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Abstract

In this paper, we present a new approach for text lo-
calization in natural images, by discriminating text and
non-text regions at three levels: pixel, component and text-
line levels. Firstly, a powerful low-level filter called the
Stroke Feature Transform (SFT) is proposed, which extends
the widely-used Stroke Width Transform (SWT) by incor-
porating color cues of text pixels, leading to significantly
enhanced performance on inter-component separation and
intra-component connection. Secondly, based on the out-
put of SFT, we apply two classifiers, a text component clas-
sifier and a text-line classifier, sequentially to extract text
regions, eliminating the heuristic procedures that are com-
monly used in previous approaches. The two classifiers are
built upon two novel Text Covariance Descriptors (TCDs)
that encode both the heuristic properties and the statisti-
cal characteristics of text stokes. Finally, text regions are
located by simply thresholding the text-line confident map.
Our method was evaluated on two benchmark datasets:
ICDAR 2005 and ICDAR 2011, and the corresponding F-
measure values are 0.72 and 0.73, respectively, surpassing
previous methods in accuracy by a large margin.

1. Introduction

Text detection and localization in natural images serves

as a crucial component for content-based information re-

trieval, as textual information often provides important

clues for understanding the high-level semantics of mul-

timedia content. It has gained considerable attention in

both academia and industry in the last decade. Despite the

tremendous effort devoted to solving this problem, text lo-

calization remains to be challenging. The difficulties mainly

lie in the diversity of text patterns and the complexity of

scenes in natural images. For instance, texts in images of-

ten vary dramatically in font, size, and shape, and can be

distorted easily by illumination or occlusion. Furthermore,

text-like background objects, such as bricks, windows and

leaves, often lead to many false alarms in text detection.

Previous text localization methods can be roughly di-

vided into two categories: texture-based and component-

based approaches. Texture-based methods scan the image

at different scales using sliding windows, and classify text

and non-text regions based on extracted window descrip-

tors [10, 4, 9, 25]. Designing proper descriptors for spe-

cific visual objects plays a crucial role in these classification

approaches. For instance, histogram-based local descrip-

tors, such as Histogram of Oriented Gradients (HOG), have

achieved great success for face detection [24] and pedes-

trian localization [5]. However, compared with faces and

pedestrians, text-lines in natural images have a much larger

layout variation (e.g. rotation, perspective distortion, aspect

ratio, etc.) that cannot be well captured by generic descrip-

tors. Besides, using sliding windows is computationally ex-

pensive. In general, the number of windows grows to N2

for an image of N pixels, making it less practical [11].

Component-based methods first discard the majority of

background pixels using low-level filters, and then construct

component candidates from remaining pixels using a set of

heuristic properties, e.g. consistency of stroke width [6, 26]

and color homogeneity [27, 16, 3, 15]. Connected compo-

nent analysis is further applied for filtering out outliers. One

advantage of these methods is that they reduce the compu-

tational complexity substantially to O(N). Another advan-

tage is that the detected components provide a direct seg-

mentation of the text letters, which benefits future applica-

tions such as recognition. However, previous component-

based methods often suffer from three problems. Firstly,

low-level operations are sensitive to image noise and distor-
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(a) Input & result (b) Stroke width map (c) Stroke color map (d) Component conf. map (e) Text-line conf. map

Figure 1. The text localization pipeline of our method. The input image is shown in (a). We first apply the SFT filter on the input image

to generate a stroke width map (b) and a stroke color map (c). We then apply the component classifier to generate a component confidence

map (d), which is then fed into the text-line classifier to generate a text-line confidence map (e). The final detection result is generated by

a simple thresholding on (e), which is overlaid on (a) as the yellow bounding box.

tions, leading to incorrect component grouping. Secondly,

using heuristic rules to filter out outliers at the component

and tex-line levels involve a set of manually tuned param-

eters, which may not generalize well to different datasets.

Thirdly, heuristic filters are often not discriminative enough

for distinguishing between true texts and text-like outliers,

resulting in many false alarms (see Fig. 3).

