
Scene Collaging: Analysis and Synthesis of Natural Images with Semantic Layers

Phillip Isola
MIT

phillipi@mit.edu

Ce Liu
Microsoft Research
celiu@microsoft.com

Abstract

To quickly synthesize complex scenes, digital artists of-
ten collage together visual elements from multiple sources:
for example, mountains from New Zealand behind a Scottish
castle with wisps of Saharan sand in front. In this paper, we
propose to use a similar process in order to parse a scene.
We model a scene as a collage of warped, layered objects
sampled from labeled, reference images. Each object is re-
lated to the rest by a set of support constraints. Scene pars-
ing is achieved through analysis-by-synthesis. Starting with
a dataset of labeled exemplar scenes, we retrieve a dictio-
nary of candidate object segments that match a query im-
age. We then combine elements of this set into a “scene col-
lage” that explains the query image. Beyond just assigning
object labels to pixels, scene collaging produces a lot more
information such as the number of each type of object in
the scene, how they support one another, the ordinal depth
of each object, and, to some degree, occluded content. We
exploit this representation for several applications: image
editing, random scene synthesis, and image-to-anaglyph.

1. Introduction

Parsing an image into a set of objects and interactions
remains a grand challenge in computer vision. When hu-
mans look at a scene, e.g. a cityscape, a forest or a cafeteria,
we see an organized interaction of objects, functions and
spaces. However, many existing scene parsing approaches
represent an image simply as a 2D array of pixel labels (e.g.
[9], [18], [13], [22]), and these representations fail to ac-
count for occlusion. In typical images, huge swaths of scene
structure are occluded from view. Further, occlusion even
makes visible content difficult to parse: when projected into
a 2D image, background objects are often fragmented by
occluders.

To solve these problems, we propose a novel scene
model, in which we represent discrete semantic objects on
separate layers. We take our lead from human artists. While
there are many ways by which an artist can synthesize a
scene, one of the quickest and easiest is to collage together
the image out of found pieces. Following this collaging ap-
proach, we model a scene as a collage of object segments

!"#$#%"&''()#%
*+",&$(-.%&/%0"#$#0%

1$234%+5()#%

15()#%#6+,$)% 15()#74&7($()'.28%
9($6&5%0"#$#%%

0.$48#0+0%Original image Edited image Original image Edited image

Figure 1: Top: We parse an input image (left) by recombining ele-
ments of a labeled dictionary of scenes (middle) to form a collage
(right). Bottom: Our representation enables many applications.
Representing discrete objects leads to easy scene editing (left; one
building may be swapped for another). Representing layers gives
us a rough estimate of depth (center; please view with anaglyph
glasses). And because our model is generative, we can syn-
thesize random scenes (right).

sampled from a large database of example images for which
humans have provided object label annotations (Figure 1;
also see Figure 3). The statistics of features in the segments
from the database are used to match regions in the query
image. Given a query image, we infer a collage through
analysis-by-synthesis, building up an explanation that both
generates the query’s appearance and preserves structural
properties of the examples from which the collage is pieced
together. Many applications – including image editing, ran-
dom scene synthesis, and rough image-to-anaglyph – be-
come available once we have inferred a scene collage (Fig-
ure 1, bottom row).

1.1. Related work

Layer models have been widely used in both computer
vision and graphics. In video segmentation, layers are often

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.457

3048

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.457

3048

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.457

3048

!"#$#%&'(#)%
!"#$%& '(%)%$*#+,&#)-&.#/%*0&

sky
mountain

field
tree

tree
tree

tree
fence

123%(4&0%$"%)40&

5#
/%
*0
&

)%#*&

6#*&
sky
mountain

field
tree

tree
tree

tree
fence

Figure 2: We model a scene as a layer-world collage of objects.
Object support relationships are represented in a “scenegraph”.
For example, the scenegraph above indicates that the trees are sup-
ported by the field.

used to group pixels that undergo the same motion and to
handle occlusion [23], [10]. Unlike these past solutions,
our present system operates on a single image rather than a
video.

In computer graphics, several approaches synthesize im-
ages by compositing layers (e.g. [5], [1]). However, these
applications rely on human input and their goal is image
synthesis whereas our system aims at both scene analysis
and scene synthesis.

