Another approach to

the domain adaptation problem employs models trained on

the data from the source domain to label a subset of the un-

labeled data from the unlabeled target domain, and re-trains

the classifier on the combined labeled data set [4]. Most

of the work in domain adaptation (including the above two)

suggests minimizing a convex combination of source and

target empirical risk [10]. Thus the classifier needs to be

re-trained (repeatedly) from scratch for every new domain.

Similarly, most of the semi-supervised approaches [21] also

require access to the original training data to adapt the

learned model to a new data domain. In this paper, we con-

sider the problem of domain adaptation without an access

to the original training data.

Transfer learning. Another problem related to ours is

transfer learning, where the general goal is to share knowl-

edge across different learning problems and different data

domains. Most of the work in this area can be broadly cate-

gorized into three types of transfer learning: inductive [16],

transductive [1], and unsupervised [5]. The first category

assumes that knowledge transfer is done between two dif-

ferent learning problems that share the same data domain.

Whereas, the second category addresses a single learning

problem for different source and target data domains. It

further assumes that the data for the two domains is avail-

able during training (hence the term transductive). The third

category considers the most general scenario where both

the data domains and the learning problems can be differ-

ent. Most of the work belonging to this category, how-

ever, only addresses unsupervised learning problems such

as clustering and density estimation. Our setup is similar to

the third category, however the learning problems are super-

vised classification problems.

Cascade classifiers. Cascade classifiers are commonly

used for anomaly detection [8] and one-class classifica-

tion [18]. The cascade classifier by Viola and Jones [18]

is arguably the most popular solution for face detection.

This detector not only achieves a high detection accuracy on

standard face detection data sets, but is also known for its

fast processing speed that makes it useful in practical appli-

cations. This classifier has been shown [2] to exhibit over-

fitting to the training examples. Bourdev et al.’s soft cas-

cade [3] reduces the over-fitting issue by allowing the cas-

cade to make decisions based on cumulative performance.

These lazy decisions however compete with the compu-

tational efficiency of classification cascades. Saberian et

al. [17] presented a formal framework to capture the trade-

off between speed and accuracy. Similar to previous cas-

cade classifiers, their model also does not consider the gen-

eralizability of the trained classifier to other domains. Jain

et al. [12] suggested the adaptation of a pre-trained classi-

fier to a single image, and reported significant improvement

106



in face detection performance on the FDDB data set [11].

Their algorithm adapts a cascade classifier to a new data

domain, but considers the same classification task, i.e., de-

tection of human adult faces. There have been other similar

studies that address different aspects of cascade classifiers

(e.g., see Zhang’s survey [20]). To our knowledge, none of

them focuses on our set up of adapting a cascade classifier

to a different but related classification problem.

3. Cascade adaptation
A cascade of classifiers F is a classifier that is composed

of m stage classifiers {f1, . . . , fm} that are applied in a

sequential manner. For computational efficiency, a rejec-

tion cascade is typically employed in rare-class classifica-

tion tasks where the input is instantaneously rejected if it is

rejected by any of these m classifiers. In face detection, we

are given a candidate image patch x and it is classified as a

face region if and only if it is accepted by all of these stage

classifiers in the cascade.

Verification
Increasing 
complexity

Easy
rejectionIm F

Figure 2. Phase-wise split of a cascade of classifiers.

Functionally, this cascade can usually be split into two

phases: rejection of false positives and validation of true

positives. The first phase corresponds to the early stages of

the cascade that are designed to perform easy rejection and

the subsequent stages of increasing complexity. The first

step quickly discards the easy-to-reject examples, maintain-

ing a high recall rate for positive examples. Because of this

easy rejection, most of the computation is focused towards

only a few candidates and therefore keeps the computation

under control. In the second phase, the stage classifiers

are very detailed and typically use several hundred features.

These classifiers capture most of the structure in a face and

can be considered similar to a descriptive model of face ap-

pearances. This interpretation of cascade classifiers is illus-

trated in Figure 2.