Our goal is to develop a text localization system that

combines the advantages of both classification-based and

component-based methods, while overcoming their inher-

ent limitations. The pipeline of our approach, dubbed as

SFT-TCD, is shown in Fig. 1. It makes the following major

contributions:

1. We propose a new low-level filter called Stroke Feature
Transform (SFT), which extends the original Stroke

Width Transform (SWT) [6] with color information.

By using both color and edge orientation information

(see Fig. 1(b,c)), the SFT filter effectively mitigates

inter-component connections while enhancing intra-

component connections, leading to a significantly bet-

ter component candidate detection than SWT.

2. Building upon insights gained from heuristic proper-

ties and statistical characteristics of textual regions, we

propose a component-level and a text-line-level Text

Covariance Descriptor (TCD), which capture the in-

herent correlations between multiple features and ef-

fectively encode spatial information of text strokes.

3. Using the two TCDs, we build two classifiers in-

stead of the commonly-used heuristic filtering meth-

ods for robust component and text-line classification,

as shown in Fig. 1(d,e).

4. Our system achieved state-of-the-art results on two

standard benchmarks and outperformed existing meth-

ods by a significant margin. We also experimentally

validated that our method generalizes well to different

datasets.

2. Related Work

Various heuristic properties of textual regions have been

explored for pixel-level filtering. Based on the color unifor-

mity of characters in a text string, Yi and Tian [27] proposed

a color-based partition scheme, which applies weighted k-

means clustering in the RGB space for separating text and

background pixels. Neumann and Matas assumed each

component as an independent extremal region (ER), and ex-

ploited maximally stable extremal regions (MSERs) to ex-

tract possible components in multiple channels [16, 15, 14].

Shivakumara et al. [20] first filtered the image in frequency

domain by using Fourier-Laplacian transform, and then ap-

plied K-means clustering to identify candidate components.

A unique feature of a textual region is that the text

strokes inside it usually have consistent, uniform width.

Motivated by this observation, Epshtein et al. [6] proposed

the SWT to detect stroke pixels by measuring the orienta-

tion difference between pairs of edge pixels, and grouping

stroke pixels with similar widths as connected components.

This method has been shown to be effective and is heavily

used in many recent approaches. It also serves as the foun-

dation for the SFT filter proposed in this work.

On the other hand, a number of histogram-statistics-

based text descriptors have been proposed in texture-based

methods. Chen and Yuille [4] adopted multiple features, in-

cluding intensity means and standard deviations, histogram

of intensities, gradients and gradient orientations, and edge

information, as sub-window descriptors for AdaBoost clas-

sifiers. Hanif and Prevost [9] extracted three different

features: mean difference feature (MDF), standard devia-

tion (SD) and HOG, for constrained AdaBoost classifiers.

In [25], a simple HOG descriptor was applied to Random
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Ferns [1] classifiers for both text detection and recognition.

Similarly, Pan et al. [17] computed text confidence values

of sub-windows by using the HOG feature and a boosted

cascade classifier: WaldBoost [21].

The most related work to ours is the recently proposed

approach by Yao et al. [26]. They followed Epshtein et al.’s
work [6] in pixel-level filtering and grouping based on the

SWT filter. Then, after running heuristic filtering, two clas-

sifiers were trained and applied to remove the outliers in

components and text-lines. Our method improves upon this

approach by developing a novel SFT filter and two TCDs,

which together lead to a significant performance boost. Fur-

thermore, benefiting from the high discriminative power of

the proposed TCDs, our system no longer contains heuris-

tic filters for outlier rejection, thus is a more principled ap-

proach that generalizes better.

3. Proposed Approach
The proposed text localization system contains four main

parts: (1) component1 detection, (2) component filtering,

(3) text-line construction and (4) text-line filtering. In this

section, we discuss parts (1), (2) and (4) in details, and for

completeness, we briefly describe part (3), which mainly

follows previous work in [6, 26].

