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Abstract

Combining multiple observation views has proven bene-
ficial for tracking. In this paper, we cast tracking as a
novel multi-task multi-view sparse learning problem and
exploit the cues from multiple views including various
types of visual features, such as intensity, color, and edge,
where each feature observation can be sparsely repre-
sented by a linear combination of atoms from an adaptive
feature dictionary. The proposed method is integrated in a
particle filter framework where every view in each particle
is regarded as an individual task. We jointly consider
the underlying relationship between tasks across different
views and different particles, and tackle it in a unified
robust multi-task formulation. In addition, to capture the
frequently emerging outlier tasks, we decompose the repre-
sentation matrix to two collaborative components which
enable a more robust and accurate approximation. We show
that the proposed formulation can be efficiently solved using
the Accelerated Proximal Gradient method with a small
number of closed-form updates. The presented tracker is
implemented using four types of features and is tested on
numerous benchmark video sequences. Both the qualitative
and quantitative results demonstrate the superior perfor-
mance of the proposed approach compared to several state-
of-the-art trackers.

1. Introduction

Tracking problems can involve data that is represented
by multiple views 1 of various types of visual features
including intensity [28], color [4], edge [14], wavelet [12]
and texture. Exploiting these multiple sources of informa-
tion can significantly improve tracking performance as a
result of their complementary characteristics [2][14][7][18].
Given these cues from multiple views, an important
problem is how to integrate them and build an appropriate

1Regarding the term multi-view learning [25] [29], we follow the
machine learning convention, in which views refer to different feature
subsets used to represent particular characteristics of an object.

Figure 1. A flowchart to illustrate the proposed tracking frame-
work.

model to explore their mutual dependencies and indepen-
dencies.

Sparse representation has recently been introduced for
tracking [19], in which a tracking candidate is sparsely
represented as a linear combination of target templates and
trivial templates. In particle filter-based tracking methods,
particles around the current state of the target are randomly
sampled according to a zero-mean Gaussian distribution.
Each particle shares dependencies with other particles.
Multi-task learning aims to improve the performance of
multiple related tasks by exploiting the intrinsic relation-
ship among them. In [35], learning the representation of
each particle is viewed as an individual task and a multi-task
learning with joint sparsity for all particles is employed.
However, they assume that all tasks share a common set of
features, which generally does not hold in visual tracking
applications, since outlier tasks often exist. For example,
a small number of particles sampled far away from the
majority of particles may have little overlap with other parti-
cles and will be considered as outliers. In addition, [19],
[35] only use the intensity feature to model the appearance
change of the target. The intensity appearance model with
ℓ1 minimization is very robust to partial occlusion, noise,
and other tracking challenges [19]. However, it is very
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sensitive to shape deformation of targets such as non-rigid
objects.

To overcome the above problems, we propose to employ
other visual features such as color, edge, and texture to
complement intensity in the appearance representation, and
to combine a multi-view representation with a robust multi-
task learning [9] to solve the visual tracking problem
(Figure 1). Within the proposed scheme, the sparse repre-
sentation for each view is learned as a linear combination
of atoms from an adaptive feature dictionary, i.e. each
view has its own sparse representation instead of sharing an
identical one, which enables the tracker to capture different
statistics carried by different views. To exploit the interde-
pendencies shared between different views and particles, we
impose the ℓ1,2-norm group-sparsity regularization on the
representation matrix to learn the multi-view sparse repre-
sentation jointly in a multi-task manner. To handle the
outlier particles from particle sampling, we decompose the
sparse representation into two collaborative parts, thereby
enabling them to learn representative coefficients and detect
outlier tasks simultaneously. An efficient Accelerated Prox-
imal Gradient (APG) [22] scheme is employed to obtain the
optimal solution via a sequence of closed-form updates.