Below we present methods for adapting the two steps in

the first phase of a cascade. A generative model for the

second phase will be discussed in Section 4.

3.1. Training new stage classifiers

Compared to the later stages of the cascade, the first few

stages {f1, . . . , fh} usually lack robustness to minor vari-

ations across similar classes. As a result, a large number

of positive examples from a similar class are often rejected

by these early stages. Since these early stages are expected

to eliminate only the easy-to-reject instances, they can be

trained effectively from scratch even with a few training ex-

amples. To this end, we train a short cascade with very few

stages using the positive examples from the target class. The

stage classifiers from this new cascade will become can-

didate replacements to the stage classifiers in an existing

(generic) cascade classifier.

To maintain the computational efficiency of the original

cascade, we consider the same family of classification func-

tions to learn stage classifiers for the new cascade. Simi-

lar to Viola and Jones [18], a variant of AdaBoost learning

algorithm is employed to train the individual stage classi-

fiers from the few training examples from the target domain.

This algorithm simultaneously selects from a collection of

weak classification functions and combines them to form a

stronger classifier. Here we use Haar-like rectangular fea-

tures to form the pool of weak classifiers and use the desired

rates for hit rate and false alarm as the stopping criteria for

the learning algorithm.

3.2. Selecting from existing stage classifiers

S1 S3S2 SnIm F...

Figure 3. Classification cascade with stage selection. Each of the

stage classifiers (blue) has a binary selection variable (red) associ-

ated with it. These selection variables share the relaxation param-

eters (green).

The second step of the rejection phase is composed of an

ordered set of stage classifiers {fh+1, . . . , ft} of increasing

complexity. If any of these stage classifiers rejects a given

image patch, the patch is immediately discarded, otherwise

it is evaluated by the next stage classifier. The increase in

complexity of the subsequent classifiers is because the ac-

ceptable false-alarm and hit-rate for the trained classifier be-

comes stricter for subsequent stages.

As discussed earlier in Section 1, this step captures dif-

ferent structures of medium complexity in the appearance

of the source domain. Since we assume that the target do-

main is similar to the source domain, we expect many of

these structures to be shared across the two domains. By

selecting only the stage classifiers that capture these shared

structures, we can construct a new classification cascade for

the target domain. To this end, we modify the pre-trained

cascade (for the source domain) as follows. For each stage
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in this cascade, we introduce a binary selection variable θ
that specifies if the evaluation of this stage is useful for the

target domain. This adapted cascade is illustrated in Fig-

ure 3. Note that since we are removing some intermediate

stages from the given cascade, it is possible that the sub-

sequent, expensive stages are evaluated for more candidate

windows, thereby leading to a decrease in the processing

time. On the contrary, as reported later in Section 6, we

observed an increase in the processing speed in our experi-

ments. Our observations validate the existence of stage clas-

sifiers in the pre-trained cascade that are ineffectual for the

target domain. Now we present the details of the parameter

estimation for the proposed selection of useful stages in a

given cascade.

3.2.1 Preliminaries

Let −r denote the complement of a binary random vari-

able r. We denote the combined output of the set of func-

tions {fi, . . . , fj} applied in order in a cascade as Fi,j . Us-

ing u(·) to represent a step function and u(f) to represent

u(f(·)), we have

F1,2 = f1u(−f1) + u(f1)f2, (1)

F1,m =

m∑

i=1

fiu(−fi)
i−1∏

j=1

u(fj) + Fk+1,m

k∏

j=1

u(fj),(2)

∀k, 1 ≤ k < m. For clarity, let us denote the two summa-

tion and product terms in the above equation by Ak+1 and

Bk+1 respectively. Thus, we have

F1,m = Ak+1 + Fk+1,mBk+1 (3)

= Ak + fku(−fk)Bk + u(fk)BkFk+1,m.

Note that Ak and Bk do not depend on the function fk.