3.1. Component Detection using Stroke Feature
Transform

Component detection involves two pixel-level operation

steps. Firstly, we use a new stroke filtering method called

Stroke Feature Transform (SFT) to identify text stroke pix-

els. Secondly, we use the two maps generated from SFT, a

stroke width map and a stroke color map, to perform robust

text pixel grouping (component generation).

3.1.1 The Stroke Feature Transform

The recently introduced Stroke Width Transform (SWT) [6]

has been shown to be effective for text detection in the wild.

It detects stroke pixels by shooting a pixel ray from an edge

pixel (px) to its opposite edge pixel (py) along the gradi-

ent direction dx. The ray is considered as valid only if the

gradient orientations of the pair of edge pixels are roughly

opposite to each other. Otherwise, the ray is considered as

invalid. All pixels covered by a valid ray are labeled by the

same stroke width, which is the distance between the pair

of edge pixels. In this way, SWT filters out the background

pixels and assigns text pixels with stroke widths. However,

only gradient orientation and edge information are used for

ray tracking, and each ray is handled independently. In real

cases, there often exist a large number of edge pixels that

have irregular gradient orientations, which are not perpen-

dicular to the correct stroke edge directions. As shown in

1Component means text character in this paper.

the examples in Fig. 2, these irregular orientations would

cause two major problems: (1) multiple letters can be acci-

dentally merged into one component if the irregular orien-

tations point to the outside of the stokes; and (2) a single

character can be split into multiple components due to mis-

rejection of ray candidates.

These problems are fundamental for SWT, and are criti-

cal for the overall system performance since the latter parts

solely rely on the output of this step. To remedy these prob-

lems, we extend SWT by leveraging two additional cues

during ray tracking: color uniformity and local relationships

of edge pixels, and generate two maps, a stroke width map

and a stroke color map jointly. We refer to this new filtering

method as Stroke Feature Transform (SFT).

Assuming that the color inside a letter generally varies

smoothly, the computation of SFT proceeds as follows.

Firstly, Canny edge detector is applied to detect edge pixels

from the input image. Secondly, for each edge pixel px on

the canny edge map, we shoot a ray along its gradient di-

rection dx and check the pixels it encounters along the way.

We end this ray at the current pixel pcur and set it as a valid

ray if pcur satisfies either of the following two constraints:

1. Stroke width constraint: pcur is an edge pixel and its

gradient orientation dcur is roughly opposite to dx as:

| |dcur − dx| − π |< π
2 .

2. Stroke color constraint: the distance between the cur-

rent pixel’s color pcur (denoted as Ccur) and the me-

dian ray color Cr̄ (computed as median R, G, B of pix-

els on the ray) satisfies ‖ Ccur−Cr̄ ‖> λc. λc is com-

puted by a linearly decreasing function from 200 to

100 with respect to the number of pixels in the current

ray. If this color discontinuity is detected, we recon-

sider the current pixel as an edge pixel and check it’s

orientation as in the Step 1 using a more strict thresh-

old, | |dcur − dx| − π |< π
6 .

If neither constraints is met for a certain number of checked

pixels on the ray, we discard the current ray, and continue

to the next edge pixel and repeat the above process. Once

all the edge pixels are considered on the canny edge map,

we further filter out invalid rays whose median colors are

significantly different from its local neighbors on the canny

edge map. This is called the neighborhood coherency con-
straint. Finally, we assign a stroke width value and the me-

dian RGB color value to all pixels in a valid ray to construct

the stroke width map and the stroke color map.

SFT reduces the number of incorrect connections sub-

stantially compared to the original SWT approach. Due to

the stroke color constraint, SFT is very effective at discard-

ing rays shooting towards the outside of the strokes, be-

cause color often changes dramatically in the background

region. Furthermore, it can help us recover some missing
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(a) Input (b) Canny edge map (c) Stroke color map (d) Stroke width map (e) SWT stroke width map

Figure 2. Comparing SFT with SWT. The examples show that the proposed SFT method generates fewer inter-component (top example)

and more intra-component connections (middle example), and is more robust against background structures (bottom example) than the

original SWT method. They also show that SFT can recover more rays even in places where canny edge detection fails (see the two “0”s

in the middel example). Overall SFT leads to more accurate component grouping than SWT, as shown as the red bounding boxes.

rays caused by missing edge information to prevent inter-

component separations. The neighborhood coherency con-

straint is used to discard occasional errors in text strokes, as

well as a large amount of incorrect, scattered connections in

the background.