Our contribution is four-fold: 1) we utilize multiple
types of features in a sparse representation-based frame-
work for tracking. Compared to previous related trackers
[15] [19][35], the new tracker is not only able to take advan-
tage of the robustness to occlusion from sparse represen-
tation, but also introduces complementary multiple-view
representation for robust appearance modeling; 2) we treat
every view in each particle as an individual task and jointly
consider the underlying relationship shared among different
views and different particles in a multi-task learning frame-
work; 3) to capture the outlier tasks that frequently emerge
in the particle sampling process, we employ a robust multi-
task scheme by decomposing the coefficient matrix into
two collaborative components; and 4) outlier rejection helps
identify outlier tasks and improves resampling efficiency by
setting posterior probabilities of outliers to zero and making
sure they are not sampled in the resampling process.

2. Related Work

An extensive review on tracking and multi-view learning
is beyond the scope of this paper. We refer readers to a
comprehensive survey [31] for more details about existing
trackers, and an extensive survey on multi-view learning
can be found in [30]. In this section, we review the works
related to our method including popular single-view based
trackers, multi-view based trackers and multi-task learning.

Numerous existing trackers only use single feature and
solve tracking in various ways. For instance, Comaniciu
et al. [5] introduce a spatial kernel to regularize the color
histogram-based feature representation of the target, which

enables tracking to be reformulated as a gradient-based
optimization problem solved by mean-shift. Babenko et
al. [1] employ Multiple Instance Learning (MIL) equipped
with a Haar feature pool to overcome the label ambiguity
problem. In [26], Ross et al. present a tracking method
that incrementally learns a low-dimensional subspace repre-
sentation based on intensity features. Recently, Kalal et
al. [13] propose a new tracking paradigm that combines
the classical Lucas-Kanade method-based tracker with an
online learned random-forest based detector using pixel-
wise comparison features. The learned detector is notable
for enabling reacquisition following tracking failures.

The above trackers nevertheless tend to be vulnerable in
particular scenarios due to the limitations of the adopted
features. Various methods aim to overcome this problem
by taking advantage of multiple types of features to enable
a more robust tracker [21][14][32]. In [21], Moreno-Noguer
et al. propose a probabilistic framework allowing the inte-
gration of multiple features for tracking by considering
cue dependencies. Kwon and Lee [14] propose Visual
Tracking Decomposition (VTD) that employs Sparse Prin-
cipal Component Analysis (SPCA) to construct multiple
basic observation models (basic trackers) based on multiple
types of features. An Interactive Markov Chain Monte
Carlo (IMCMC) scheme is then used to integrate all the
basic trackers.

Sparse representation was recently introduced for
tracking in [19] which casts tracking as a sparse represen-
tation problem in a particle filter framework [11] which
was later exploited in [15][16][20]. In [35], a multi-task
learning [3] approach is applied to tracking by learning a
joint sparse representation of all the particles in a particle
filter framework. Compared to the original L1 tracker
[19] that pursues the sparse representation independently,
Multi-Task Tracking (MTT) achieves more robust perfor-
mance by exploiting the interdependency between parti-
cles. Multi-task sparse learning has also been successfully
applied to image classification [33], in which a multi-task
joint covariate selection model is used to classify a query
image using multiple features from a set of training images,
and a class-level joint sparsity regularization is imposed on
class-level representation coefficients.

Motivated by the above advances, in this paper, we
propose a Multi-Task Multi-View Tracking (MTMVT)
method based on joint sparse representation to exploit the
related information shared between particles and views in
order to obtain improved performance.

3. Multi-task Multi-view Sparse Tracker

The L1 tracker [19] tackles tracking as finding a sparse
representation in the template subspace. The representa-
tion is then used in a particle filter framework for visual
tracking. However, appearance representation based only
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on intensity is prone to failure in difficult scenarios such
as tracking non-rigid objects. Employing multiple types of
features has proven to be beneficial for tracking because
the ensemble of multiple views provides a comprehensive
representation of the target appearance undergoing various
changes such as illumination and deformation. However,
combining multiple views by simply concatenating features
into a high-dimensional feature vector is inappropriate,
since different features have different statistical properties.
Inspired by previous works [33][35], the dependencies of
these views as well as the intrinsic relationship of sampled
particles should be jointly considered. In this section, we
propose to employ other visual features such as color, edge,
and texture to complement intensity in the target appear-
ance representation, and to combine a multi-view repre-
sentation with a robust multi-task learning [9] to solve the
visual tracking problem.