Our modified cascade use binary variables {θ1, . . . , θm}.
We represent these variables as individual step functions

over respective continuous random variables {αi, . . . , αm}.
Formally, this modification implies

θi = u(αi), (4)

f̃i = 1 + u(αi)[fi − 1], (5)

where f̃i corresponds to the ith stage classifier in the new

cascade. We further denote the sequential application of

functions {f̃1, f̃2, . . . , f̃m} in the new cascade as F̃1,m.

3.2.2 Loss function

To learn the parameters α of the above model, we want

to minimize the empirical exponential-loss with appropri-

ate L1 regularization for the parameters

LF̃ (α) =

N∑

i=1

exp[−yiF̃(xi,α)] + λ

m∑

j=1

αj . (6)

Assuming the set {fi} is known and fixed, we are in-

terested in estimating parameters we are that minimize the

above loss-function

α∗ = argmin
α

LF̃ (α). (7)

To avoid undesirable minima with arbitrarily large magni-

tude of α, we constraint the solution space to α ∈ [−c, c]m.

Solving this minimization is NP-hard because the expres-

sion for the loss function includes several instances of the

step function u(·). Therefore we employ a differential ap-

proximation for the step function. The details of the modi-

fied minimization function are presented below.

3.2.3 Differentiable approximation

We approximate the step functions u(·) as

u(f̃) ≈ 1

2
[τ(σf̃) + 1] and u(α) ≈ 1

2
[τ(ηα) + 1],(8)

where σ and η are a relaxation parameters and τ(·) =
tanh(·). The partial derivative of the cascade function is

given by

∂F̃
∂αk

=
1

2
Bk{[1−τ(σf̃k)]+σ[F̃k+1−f̃k][1−τ2(σf̃k)]} ∂f̃

∂αk
,

(9)

where ∂f̃
∂αk

= fkη[1 − τ2(ηαk)]. The derivative of the

optimization criterion is given by

∂L
∂αk

= −
N∑

i=1

exp[−yiF̃(xi,α)]yi
∂F̃(xi,α)

∂αk
+αk. (10)

We apply a gradient descent algorithm to obtain a so-

lution α∗ for our optimization. Applying individual step

functions on different components of this solution, we ob-

tain the model parameters Θ∗. In our experiments, we use

cross-validation to determine λ and the relaxation parame-

ters σ and η.

4. Generative validation
Now we discuss our proposal for adapting the second

phase of the cascade i.e., {ft+1, . . . , fm}. We postulate that

this phase is functionally performing a validation of the hy-

pothesized detection through a detailed matching of the de-

tailed structures present in the instances of the given object

class. This functionality can alternatively be obtained using

a generative modeling of the appearances of the given class

instances. Although the selected generative model should

require similar computational effort as the last phase of the

original cascade. Furthermore, this generative model should

learn effective parameters from only a few examples.
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In this work, we propose the use of a nearest-neighbor

based probabilistic model in a projection space as the gen-

erative model for validating the hypothesized detections.

In brief, we first compute a projection space suitable for

a robust representation of the instances for the given ob-

ject class. Then we use a kernel density estimator over the

k nearest neighbors for each of the projected training in-

stances. Finally, for a new test instance, we use this prob-

ability density estimator to determine the likelihood of the

test instance to belong to the object class. The details of

each of these three steps are given below.

We learn the projection space as the basis obtained from

the non-negative matrix factorization (NMF) [13] of the

training images X from the target domain. The standard

NMF model factorizes X as

X = WH + ε, (11)

where H is the latent projection space, W gives the pro-

jection coefficients, and ε denotes the noise. Compared to

the principal component analysis based projection, an NMF

based is more interpretable and more sparse due to its non-

negative additive nature. Sparsity is key to our work as we

want the projection to be computationally efficient. Several

other variants of the NMF models (e.g., sparse-NMF [14]

and NMF with explicit sparseness constraints [7]) have been

proposed. These models were found to be rather unstable in

our experiments.