Another important advantage of SFT is that it produces a

stroke color map as a byproduct of the transform, in which

the stroke pixels have better uniformity and stronger dis-

tinction from background pixels than the stroke width map.

Hence, by applying the stroke width map and the stroke

color map jointly for grouping, our filter can effectively

identify incorrectly-connected stroke components and other

outliers in the background, as shown in Fig. 2.

3.1.2 Component Generation

We apply region growing [8] for grouping the stroke pixels

into different components by using both the stroke width

and color maps. The values in the stroke width map are

normalized to [0 255]. Then region growing is performed

in a 4-dimensional space by representing each stroke pixel

using a width value and R, G, B color values. It simply

connects neighboring pixels whose Euclidean distances in

the defined 4-D space are below a threshold (empirically

set as 75). To this end, we have successfully incorporated

both stroke width and color information for low-level filter-

ing and grouping, which outperforms the original SWT ap-

proach significantly on letter candidate detection, as shown

in Fig. 2.

3.2. Text Covariance Descriptors for Filtering

As discussed earlier, many previous approaches use

heuristic rules for filtering out false components, and group-

ing true text components into text-lines. To present a more

principled system, we use classification-based methods to

achieve these goals. Differing from previous methods that

compute local features from all pixels within a sub-window,

we propose two Text Covariance Descriptors (TCDs) by de-

riving features just from the detected stroke pixels, which

naturally enable them to be highly discriminative represen-

tations of text information, and to have good generalization

capability.

3.2.1 Region Covariance Descriptor

Region covariance descriptor was originally proposed by

Tuzel et al. for object and human detection [22, 23]. It com-

putes a covariance matrix of multiple element-level features

within a defined region. Specifically, let I ∈ R
H×W be an

intensity image, and F ∈ R
H×W×d be its d-dimensional

feature map, where each pixel of I is represented by d fea-

tures as:

F (x, y) = Φ(I(x, y)) ∈ R
d, (1)

where the function Φ can be any mapping or feature repre-

sentation of the pixel element, such as spatial coordinates,

intensity, color and gradients.

For a given region U = {ui}ni=1 ⊂ F , and ui ∈ R
d

is d-dimensional feature vector of the elements inside U ,

covariance descriptor of region U can be computed as:

CU =
1

n− 1

n∑
i=i

(ui − u)(ui − u)T , (2)

where CU ∈ R
d×d and u is the mean feature vector: u =

1
n

∑n
i=1 ui.
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3.2.2 TCD for Components (TCD-C)

The most straight-forward method for component filtering

is to perform heuristic filtering with multiple features [6,

26, 27]. Histogram statistics of various low-level image

properties have also been used for classification-based fil-

ters [10, 26, 4]. These methods typically compute the statis-

tics of each single feature separately.

In order to explore statistical feature correlations, we

propose to use the covariance matrix on a basic feature

vector. The diagonal entries of the covariance matrix are

the variances of each feature, while the nondiagonal entries

capture the correlation between features, which are also in-

formative for discriminating text strokes from background

clutter. Furthermore, by jointly computing coordinates of

stroke pixels with other features, the proposed TCD-C nat-

urally encodes local spatial information into the descriptor.

The basic elements in each text component are the stroke

pixels. Although the number of stroke pixels vary signifi-

cantly among different components, an important merit of

the covariance descriptor is that, it is invariant to the num-

ber of elements within the regions. The size of the descrip-

tor is determined by the number of adopted features, which

is often small. Based on heuristic and geometric character-

istics of text strokes, we adopt nine different basic features

for computing the TCD-C. The details of these features are

listed and discussed bellow.