In the realm of scene parsing, Guo and Hoiem have re-
cently attempted to infer occluded scene content [7]. How-
ever, their system does not explicitly represent image layers,
nor does it resolve depth ordering.

The LabelMe3D algorithm of Russell and Torralba infers
the depth ordering of segments in a scene, but only with the
aid of extensive human annotation at test time [16]. Our
present aim is a system that is fully automatic at test time.
Russell et al. [15] also developed an image segmentation
algorithm that involves matching a query image to an “im-
age composite”, that is, pieces of similar images stitched
together. Our collage-based approach is similar in spirit,
but our present goal extends beyond just segmentation.

Another related line of work is image parsing using 3D
models [8], [26]. These methods differ from our own in
that they represent objects with 3D models whereas we use
a simpler representation: flat layers.

In addition to being layer-based, our approach is
example-based and object-based. Recently, several
example-based methods have been applied to scene parsing
with promising results [13], [22]. However, our representa-
tion differs from these alternatives in that our examples are
human labeled object segments, rather than full images [13]
or super-pixels [22]. Other object-based methods have also
been proposed: [25] and [21] used object detectors, and [14]
showed promising qualitative results at scene parsing with
object segments.

The primary contribution of our paper is the application
of a novel layer-world representation to understanding and
manipulating natural images. Our scene collage represen-
tation naturally consists of geometric relationships such as
occlusion and depth ordering, and could be further extended

to a full 3D model. Furthermore, our polygon-based layer
representation is user-friendly; namely, users can easily in-
tervene with the layer world by translating and scaling the
polygons or dragging each individual control point.

In addition, we introduce a nonparametric scene gram-
mar for searching a space of reasonable scenes. In partic-
ular, we model each scene with a scenegraph of object in-
terrelations. These scenegraphs provide scene level context,
which guides how we fit exemplar segments into a scene.

2. Scene model
We model a scene as a collage of transformed exemplar

object segments. Each exemplar object is a labeled object
segment from a dictionary, L, of annotated images. These
segments consist of the object’s class c̃`, a geometric mask,
Q̃`, which specifies the object’s silhouette, image pixels Ĩ`,
and an appearance model g̃` (throughout this paper we use
·̃ to mark variables that refer to information in our dictio-
nary).

A scene collage consists of transformed versions of the
dictionary segments. The indices into the dictionary for the
segments used in a collage are denoted as ` ∈ L. With an
object’s transformation parameters denoted as θ`, we trans-
form exemplar segments masks as:

Q` = T (Q̃`; θ`). (1)

For transformations T , we consider the following set of
manipulations, motivated by the tools a digital compositor
might use: {translation, scaling, trimming, in-painting}.
In Section 4, we discuss how these transformations are ap-
plied. In addition, each object is assigned to a unique dis-
crete layer, z`.

A scene collage also consists of a set of semantic ob-
ject relationships represented as a scenegraph, S (Figure
2, right). The scenegraph provides context for each object
in the scene. The structure of the scenegraphs is described
in Section 2.1. Treating the dictionary as deterministic, we
model the probability of a scene collage just in terms of
random variables for the dictionary indices used, the trans-
formation and layering parameters, and the scenegraph re-
lationships: X ={L, θ, z,S}. The posterior we seek to op-
timize is

P (L, θ, z,S | I) ∝ P (I | L, θ, z,S)P (L, θ, z,S). (2)

2.1. Scenegraphs

We use object interrelationships to add context to our
scene representation. We represent these relationships as
a graph support constraints: if object A physically supports
objectB, thenB is a child ofA. We call the resulting graph
a scenegraph, borrowing the term from the graphics com-
munity [20]. At most one parent is assigned to each child