In this learned subspace, we employ a non-parametric

density estimator using the k-nearest neighbors for each of

the training examples.

ζi = argmax
ζ

∏

z∈Nk(xi)

p(d(z, xi)|ζ), (12)

where d(z, xi) is the distance between z and xi, andNk(xi)
denotes the set of k nearest neighbors of xi.

For a test instance x∗, the validation probability is com-

pute as

p(x∗|Xtrain) =
1

norm

nTrain∑

i=1

p(x∗|ζi). (13)

5. Data sets
We consider two key application areas from the web do-

main: offensive content analysis (OCA) and image search.

OCA systems are critical for social networking and photo

sharing websites that allow users to upload photographs.

These automated systems are expected to detect and filter

the pornographic content. Most of these systems employ

the presence of exposed skin outside face regions as fea-

tures. A significant failure case for such classifiers is that of

the photos of babies. Not only do they contain a large num-

ber of skin pixels, but also the typical detectors fail to detect

their faces. The abundance of baby photos shared on these

websites adds significance to this data domain. Since the

configuration of facial features for babies is different from

normal adults [15], the problem of detecting baby face im-

ages is an example of adaptation to a similar class. A collec-

tion of 764 images of babies is annotated with face regions,

which is referred to as BabyFaces data set. Figure 4 shows

a few example images from this collection.

Figure 4. BabyFaces data set. Each image in this collection is

annotated with the position and size of the faces of babies (and

infants) appearing in them. Face regions of human adults are not

included in the annotations.

Another relevant application domain is image search.

When a new movie or a video game is released, there is

a rapid increase in the queries for its characters, scenes,

and wallpapers on images search. For instance, when the

Avengers movie was released, at least 66K queries for char-

acters from this movie (e.g., Iron Man, and the Incredible

Hulk) were issued in the month of April 2012. Similar

was the case with the Na’vi and Star Wars characters for

the Avatar movie and the Star Wars 1313 video game, re-

spectively. Many image search engines employ the presence

of faces to re-rank the retrieved images to better serve such

queries. These systems need to be generic enough to be able

to detect faces across huge variations – some of which may

be non-human2. On the one hand, it is challenging to build

a single system that can detect these different human-like

faces with such diverse appearances. On the other hand,

it is infeasible to employ separate detectors for individual

characters due to the large number of labeled examples and

the large computation time required to train these detectors.

To assess the applicability of our algorithm to image

search, we collected images for four different movie charac-

ters that are “human like” (see Figure 5). These collections

are built by retrieving the top 1000 results for appropriate

queries to the Bing image search engine. After filtering the

broken links, we obtained 947, 959, 955, and 935 images in

the four collections, respectively. We refer to the combined

set of these four collections as HumanLike data set.

In each of the images in these collections, we annotated

the regions corresponding to the respective faces. We also

split each of these collections separately into five folds for

cross-validation. As a result, we have less than 800 positive

examples to train a pose-invariant face detector in each of

our experiments.3 A careful selection of 800 examples to

2In fact, the main characters in six of the top-10 highest-grossing hol-

lywood movies of the year 2012 are non-human characters that have ap-

pearances with strong similarity to humans.
3Typical approaches for face detection employ up to 10−20K positive
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(a) Na’vi people (Avatar)

(b) Bane (The Dark Knight Rises)

(c) Davy Jones (Pirates of the Carribean)

(d) Yoda (Star Wars)

Figure 5. HumanLike data set. This data set contains four sets,

example images from each of which are shown in the four rows.

The caption shows the name of the character followed by the name

of the movie within the brackets. While the images may also con-

tain human characters, here we are only interested in detecting the

given character and hence, will treat any detections of human faces

as false alarms.

represent the variations for a simple face class (e.g., babies)

may be feasible. However, selecting 800 clean and useful

example images to represent the complex variations in pose,

occlusions, extensions, resolution, and texture observed in

images on the Internet is an painstaking task. These chal-

lenges are evidently present for the non-human characters.