1. Normalized pixel coordinates I ′x, I ′y in X- and Y-axis

for enhanced spatial locality. The original coordi-

nates are normalized as: I ′x =
Ix−˜Imin

x

˜Imax
x −˜Imin

x

, I ′y =

Iy−˜Imin
y

˜Imax
y −˜Imin

y

, where Ĩmin
x , Ĩmax

x , Ĩmin
y and Ĩmax

y are

the minimum and maximum coordinates of the regions

in X- and Y-axis. Coordinate normalization enables

the TCD-C to be invariant to geometric transforms and

scale changes.

2. Pixel intensities I ′ and RGB values I ′R, I ′G, and I ′B in

the stroke color map for color uniformity. All values

are linearly normalized to [0, 1].

3. Stroke width values in the stroke width map Sswm for

stroke width consistency. The values are normalized

by the maximum stroke width in the region.

4. Stroke distance values in a stroke distance map Sdist,

normalized to [0, 1], which compensate the stroke

width map for stroke width consistency. The stroke

distance map is computed from the stroke width map

using the the Euclidean distance transform, the details

are described in [3].

5. Per-pixel edge labeling for describing the stroke lay-

out. The labels are 1 for edge pixels and 0 for non-edge

ones.

Combining the above features, the resulting covariance

descriptor is a 9×9 matrix. We concatenate the upper trian-

gular elements of the matrix to construct a 45-dimensional

vector as a component descriptor. Besides, three additional

global features are added into the descriptor: (1) the aspect

ratio (i.e. ratio between the height and width of the compo-

nent); (2) the occupation percentage, computed as the ratio

of total number of pixels to the number of stoke pixels in

the component; and (3) the ratio of the component scale

(i.e. the larger value of the width and height of the com-

ponent region) to its mean stroke width map value. These

three features are added to form the final TCD-C that has 48

dimensions. We train a random forests classifier [2] and use

it to generate a confident score for each text component, as

shown in Fig 3.

Given the detected components, the process of text-line

aggregation is straightforward. We follow similar procedure

as in [6]. Firstly, two components having similar character-

istics are paired together by using a set of heuristic condi-

tions, such as similar mean stroke width, color, height and

distance between them. Secondly, pairs are merged together

if they share the same components and have similar direc-

tions. The text-lines are detected when no pair or chain can

be merged. Thirdly, but optionally, text-lines are broken

into words by computing and thresholding the horizontal

distances between consecutive components.

3.2.3 TCD for Text-lines (TCD-T)

Most text-like components have similar local structures to

true text components, thus are difficult to be distinguished

solely by component-level filtering. Here we present a text-

line-level covariance descriptor, the TCD-T, to further iden-

tify these text-like outliers.

Region is defined in word or text-line level for the TCD-

T filter, and elements are defined as the valid components

within each region. Similar to TCD-C, heuristic proper-

ties, geometric characteristics and spatial distributions of

the components are crucial information for generating high-

level representations of text-lines. In addition, since each

component is composed by a set of pixels, it can also pro-

vide meaningful statistical characteristics for the text-line.

In TCD-T we use two covariance matrices to compute

two different types of the component features indepen-

dently. The first matrix computes the correlated features be-

tween heuristic and geometric properties, as described bel-

low:

1. Seven heuristic features used in TCD-C, including

mean values of intensities, colors, stroke widths and

distances (mean[I ′, I ′R, I ′G, I ′B , Sswm, Sdist]). Here,

Sswm and Sdist are normalized using their maximum

values in the text-line. The last one is the occupation

percentage of the stroke pixels in each component.
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(a) Input & our result (b) Component conf. map (c) Text-line conf. map (d) Result w/o TCD-T

Figure 3. Illustrating the importance of the proposed text-line filter. Given the input image shown in (a), TCD-C generates a component

confidence map in (b), which is fed into TCD-T to generate a text-line confidence map in (c). Our final text-line detection result is overlaid

in (a), where green bounding boxes are ground truth and yellow ones are our detection results. If we discard TCD-T in the pipeline, the

result is shown in (d), which contains many outliers.