We denote 𝑦𝑡 as the state variable describing the location
and shape of a target at time frame 𝑡. The tracking problem
can then be formulated as an estimation of the state proba-
bility 𝑝(𝑦𝑡∣𝑥1:𝑡), where 𝑥1:𝑡 = {𝑥1, . . . , 𝑥𝑡} represents the
observations from previous 𝑡 frames. To model the obser-
vation likelihood 𝑝(𝑥𝑡∣𝑦𝑡), a region corresponding to state
𝑦𝑡 is first cropped from the current frame. Multiple features
are then extracted from the region and used to form a 1D
feature vector 𝑥𝑡.

3.1. Sparse Representation-based Tracker

In [19], the sparse representation of intensity feature 𝑥
is formulated as the minimum error reconstruction through
a regularized ℓ1 minimization problem with nonnegativity
constraints

min
𝑤
∥𝑀𝑤 − 𝑥 ∥22 +𝜆 ∥ 𝑤 ∥1 , s.t. 𝑤 ≽ 0 , (1)

where 𝑀 =
[
𝐷, 𝐼,−𝐼] is an over-complete dictionary that

is composed of target template set 𝐷 and positive and nega-
tive trivial template sets 𝐼 and −𝐼 . Each column in 𝐷 is a
target template generated by reshaping pixels of a candidate
region into a column vector; and each column in the trivial
template sets is a unit vector that has only one nonzero

element. 𝑤 =
[
𝑎⊤, 𝑒+⊤, 𝑒−⊤

]⊤
is composed of target

coefficients 𝑎 and positive and negative trivial coefficients
𝑒+, 𝑒− respectively.

Finally, the observation likelihood is derived from the
reconstruction error of 𝑥 as

𝑝(𝑥∣𝑦) = 1

Γ
exp{−𝛼 ∥ 𝐷𝑎− 𝑥 ∥2} , (2)

where 𝑎 is obtained by solving the ℓ1 minimization (1), 𝛼 is
a constant controlling the shape of the Gaussian kernel, and
Γ is a normalization factor.

3.2. Robust Multi-task Multi-view Sparse Learning

We consider 𝑛 particle samples, each of which has 𝐾
different views (e.g., color, shape and texture). For each

+ 

View 1 

View 2 

View 3 

Target 
templates 

Trivial 
templates 

Dictionary 
M = [ ] 

View 2 View 1 View 3 View 2 View 1 View 3 

Coefficients P Coefficients Q 

Figure 2. The illustration for the structure of the learned coeffi-
cient matrices 𝑃 and 𝑄, where entries of different color represent
different learned values, and the white entries in 𝑃 and 𝑄 indicate
the zero rows and columns. Note that this figure demonstrates a
case that includes four particles, where the second particle is an
outlier whose coefficients in 𝑄 comprise large values.

view index 𝑘 = 1, . . . ,𝐾, denote 𝑋𝑘 ∈ ℝ
𝑑𝑘×𝑛 as the

feature matrix which is a stack of 𝑛 columns of normalized
particle image feature vectors of dimension 𝑑𝑘, where 𝑑𝑘 is
the dimension for the 𝑘th view. We denote 𝐷𝑘 ∈ ℝ

𝑑𝑘×𝑁

as the target dictionary in which each column is a target
template from the 𝑘th view, where 𝑁 is the number of
target templates. The target dictionary is combined with
trivial templates 𝐼𝑑𝑘

to construct the complete dictionary
𝑀𝑘 = [𝐷𝑘, 𝐼𝑑𝑘

].

Based on the fact that most of the particles are rele-
vant and outliers often exist, we introduce a robust multi-
task learning scheme [9] to capture the underlying relation-
ships shared by all tasks. We jointly evaluate 𝐾 feature
view matrices {𝑋1, . . . , 𝑋𝐾}with 𝑛 particles and learn the
latent representations {𝑊 1, . . . ,𝑊𝐾}. The decomposed
matrices 𝑊 𝑘s enable different views of particles to have
different learned representations, and therefore exploit the
independency of each view and capture the different statis-
tical properties. Moreover, each representation matrix 𝑊 𝑘

is constructed by two collaborative components 𝑃 𝑘 and 𝑄𝑘,
where 𝑃 𝑘 is regularized by row sparse constraint, which
assumes that all particles share the same basis, while 𝑄𝑘 is
regularized by column sparse constraint, which enables the
capture of outlier tasks.