Clearly, this approach of relying only on careful selection

is not scalable when we wish to generalize face detection to

several of these new domains. That said, we use our best

effort (e.g., bootstrapping, selection of negative examples)

to achieve a trained cascade from scratch that comprises the

first few stages of the final cascade.

6. Experiments
Below we present the detailed observations for the Baby-

Faces data set. The described methodology was followed

for the experiments on the HumanLike data set as well; the

general conclusions were the same for the two data sets.

Our approach for cascade adaptation is a supervised ap-

proach – i.e., it requires both positive and negative examples

from the target data domain. We take positive examples

from the in-domain training set, whereas the negative ex-

examples per pose [20].
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Figure 6. Training new stage classifiers. (a) Three types of non-

face image regions are selected as negative examples for training

new stage classifiers: regions from non-face images, regions from

outside the face, and small regions inside the face. Some examples

are shown in the three rows, respectively. (b) The performance

initially improves by introducing multiple in-domain, stage clas-

sifiers. But for the later stages, the newly trained classifiers are

susceptible to over-fitting.

(a) PCA (b) NMF (c) SNMF (d) NMFsc

Figure 7. Learned bases from different approaches. PCA provides

more dense basis vectors than the NMF variants. Also, the basis

vectors in NMFsc were found to converge to individual examples

in the training set. The basis vectors obtained from both of the

NMF and SNMF models highlighted different parts of the face.

amples are collected from three types of image regions: (a)

general image regions, (b) in-face, in-domain negatives, and

(c) out-of-face, in-domain negatives. Some of the negative

examples are shown in Figure 6(a). Using these labeled ex-

amples, we trained new in-domain stage classifiers as can-

didate replacements for the start of the frontal face detec-

tion cascade (hereafter referred to as the original cascade)

available with the OpenCV distribution. Figure 6(b) shows

the improvement in performance for the different number of

stage classifiers replaced in the original cascade. Based on

these observations, we chose to replace the first eight stages

of the original cascade with the in-domain stage classifiers.

For stage selection, we found the useful values of the re-

laxation parameters σ and η to be close to 0.01 and 0.001,

respectively. The solution space is constrained by ensuring

that the value of any of the α variables ∈ [−10, 10]. Ex-

panding this range had little effect on the eventual selection

of stages, but it increased the number of iterations needed

for convergence. The stage selection algorithm converged

to recommend the rejection of 13th, 14th and 17th stage of

the cascade. Although the removal of these stages had little

effect on the resulting performance curve, we observed an

average reduction in 7.2± 0.4% in computation time.

To compute an compact representation for generative

validation, we consider the basis obtained using principal
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component analysis (PCA), and three variants of NMF. Fig-

ure 7 shows the learned bases for the babies data set. As

expected, PCA provides more dense basis vectors than the

NMF variants. Also, the basis vectors in NMFsc were found

to converge to individual examples in the training set. The

basis vectors obtained from both of the NMF and SNMF

models highlighted different parts of the face. Considering

the computational advantage of the NMF model, we chose

this basis for the rest of the experiments. We represent a

given image region as its projection in the space spanned

by these basis vectors. A kernel density estimator is then

learned using a Gaussian kernel over the k-nearest neigh-

bors for each of the training examples. In our experiments,

we set the value of k to 10. To obtain similar computa-

tion cost, we drop the last few stages of the cascade that

are computationally equivalent to the trained kernel density

estimator. For a test image region, the final output of the

adapted cascade is computed as a linear combination4 of

the score from the cascade and the validation score from

the generative model.