2. The coordinates (Cx, Cy) of component centers, which

are normalized with respect to the text-line’s bound-

ing box. Components within the same text-line should

have similar or uniformly increasing Cy values for hor-

izontal or slanted text-lines.

3. The heights of components normalized by the height

of the text-line.

4. Cosine value of the angle between the current and the

next components. The angle is measured by the orien-

tation from the center of the current component to that

of the next one. The value of last component is set as

the same as the one before it. It is set to zero if only a

single component is included in a text-line.

5. Horizontal distance from the current component to the

next one, measured by the normalized horizontal coor-

dinates (Cx) of two component centers. The distance

of the last component is equal to the one before it, and

is set to zero for single-component text-lines.

In total there are 12 component features adopted for

the first covariance matrix, which in turn generates a 78-

dimensional vector for text-line representation.

The second covariance matrix is computed to capture the

correlation of statistical features among components. For

each component, a 16-bin Histogram of Oriented Gradients

(HOG) [5] is computed from its edge pixels, which carries

the underlying shape information of its strokes. Therefore,

a 16 × 16 covariance matrix is generated, resulting a 136-

dimensional feature vector. We concatenate the feature vec-

tors extracted from the two covariance matrices, along with

two additional features: (1) the number of components in

the text-line, normalized by dividing the maximum number

of components in a textline, e.g. 10; and (2) the mean con-

fident value of the components generated by the previous

component-level classifier. The final TCD-T feature vector

thus has 216 dimensions. Note that according to our feature

design, TCD-T allows a single component to be treated as

a word or text-line (only happens when using the text sep-

aration method in text-line aggregation). In this case, two

covariance vectors are both 0 and the TCD-T vector only

has non-zero entries in the last two dimensions.

Given the constructed TCD-T vectors, we train a dis-

criminative text-line classifier using the random forests

classifier [2] again. The text-line classifier generates a con-

fidence value for each tex-line candidate, and the final text-

line detection result is produced by simply thresholding this

confidence map. In Fig. 3, we demonstrate using examples

that TCD-T can effectively remove a large amount of text-

like outliers in cluttered backgrounds.

4. Experiments and Results
4.1. Datasets

The proposed SFT-TCD method was evaluated on two

public datasets, the ICDAR 2005 [13, 12] and ICDAR

2011 [18]. Both datasets have been widely used as the stan-

dard benchmarks for text detection in natural images. The

ICDAR 2005 dataset includes 509 color images with image

sizes varying from 307× 93 to 1280× 960. It contains 258

images in the training set and 251 images for testing. The

ICDAR 2011 dataset contains 229 training images and 255

testing ones. Both datasets are evaluated in the word level,

and have 1114 and 1189 words annotated in their test sets,
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Table 1. Experimental results on the ICDAR 2005 dataset. (P for

precision, R for recall and F for F-measure)

Method Year P R F

SFT-TCD – 0.81 0.74 0.72
Yao et al. [26] 2012 0.69 0.66 0.67

Chen et al. [3] 2012 0.73 0.60 0.66

Epshtein et al. [6] 2010 0.73 0.60 0.66

Yi and Tian [28] 2013 0.71 0.62 0.63

Neumann and Matas [15] 2011 0.65 0.64 0.63

Zhang and Kasturi [29] 2010 0.73 0.62 –

Yi and Tian [27] 2011 0.71 0.62 0.62

Becker et al. [12] 2005 0.62 0.67 0.62

Minetto et al. [19] 2010 0.63 0.61 0.61

Chen and Yuille [4] 2004 0.60 0.60 0.58

respectively.

The performance of our method is quantitatively mea-

sured by precision (P), recall (R) and F-measure (F). They

are computed using the same definitions in [13, 12] on im-

age level. The final performance values are computed as the

average values of all images in each dataset.