304930493049

Query image Scene collage

Sky Building Road Sidewalk Car Tree Person

Re
tr

ie
ve

d
ob

je
ct

 se
gm

en
ts

Segment transformation and recombination
Translation
potential

Aligned onto
query

MRF node
potential

Retrieved scenes
Retrieved object

segment

Sky

Person

Tree

Building
Rotated view to

show layers

Collage labels

Collage image

Figure 3: Overview of our approach. Starting with a query image (top left), we retrieve similar images from our dictionary. From these
images, we select a set of candidate object segments for use in a collage (bottom left). We align each candidate segment onto the query
image (column “Translation potential” depicts the cost of centering the segment at each point in the image, with red being low cost; column
“Aligned onto query” shows the aligned mask). Segment boundaries are trimmed and refined with MRF-based segmentation (column “MRF
node potential” depicts the probability of each pixel being assigned to a particular segment, with red being high probability). Finally, we
choose a set of segments that semantically fit together and well explain the appearance of the query. These segments are layered together
to form a “scene collage” (far right).

node, making the resulting graph a forest. An example of a
scenegraph is shown in Figure 2.

Image parsing graphs have been previously proposed by
a number of authors (e.g. [27], [26]), and physical sup-
port inference has also recently been explored [19]. Our
representation of object relationships is especially similar
to Russell et al.’s LabelMe 3D representation [16]. How-
ever, whereas Russell et al. demonstrated that this repre-
sentation is useful for inferring scene structure from human
annotations, here we attempt to show its utility toward in-
ferring structure in unlabeled images. Gupta et al. also ex-
plored a similar representation, in which objects in a scene
are related by a graph of support constraints [8]. However,
they used a 3D block representation and automatic segmen-
tation, while we use a simpler, layer-world representation
built from human-labeled exemplar segments.

Scenegraph estimation: To estimate the scenegraph for
a scene, we apply the following rules: Object A is a parent
of B if A is on a higher layer than B and either 1) B is the
predominant object in a small region directly below A in the
y-coordinate, or 2) B covers ≥ 99% of the region directly
underneath A in the z-coordinate.

2.2. Likelihood model

An image, I , is generated by a scene collage, X, as fol-
lows. Each object in a scene is associated with a function
g̃`, which is a generative model of appearance. Intuitively,
the object is filled with visual stuff and we model that stuff

as a spatially varying distribution over features we expect to
see in different subregions of the object’s mask (Figure 4).

Rather than modeling the appearance of raw pixels, we
model the generation of image features. Indexing coordi-
nates within an image with q, f (I)q is the feature vector at q
in image I .

We use a spatial grid partitioning scheme. g̃`(·, ·) is a
2D distribution with the first dimension over feature and
the second over sub-bin of the object’s bounding box, BB`
(BB` is the bounding box of Q`). Using Ĩ` to denote the
image pixels of the exemplar indexed by ` in our dictionary,
we first measure a histogram, h̃`, of visual words in each
sub-bin B:

h̃`(f,B) =
1

|B ∩ V`|
∑

q∈B∩V`

1(f = f (Ĩ`)q), (3)

where V` is an object’s visibility mask:
V` = Q` \ ∪{`′∈L s.t. z`′<z`}Q`′ . (4)

We arrive at the appearance model for an object by aver-
aging its histogram with the histograms of similar segments
in our dictionary:

g̃`(f,B) = (1− λ)h̃`(f,B) + λ
∑
i∈K

h̃`i(f,B), (5)

where K is a set of K = |K| nearest-neighbor dictionary
segments of the same class c̃`. Averaging with the his-
tograms of these similar segments acts regularize the ap-
pearance model. We learn the parameters λ and K from
training data, as described in Section 3.

305030503050

Q� V�Ĩ�

f (Ĩ�) Q� − Segment mask

V� −Unoccluded region of segment’s mask

BB� − Segment’s bounding box

B� − Sub-bin of a segment’s bounding box

h̃� −Histogram of segment’s visual features

g̃� − Segment’s appearance model

Ĩ� − Image segment was sampled from

f (Ĩ�) −Visual features in Ĩ�

h̃� g̃�

BB�

B�

Figure 4: Notation for our likelihood model. Here we depict our
model for the visual appearance of a building segment.

We model the likelihood of an entire image I as the
probability of each pixel in the image under the appearance
model of the object whose visibility mask covers that pixel:

p(I|X) =
∏
`∈L

∏
q∈V`

g̃`(f
(I)
q , B`(q)), (6)

where B`(q) is the bounding box sub-bin of BB` in which
q falls.