Figure 8 shows the results for the above data sets. In all

of the image collections, the original cascade is significantly

outperformed by the adapted cascade. A cascade trained

from scratch using the training examples correspond to the

first few stages of the cascade (Section 3.1). Since these

stages only serve the purpose of easy-rejection, we observe

a large number (tens of thousands) of false positives for this

cascade; the true positive rates are close to zero for < 5K
false positives. Also, even though the detection rates are

low (on an absolute scale) for Yoda and Bane, they make

a significant impact for image search (where the user may

only look at the top few images from the retrieved set of

thousands of images). Also, in videos, these detection rates

can be significantly improved by tracking detections across

frames [19]. As shown in Figure 9, the detections from the

adapted cascade are expected to improve more than those

from the original cascade. Table 1 shows the comparison of

the average computation time for different approaches.

Animation and masked faces. We also experimented

with characters from animation movies such as Anton Ego

from the movie Ratatouille (see Figure 10). The faces

of such characters have very few edge and gradient fea-

tures. So the Haar-like features employed in our cascade

are not very effective for detecting these face regions. The

example of the masked Spiderman is the opposite case,

where the edges are uniformly distributed in all orientations

and across the face regions, and the facial features are oc-

cluded. For these characters, cascade adaptation showed no

improvement over the original face detector. We believe

our algorithm will also be useful for detectors that employ

region-based features. Generative validation also showed

little improvement in the performance for these characters;

4learned through cross-validation
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(a) Baby photos
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(b) Avatar Na’vi
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(c) Yoda (Star wars)
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(d) Bane (The Dark Knight Rises)
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(e) Davy Jones (Pirates of the Carribean)

Figure 8. (Cols 1-2) Ground truth (red) and the output of our de-

tector (green) are shown. Performing at the same false positive

rate, the original cascade did not detect any of these face regions.

(Col 3) Performance curves using the FDDB discrete matching

score [11]: original cascade (black), original + validation (ma-
genta), original + adaptation (blue), and original + adaptation +

validation (green). The standard techniques for post-processing

will improve the performance curves further uniformly for all of

these approaches. However, since our main contribution is an ap-

proach for adapting the detector to work better in a new domain,

we focus only on the algorithmic improvement in performance.
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Original+Adapt Original+Validate Original+Adapt+Validate

BabyFaces −8.4± 0.6 0.2± 1.1 −4.5± 1.4
Na’vi people −2.8± 1.3 4.2± 0.9 3.0± 0.5
Yoda 0.3± 0.2 8.2± 0.8 10.0± 0.4
Bane −4.0± 0.9 9.3± 2.0 7.1± 0.4
Davy Jones −7.7± 0.1 8.7± 0.6 −1.6± 2.0

Table 1. Computational cost. Each number is the percentage difference between the average detection CPU time of the approach relative to

that of the original cascade. (Lower values are better.) The proposed approach is never slower by more than 11% compared to the original

cascade, while obtaining performance gains of more than 100% in some cases.

Figure 9. Video frame sequence. Adaptive cascade (bottom row)

obtains more robust detections than the original cascade (top row).

This robustness would further allow a tracking algorithm to dis-

card spurious false positives (e.g., in the third frame). The com-

plete video examples are included in the supplementary material.

Figure 10. Failure cases. The proposed approach showed little

improvement in performance for animation and masked faces.

the true positive rate at 2500 false positives increased by

only 0.5% for the Spiderman collection.

7. Discussion

We presented an approach for adapting a cascade of

classifiers to perform classification in a similar domain for

which only a few positive examples are available. Using

this approach, we demonstrated huge gains in performance

in detecting faces of human babies and human-like char-

acters from movies. Also we maintain the computational

efficiency of the original classification cascade. Given a

few labeled examples of a target domain, this approach con-

structed an effective detector for this domain within a day.

Training similar detector from scratch would typically re-

quire several days of annotation and computational efforts

for training these classification cascades. It would be inter-

esting to extend our approach to handle noisy training data

that can be obtained in a semi-supervised or unsupervised

manner. Another interesting future direction would be to

explore the use of unsupervised alignment techniques [9]

for improving our approach for adaptation.
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