The same columns from each view in the dictionary
should be activated to represent the particle in a joint
sparse manner, since the corresponding columns repre-
sent the same sample of the object. Therefore, the corre-
sponding decomposed weight matrices 𝑃 𝑘s and 𝑄𝑘s from
all the views can be stacked horizontally to form two bigger
matrices 𝑃 and𝑄, respectively. Each of them consists of the
coefficients across all the views. Group lasso penalty ℓ1,2 is
applied to row groups of the first component 𝑃 for capturing
the shared features among all tasks over all views, where
we define ∥𝑃∥1,2 =

∑
𝑖(
∑

𝑗 𝑃
2
𝑖,𝑗)

1/2, and 𝑃𝑖,𝑗 denotes the
entry in the 𝑖th row and 𝑗th column in the matrix 𝑃 . The
same group lasso penalty is imposed on column groups of
the second component 𝑄 to identify the outlier tasks simul-
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taneously. The multi-view sparse representations for all
particles can be obtained from the following problem

min
𝑊,𝑃,𝑄

1

2

𝐾∑
𝑘=1

∣∣𝑀𝑘𝑊 𝑘−𝑋𝑘∣∣2𝐹 +𝜆1∣∣𝑃 ∣∣1,2+𝜆2∣∣𝑄⊤∣∣1,2 ,
(3)

where 𝑊 𝑘 = 𝑃 𝑘 + 𝑄𝑘, 𝑃 = [𝑃 1, . . . , 𝑃𝐾 ], 𝑄 =
[𝑄1, . . . , 𝑄𝐾 ], and 𝜆1 and 𝜆2 are the parameters controlling
the sparsity of 𝑃 and𝑄, respectively. Figure 2 illustrates the
structure of the learned matrices 𝑃 and 𝑄.

Note that the stacking of 𝑃 𝑘s and 𝑄𝑘s requires that 𝑀𝑘s
have the same number of columns. However, we can pad
the matrices𝑀𝑘s with zero columns to make them the same
number of columns in order to apply (3). The coefficients
associated with the zero columns will be zeros based on
the sparsity constraints from ℓ1 regularization and do not
impact the minimization function in terms of the solution.
Without loss of generality, we assume 𝑀𝑘s are sorted in
descending order of the number of columns 𝑛𝑘, that is,
𝑛1 ≥ 𝑛2 ≥ . . . ≥ 𝑛𝐾 . The new �̂�𝑘 is defined as
the zero padded matrix of 𝑀𝑘, that is, �̂�𝑘 = [𝑀𝑘, 0𝑘],
where 0𝑘 ∈ ℝ

𝑑𝑘×(𝑛1−𝑛𝑘) and every element in 0𝑘 is zero.
We can replace 𝑀𝑘 in (3) with �̂�𝑘 and solve the same
minimization problem. For a more intuitive view of the
proposed formulation, we visualize an empirical example
of the learned sparse coefficients in Figure 4, where 𝑊 =
[𝐴⊤, 𝐸⊤]⊤ consists of target coefficients 𝐴 and trivial coef-
ficients 𝐸 respectively.

In reference to the tracking result, the observation likeli-
hood of the tracking candidate 𝑖 is defined as

𝑝𝑖 =
1

Γ
exp{−𝛼

𝐾∑
𝑘=1

∥ 𝐷𝑘𝐴𝑘
𝑖 −𝑋𝑘

𝑖 ∥2} , (4)

where 𝐴𝑘
𝑖 is the coefficients of the 𝑖th candidate corre-

sponding to the target templates of the 𝑘th view. The
tracking result is the particle that has the maximum observa-
tion likelihood. To handle appearance variations, the target
dictionary 𝐷 is progressively updated similar to [19], and
the templates are weighted in the course of tracking.