For features f , we use a variant of HOG visual words [2]:
we augment HOG feature vectors with the a and b compo-
nents of the L*a*b color space, and we vector quantize these
into 1000 visual words using k-means, giving “HOG-color”
visual words.

2.3. Priors – scene grammar

We represent scene priors with a nonparametric scene
grammar. Our grammar defines a set of valid scenegraphs.
The intuition behind our grammar is that we interpolate be-
tween the scenegraphs of exemplar scenes in our dictionary.
We consider the following set of moves: {birth, death,
swap}. Each move takes a given valid scenegraph and re-
structures some part of it to be more like the scenegraph of
an exemplar scene. Intuitively, a birth move adds an object
to our scenegraph, a death move removes an object, and a
swap exchanges one object for another. In Table 1, we de-
fine the set of possible moves that can be applied to make
a scenegraph S more like an exemplar scenegraph E . As a
concrete example, if one of our exemplar scenegraphs has a
“rock” that is the child of a “sea”, then our grammar will in-
clude the production rule: a “rock” may be born on a “sea”.
Further examples of valid moves in this scenario are shown
in Figure 5.

Any scene whose scenegraph can be generated in this
way is assigned prior probability p(X) = c (c is a constant
such that

∫
p(X) = 1). All other possible scenes are given

probability 0. In addition, we require that the transformed,
layered objects in the scene are consistent with the scene-
graph, S, in the sense that if we were to apply the scene-
graph estimation rules (Section 2.1) to a scene with vari-
ables {L, θ, z}, it would result in a scenegraph identical to
S. Scenes that do not satisfy this requirement are assigned
prior probability p(X) = 0.

sea

plantrock skyplant

sea

skyboat

birth of rock death of boat

swap of boat
for rock

swap of plant
for plant

Collaged scene Exemplar scene Valid new scenegraphs

Figure 5: Valid scenegraphs (right) that are produced by taking
the collaged scene (left) and moving it toward the scenegraph of a
dictionary exemplar (middle).

3. Learning
We learn the parameters λ andK of our likelihood model

(Equation 5) from our dictionary of training segments. We
cluster dictionary segments by object class and mask shape,
and a cluster-specific λ and K is learned for each cluster.
We split each cluster into training and test sets (T1, T2), and
then choose the parameters that maximize the likelihood of
test segments under the maximizing assignments of training
segment models g̃ to test segment appearances f , i.e.

{λ∗,K∗} = arg max
{λ,K}

∑
i∈T2

argmax
`∈T1

∑
q∈Q̃i

g̃`(f
(Ĩi)
q , q;λ,K).

(7)
We perform this optimization using hard-EM [3].

4. Inference
Through analysis-by-synthesis, we infer a scene collage

that maximizes the model’s posterior:

X∗ = argmax
X

p(I | X)p(X). (8)

Our system pipeline (in Algorithm 1) consists of three
stages: segment retrieval, segment transformation, and seg-
ment recombination (Figure 3). We first retrieve a set of
candidate segments to be used in collaging. We then trans-
form each candidate to align with the query image. Finally,
we select a subset of the transformed candidates and com-
bine them into an collage that explains the query.

4.1. Segment retrieval

We start by retrieving the N-nearest-neighbors images in
our dictionary, based on spatial pyramid matching (SPM)
[11] with our HOG-color visual words. For each of these N
exemplar scenes, we retrieve its k-nearest semantic neigh-
bors using SPM over pixel labels. This gives usN candidate
sets of retrieved scenes, {C}Nn=1, which we call context sets
(N = 10 in our experiments). Each context set contains k1
semantically coherent scenes (k1 = 20 in our experiments).
For example, in matching a picture of sand dunes, we may
retrieve one context set of beaches and one context set of
deserts.

Our next step is to retrieve good candidate object seg-
ments from {C}Nn=1. For each context set Cn, we select a

305130513051

Table 1: Table of valid scenegraph changes. Notation: par(A,S) is the parent of object A in scenegraph S, class(A) is the object class
of A. S is the scenegraph being changed and E is the exemplar scenegraph the change is based on.