4.2. Experimental Setup

We use the training set of the ICDAR 2005 to collect

positive and negative samples for training our component

and text-line classifiers. The proposed SFT operator was

first applied on the training images to obtain positive and

negative component samples, classified by matching to the

ground truth text regions. Then, components were paired

and aggregated into words to form training data for the text-

line classifier.

We apply the trained classifiers to both test sets of the IC-

DAR 2005 and ICDAR 2011 datasets. In other words, we

intentionally do not re-train the classifiers on the ICDAR

2011 training data set to test the generalization power of

the classifiers. In our experiments, we kept all components

(with confidence values larger than zero) after running them

through the component classifier, and discarded non-paired

components and pairs with confidence values less than 0.1.

The confidence value of a pair is the mean of the confidence

values of its two components. Then the remaining pairs

were used to construct the text-lines candidates. Finally,

after applying the text-line classifier, we threshold the con-

fidence map at 0.25 to generate the final detection results.

We assume each test image includes at least one text-line,

and select the pair or component of top confident value as

the detected text if no text-line is detected in an image.

4.3. Results

The performance of the proposed approach on the two

datasets is shown in Table 1 and 2. In ICDAR 2005 dataset,

our method achieved the precision, recall and F-measure

Table 2. Experimental results on the ICDAR 2011 dataset. (P for

precision, R for recall and F for F-measure)

Method Year P R F

SFT-TCD – 0.82 0.75 0.73
Neumann and Matas [16] 2012 0.73 0.65 0.69

Yi and Tian [28] 2013 0.76 0.68 0.67

González et al. [7] 2012 0.73 0.56 0.63

Yi and Tian [27] 2011 0.67 0.58 0.62

Neumann and Matas [15] 2011 0.69 0.53 0.60

Figure 5. Failure cases.

of 0.81, 0.74 and 0.72, respectively. All three values are

higher than the closest reported results by large margins

(0.08, 0.07 and 0.05), which demonstrates a significant im-

provement over existing methods, such as the SWT-based

methods [26, 6] and MSER-based methods [3, 15]. Our

method achieved a similar improvement on the ICDAR

2011 dataset, indicating that the two classifiers generalizes

well. After carefully examining the results on each test

images, we conclude that our significant performance im-

provement is mainly due to two factors: (1) the excellent

performance of the proposed low-level SFT filter, which re-

liably detects letter candidates in most examples, leading to

high recall, and (2) the effectiveness of the two-level TCDs,

which lead to high precision.

Fig. 4 shows some successful results. They suggest that

our system is robust against large variations in text font,

color, size, and geometric distortion. In addition to detected

text lines, our system also generates text pixel segmentation

results shown at the bottom of each example, where white

pixels include all pixels in the remaining valid text compo-

nents. The segmentation can be potentially used in other

applications such as text content or font recognition.

Fig. 5 shows two failure examples. Our system fails

when the text strokes are too subtle and do not have strong

edges (left), or the text region is partially occluded by other

structures (right). In both cases the low level SFT filter

failed to detect the right stroke pixels. More results can be

found in the supplementary materials.

5. Conclusion
We have presented a novel system for detecting and lo-

calizing text-lines in natural images. Our key technical con-
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P = 0.9676, R = 0.9777, 
F = 0.9726

P = 0.9772, R = 1.0000, 
F = 0.9885

P = 0.9567, R = 0.9381, 
F = 0.9473

P = 1.0000, R = 0.9536, 
F = 0.9762

P = 0.9829, R = 0.9870,
F = 0.9849

Figure 4. Successful text detection results. Ground truth and our results are shown in green and yellow bounding boxes, respectively. Text

pixel segmentation result and Precision, Recall and F values are given below each example.

tributions include a novel Stroke Feature Transform, a low-

level filter that is extended from the original SWT approach

by jointly considering stroke width and color information

for robust filtering. We also propose two Text Covariance

Descriptors for reliably filtering out text-like outliers at the

component level and text-line level. Experimental results

show that our approach has achieved the state-of-the-art re-

sults on publicly available datasets.
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