3.3. Outlier Rejection

Although a majority of particles will share the same
dictionary basis, some outlier tasks may exist. These are
the particles sampled far away from the target that have little
overlap with other particles. The proposed MTMVT in (3)
is capable of capturing the outlier tasks by introducing the
coefficient matrix 𝑄. In particular, if the sum of the ℓ1 norm
of the coefficients for the corresponding 𝑖th particle is larger
than an adaptive threshold 𝛾, as

𝐾∑
𝑘=1

∣ 𝑄𝑘
𝑖 ∣> 𝛾 , (5)

where 𝑄𝑘
𝑖 is the 𝑖th column of 𝑄𝑘, then it will be iden-

tified as an outlier and its observation likelihood will be

Figure 3. Examples of detected outlier tasks. The green bounding
boxes denote the outlier particles and the red bounding box
denotes the tracked target. The outliers are detected out of 400
sampled particles. There are two outliers in the left frame and six
outliers in the right frame.

set to zero, and thus the outliers will be ignored in the
particle resampling process. Therefore, we utilize samples
more efficiently without wasting samples on the outliers.
By denoting the number of detected outlier tasks as 𝑛𝑜, the
threshold 𝛾 is updated as follows⎧⎨

⎩

𝛾new = 𝛾old𝜅, 𝑛𝑜 > 𝑁𝑜

𝛾new = 𝛾old/𝜅, 𝑛𝑜 = 0

𝛾new = 𝛾old, 0 < 𝑛𝑜 ≤ 𝑁𝑜 ,

(6)

where 𝜅 is a scaling factor, and 𝑁𝑜 is a predefined threshold
for the number of outliers. We select 𝛾 = 1, 𝜅 = 1.2 and
𝑁𝑜 = 20 based on experiments. Figure 3 illustrates exam-
ples showing detected outliers.

3.4. Optimization Algorithm

This section shows how to solve (3) efficiently. Note that
the objective function in (3) is a composite function of two
parts, a differential empirical loss function ℓ(𝑃,𝑄) and a
convex non-smooth regularization 𝑟(𝑃,𝑄), which has been
extensively studied [9][22][3]. The Accelerated Proximal
Gradient (APG) method [3] is employed because of its well-
known efficiency. In contrast to traditional subgradient-
based methods that converge at sublinear rate, APG can
obtain the globally optimal solution at quadratic conver-
gence rate, which means APG achieves 𝑂(1/𝑚2) residual
from the optimal solution after 𝑚 iterations.

Denote

ℓ(𝑃,𝑄) =
1

2

𝐾∑
𝑘=1

∣∣𝑀𝑘𝑊 𝑘 −𝑋𝑘∣∣2𝐹 , (7)

𝑟(𝑃,𝑄) = 𝜆1∣∣𝑃 ∣∣1,2 + 𝜆2∣∣𝑄⊤∣∣1,2 . (8)

We can apply the composite gradient mapping [22] to (3)
and construct the following function

Φ(𝑃,𝑄;𝑅,𝑆) =ℓ(𝑅,𝑆) + ⟨∇𝑅ℓ(𝑅,𝑆), 𝑃 −𝑅⟩
+ ⟨∇𝑆ℓ(𝑅,𝑆), 𝑄− 𝑆⟩+ 𝜂

2
∥𝑃 −𝑅∥2𝐹

+
𝜂

2
∥𝑄− 𝑆∥2𝐹 + 𝑟(𝑃,𝑄) .

(9)

In Φ(𝑃,𝑄;𝑅,𝑆) comprises the regularization term 𝑟(𝑃,𝑄)
and the approximation of ℓ(𝑃,𝑄) by the first order Taylor
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Figure 4. An example of the learned coefficients. In the top figure, we visualize the learned coefficient matrices 𝑃 and 𝑄 for all particles
across all views, which are color histograms, intensity, HOG and LBP, respectively. Each matrix consists of four column parts corre-
sponding to four different views, where the brighter color represents a larger value in the corresponding entry. The seventh template in the
dictionary is the most representative and results in brighter values in the seventh row of 𝑃 across all views, while some columns in Q have
brighter values which indicate the presence of outliers. The bottom figures illustrate the coefficients of two particles.

expansion at point (𝑅,𝑆) regularized as the squared
Euclidean distance between (𝑃,𝑄) and (𝑅,𝑆), where
∇𝑅ℓ(𝑅,𝑆) and ∇𝑆ℓ(𝑅,𝑆) denote the partial derivatives
of ℓ(𝑅,𝑆) with respect to 𝑅 and 𝑆, and 𝜂 is a parameter
controlling the step penalty.