Move type Effect Rule for validity
Birth Add an object A Parent requirement: class(par(A,S)) = class(par(A, E))
Death Remove an object B Always valid
Swap Exchange an object B for A Birth(A) is valid and QA∩QB

QA∪QB
> 0.25

Algorithm 1 Greedy optimization

for all Cn ∈ {C}Nn=1 do
Rn ← RETRIEVESEGMENTS(Cn)
Xn ← EMPTYSCENE
while not converged do
M← VALIDMOVES(Xn, Cn,Rn)
for all m ∈M do
X

(m)
n ← APPLYMOVE(Xn,m)

end for
Xn ← argmaxm p(X

(m)
n | I)

Xn ← TRIMANDGROW(Xn, I)
end while

end for
X← argmaxn p(Xn | I)
return X

retrieval set,Rn, of object segments, chosen from amongst
the segments that make up the scenes in Cn. We choose seg-
ments based on the similarity of their visual features to the
features of the query image. In order to sample segments
of a variety of sizes, we consider big object segments sep-
arately from small object segments. In particular, we first
group objects by the area of their mask (|Q`|) (in our ex-
periments, we use 10 linearly spaced size categories).Then,
for objects in each given size category, we select the k2 seg-
ments that maximize the histogram intersection between the
spatial pyramid distribution of HOG-color visual words in
the segment and in the query image (k2 = 40 in our experi-
ments). The union of all these sets of k2 segments gives us
our full retrieval setRn.

4.2. Segment transformation

Once we have retrieved a set of candidate segments, we
warp each to align with the query image using transfor-
mation function T (Equation 1), which consists of three
separate stages: “translation and scaling”, “layering”, and
“trimming and growing” (Figure 3). Objects are translated
and scaled during an initial pass over all retrieved segments,
whereas layering, trimming and in-painting occurs at each
iteration of the segment recombination algorithm (Section
4.3). A brief overview of each step is provided below. For
details, please refer to the supplemental materials.

Translation and scaling: Each object from our dictio-
nary is transformed independently. Using a sliding win-
dows approach, we place the object at a location and scale

where it maximizes the image likelihood under our genera-
tive model from Section 2.2.

Layering: When an object ` is added to a collage, we
insert it at a layer z`. All other object segments in the
collage at or below this layer are pushed back: z`′ ←
z`′ − 1 ∀z`′ ≥ z`. We choose z` as the assignment that
maximizes image likelihood under the new collage. How-
ever, we only consider layer assignments that are valid in
the sense that the collage’s scenegraph remains consistent
with the collage’s layering order (consistent according to
the scenegraph estimation rules of Section 2.1). Also, as
a special case, “sky” segments are always placed on the
bottom-most layer.

Trimming and growing: We edit object masks (Q`) af-
ter each iteration of segment recombination. We formulate
this part of the problem as 2D MRF-based segmentation, in
which segments in a collage compete to explain pixels near
their mask boundaries. The energy of the MRF is based on
the likelihood each segment assigns to the pixels under our
likelihood model from Section 2.2.

4.3. Segment recombination

For each context/retrieval set, we greedily recombine
our retrieved, transformed segments in order to explain the
query image. We start with a set of N empty collages,
one for each of our N context sets. Each context set, Cn,
defines a context-dependent scene grammar. This context-
dependent grammar is the same as our scene grammar from
Section 5, but rather than considering moves toward any
exemplar scene in our dictionary, we only consider moves
toward exemplar scenes in the context set. Intuitively, if our
context set is a bunch of beach scenes, we will only consider
beach-like scenegraphs as valid.

The context-dependent scene grammar defines the set of
valid semantic changes we can make to a collage. In or-
der to instantiate these semantic changes with actual object
segments changes, we consider using each of the object seg-
ments in the retrieval set Rn. At each iteration of greedy
optimization, we simply choose the change that maximizes
our posterior. This generates N collages, from which we
choose the max a posteriori collage as a final explanation of
the query (Algorithm 1).

We speed up this optimization with three further
tricks. First, we use the lazy greedy evaluation method
described in [12]. Second, we consider segments in
Rn in a coarse-to-fine manner. On the first iteration of
greedy optimization, we only consider changes involving

305230523052

Human
annotation

Inferred
appearance

Inferred
annotations

Inferred
layer-world

Query
image

Figure 6: LMO results. Our algorithm is relatively successful at
parsing outdoor scenes. Notice that each region of a query image
is matched to a similar but not identical object segment from our
dictionary.

large objects. Once no further large objects improve
the posterior (or after a fixed max number of iterations),
we move on to objects at a smaller scale. We repeat
this process, iterating over the following set of scales,
where the numbers represent the range of object mask
sizes (|Q`|/|I|) under consideration at each iteration:
{[0.24, 1], [0.12, 0.5], [0.06, 0.25], [0.03, 0.12], [0, 0.06]}.
As a final trick, between each regular iteration, we apply all
valid death moves that improve the posterior, which serves
to quickly cull away any unhelpful segments.

5. Results
We test our algorithm on two datasets: the SUN

Database [24] (including a benchmark subset called the
LabelMe Outdoor Database (LMO) [13]), and the NYU
RGBD dataset version 2 [19]. Each of these datasets has
been annotated with object masks by humans. Example
parses using our system are shown in Figures 6, 7, and 8.
An example inferred scenegraph is shown in Figure 9. More
examples can be found in the supplemental materials.

Our implementation takes about 30 minutes at test time
to parse a single scene on a single core. Training – comput-
ing features and learning the likelihood model parameters –
takes a few hours on a single core for a dictionary of several
thousand scenes, and scales linearly with dictionary size.

5.1. Evaluating segmentation and labeling

To assess our performance at the traditional problem of
pixel-labeling, we employ two standard measures from the
literature: mean per-pixel label accuracy and mean per-class
label accuracy [22]. We compare results to state-of-the-art

Human
annotation

Inferred
appearance

Inferred
annotations

Inferred
layer-world

Query
image

Figure 7: SUN results. Because our algorithm uses a layer world,
it represents to some degree occluded portions of the scenes. No-
tice in row 3 that occluded regions of the wall and floor are in-
ferred, which would not be possible in a purely 2D representation.

Human
annotation

Inferred
appearance

Inferred
annotations

Inferred
layer-world

Query
image

Figure 8: Indoor scenes pose greater difficulty.

road
building

skytree car person sidewalkwindow
Inferred annotations Inferred scenegraphQuery image

Figure 9: In addition to inferring layered object segments, we also
infer how they support one another, as captured by a scenegraph.

methods in Table 2. While we do worse at pixel-labeling
than these algorithms, we infer a much richer representation
than a grid of pixel labels.

5.2. Evaluating layers and support relationships

In addition to inferring a segmentation map and pixel-
wise labels, our model explicitly represents discrete, lay-
ered objects and their support relationships. To compare
these inferences to “ground truth”, we need a way of es-
timating ground truth. To estimate the layer order of a
scene with only 2D object annotations (i.e. LMO and SUN
scenes), we use the heuristics from [17]. For RGBD scenes
(i.e. the NYU dataset), we sort segments by max depth. To
estimate ground truth scenegraph support relationships, we

305330533053

Table 2: Comparison with other methods on LMO.
Mean per-pixel accuracy

Algorithm (mean per-class accuracy)
Liu et al. [13] 76.7 (N/A)

Fabaret et al. [6] 78.5 (29.6) / 74.2 (46.0)
Eigen and Fergus [4] 77.1 (32.5)

Tighe and Lazebnik [21] 78.6 (39.2)
Our method 70.0 (26.2)

Table 3: Performance of our algorithm
Mean per-pixel Mean per-class Layer Support

Dataset accuracy accuracy Score Score
LMO 0.70 0.26 0.24 0.23
SUN 0.40 0.03 0.12 0.11

NYU RGBD 0.30 0.01 0.11 0.12

apply the scenegraph construction rules (Section 2.1) to the
ground truth annotations.

We then compare our inferred layer orders and scene-
graphs to ground truth using the following metric. First, we
match each object `′ in the ground truth to a best match-
ing object ` in our explanation, which is defined to be the
object in the explanation of the same object class as `′ (if
one exists) for which (Q`′ ∩Q`)/(Q`′ ∪Q`) is maximized.
Next, we list all pairwise relationships between objects in
the ground truth scene, r̃, and all such relationships between
objects in the inferred collage, r̃. We consider both pairwise
layer order and scenegraph support relationship (parent,
child, no relation). We measure performance as the number
of relationships in r̃ that also hold for r when the objects are
matched as described above, divided by the total number of
relationships in r̃ and r. That is, Score = (r̃∩r)/(r̃∪r). We
separately report the score measured in this way for layer re-
lationships (LayerScore) and for support relationships (Sup-
portScore).

Table 3 enumerates our results on each dataset. While
our method often produces reasonable parses of outdoor
scenes, it has more difficulty with indoor environments,
such as those in the NYU RGBD dataset.

5.2.1 System variation comparisons

In Table 4, we compare several variations of our system.
“Full system” refers to the full system described above.
“Nearest-neighbor” refers to just using the single nearest-
neighbor retrieved scene as the raw explanation for a query
image. “No recombination” does not allow objects from
more than one dictionary scene to be used in a collage (i.e.
the number of scenes in each context set is 1), but other-
wise the algorithm proceeds as usually. As the results show,
allowing segments to transform and recombine from mul-
tiple sources boosts pixel labeling accuracy compared to
the “Nearest-neighbor” and “No recombination” baselines.
However, interestingly, just using the raw nearest-neighbor
does better on layer and support scores. Apparently, by

Table 4: System variations.
Mean per-pixel Mean per-class Layer Support

accuracy accuracy Score Score
Nearest-neighbor 0.55 0.20 0.35 0.32
No recombination 0.62 0.21 0.18 0.20

Full system 0.70 0.26 0.24 0.23
Maxent prior 0.68 0.18 0.15 0.15

Original image Edited image Original image Edited image

Figure 10: Using our layer world representation, we can easily
swap one object for another. Notice that the mountain gets auto-
matically placed behind the bridge since layers are explicitly rep-
resented.

Seed	
 Image Randomly	
 synthesized	
 scenes

Figure 11: Random scenes, on right, synthesized from seed in
column on left. These samples look like reasonable scenes, sug-
gesting we are staying close to the set of natural scenes as we
randomly walk over our scene grammar. The right-most column
shows failure cases where the synthesized scenes do not look very
natural.

better fitting the appearance of a query image through seg-
ment transformations and recombinations, we break some
of the rich structure that comes naturally intact in nearest-
neighbor images. Finally, we compare to adding a maxi-
mum entropy prior over object co-counts (“Maxent prior”;
described in detail in the supplemental materials). This
prior over-regularizes somewhat, resulting in a decrease in
the per-class accuracy and the layer and support scores.

6. Applications
Image editing: One benefit of our representation is that

it is easy to manipulate by humans. Indeed, layer-worlds are
often used in consumer image editing software such as Pho-
toshop. In Figure 10, we show a demo of editing an image.
Say a user does not like the tall building in the right image,
and wants to replace it. We can use our system to parse the
image and provide the user with a set of discrete, manipu-
lable image layers. The user may then swap out the build-
ing for a more colorful one. Since our system knows layer

305430543054

Figure 12: Image-to-anaglyph. Please view with red-blue anaglyph glasses . Our system is able to recover rough 3D from the layer
order. However, not all scenes are well modeled by a layer-world. For example, the roads in the street scenes above should extend through
multiple depth layers, but our representation cannot capture this.

order, and partially represents occluded pixels, it can intel-
ligently in-paint the region behind a changed object. Here
we have implemented just a demo in-painting algorithm that
fills in these regions with nearest-neighbor segments.

Random scene synthesis: Since our method is genera-
tive, it can be used to synthesize random scenes. Starting
with a seed image, we retrieve a random context set from
similar looking scenes, which gives us a context-dependent
scene grammar. We then take a random walk over produc-
tions from this grammar (biasing toward collages that cover
as much of the image frame as possible). Example synthe-
ses are given in Figure 11.

Image-to-anaglyph: The depth order of layers in a col-
lage provides rough 3D information. We can use this in-
formation to visualize a scene in anaglyph stereo (Figure
12). First we transfer depth order from the collage to the
query image. Shifting the camera reveals occluded pixels,
which we in-paint with the pixels from both the collage and
nearest-neighbor images.

7. Conclusion
We have presented a novel and intuitive framework for

scene understanding in which we explain an image by piec-
ing together a collection of exemplar scene elements. Our
system moves beyond the standard problem of labeling a
pixel grid and into an exciting realm of representing layers,
discrete objects, and object interrelationships.

Acknowledgments: We would like to thank Ted Adelson, Bill
Freeman, Yair Weiss, and Katie Bouman for helpful discussions.
Most of this work was done while Phillip Isola was an intern at
Microsoft Research New England. Phillip Isola is supported by an
NSF graduate research fellowship.

References
[1] T. Chen, M. M. Cheng, P. Tan, and A. Shamir. Sketch2Photo. SIG-

GRAPH Asia, 2009. 2
[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. CVPR, 2005. 4
[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood

from Incomplete Data via the EM Algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), 39(1):1–38, 1977. 4

[4] D. Eigen and R. Fergus. Nonparametric Image Parsing using Adap-
tive Neighbor Sets. CVPR 2012, 2012. 7

[5] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. PhotoSketch:
A Sketch Based Image Query and Compositing System. In SIG-
GRAPH, 2009. 2

[6] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene Parsing
with Multiscale Feature Learning, Purity Trees, and Optimal Covers.
Arxiv preprint arXiv:1202.2160, 2012. 7

[7] R. Guo and D. Hoiem. Beyond the Line of Sight: Labeling the Un-
derlying Surfaces. ECCV, 2012. 2

[8] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: image
understanding using qualitative geometry and mechanics. In ECCV,
2010. 2, 3

[9] X. He, R. Zemel, and M. Carreira-Perpinán. Multiscale conditional
random fields for image labeling. CVPR, 2004. 1

[10] N. Jojic and B. Frey. Learning flexible sprites in video layers. CVPR,
2001. 2

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
CVPR, 2:2169–2178, 2006. 4

[12] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance. Cost-effective outbreak detection in networks. In
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2007. 5

[13] C. Liu, J. Yuen, and A. Torralba. Nonparametric Scene Parsing via
Label Transfer. PAMI, 2011. 1, 2, 6, 7

[14] T. Malisiewicz and A. A. Efros. Recognition by association via learn-
ing per-exemplar distances. In CVPR, 2008. 2

[15] B. C. Russell, A. Efros, J. Sivic, W. Freeman, and A. Zisserman.
Segmenting Scenes by Matching Image Composites. NIPS, 2009. 2

[16] B. C. Russell and A. Torralba. Building a database of 3D scenes from
user annotations. In 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPR Work-
shops), pages 2711–2718. IEEE, 2009. 2, 3

[17] B. C. Russell, A. Torralba, and K. Murphy. LabelMe: a database and
web-based tool for image annotation. IJCV, 2008. 6

[18] J. Shotton, J. Winn, and C. Rother. Textonboost for image under-
standing: Multi-class object recognition and segmentation by jointly
modeling texture, layout, and context. IJCV, 2009. 1

[19] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmen-
tation and support inference from RGBD images. ECCV, 2012. 3,
6

[20] P. S. Strauss and R. Carey. An object-oriented 3d graphics toolkit.
SIGGRAPH Comput. Graph., 26(2):341–349, July 1992. 2

[21] J. Tighe and S. Lazebnik. Finding things: Image parsing with regions
and per-exemplar detectors. In CVPR, 2013. 2, 7

[22] J. Tighe and S. Lazebnik. Superparsing: scalable nonparametric im-
age parsing with superpixels. IJCV, 2013. 1, 2, 6

[23] J. Wang and E. Adelson. Representing moving images with layers.
IEEE Transactions on Image Processing, 1994. 2

[24] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN
database: Large-scale scene recognition from abbey to zoo. In
CVPR, 2010. 6

[25] J. Yuen, C. Zitnick, C. Liu, and A. Torralba. A Framework for Encod-
ing Object-level Image Priors. Microsoft Research Technical Report,
2011. 2

[26] Y. Zhao and S. Zhu. Image Parsing via Stochastic Scene Grammar.
NIPS, 2011. 2, 3

[27] S. Zhu and D. Mumford. A stochastic grammar of images, volume 2.
Now Publishers Inc., 2007. 3

305530553055