In the𝑚th APG iteration, (𝑅𝑚+1, 𝑆𝑚+1) is computed as
a linear combination of (𝑃𝑚, 𝑄𝑚) and (𝑃𝑚−1, 𝑄𝑚−1), so
(𝑅𝑚+1, 𝑆𝑚+1) stores the historical aggregation of (𝑃,𝑄)
in the previous iterations, which is conventionally called
aggregation step. As suggested in [3], we set

𝑅𝑚+1 = 𝑃𝑚 + 𝛼𝑚(
1− 𝛼𝑚−1

𝛼𝑚−1
)(𝑃𝑚 − 𝑃𝑚−1) ,

𝑆𝑚+1 = 𝑄𝑚 + 𝛼𝑚(
1− 𝛼𝑚−1

𝛼𝑚−1
)(𝑄𝑚 −𝑄𝑚−1) ,

(10)

where 𝛼𝑚 can be set to 𝛼0 = 1 for 𝑚 = 0 and 𝛼𝑚 = 2
𝑚+3

for 𝑚 ≥ 1, and 𝑃 0, 𝑄0, 𝑅1 and 𝑆1 are all set to zero
matrix for the initialization. Once given the aggregation
(𝑅𝑚, 𝑆𝑚), the solution for the 𝑚th iteration is obtained by
computing the following proximal operator

(𝑃𝑚, 𝑄𝑚) = arg𝑃,𝑄minΦ(𝑃,𝑄;𝑅
𝑚, 𝑆𝑚) . (11)

With simple manipulations, the optimization problem (11)
can be decomposed into two subproblems for 𝑃 and 𝑄
respectively, as

𝑃𝑚 = argmin
𝑃

1

2
∥𝑃 − 𝑈𝑚∥2𝐹 +

𝜆1

𝜂
∥𝑃∥1,2 , (12)

𝑄𝑚 = argmin
𝑄

1

2
∥𝑄− 𝑉 𝑚∥2𝐹 +

𝜆2

𝜂
∥𝑄⊤∥1,2 , (13)

where 𝑈𝑚 = 𝑅𝑚 − 1
𝜂∇𝑅ℓ(𝑅

𝑚, 𝑆𝑚) and 𝑉 𝑚 = 𝑆𝑚 −
1
𝜂∇𝑆ℓ(𝑅

𝑚, 𝑆𝑚).
Following the decomposition, an efficient closed-form

solution can be attained respectively for each row of 𝑃𝑚

and each column of 𝑄𝑚 in the above subproblems (12) and
(13) according to [17],

𝑃𝑚
𝑖,. = max(0, 1− 𝜆1

𝜂∥𝑈𝑚
𝑖,.∥

)𝑈𝑚
𝑖,.

𝑄𝑚
.,𝑖 = max(0, 1− 𝜆2

𝜂∥𝑉 𝑚
.,𝑖 ∥

)𝑉 𝑚
.,𝑖 ,

(14)

where 𝑃𝑚
𝑖,. denotes the 𝑖th row of 𝑃𝑚 and 𝑄𝑚

.,𝑖 denotes
the 𝑖th column of 𝑄𝑚. Finally, the solution of (3) can be
obtained by iteratively computing (14) and updating (𝑈𝑚,
𝑉 𝑚) until the convergence of (𝑃 , 𝑄). The procedure of
the presented algorithm is summarized in the supplemen-
tary material.

4. Experiments

To evaluate the effectiveness of the new tracker, it
was implemented using four complementary features. We
extensively validated it on twelve publicly available chal-
lenging sequences2. All images are resized to 320 × 240
as in our previous work [10]. We compared MTMVT

2http://vision.ucsd.edu/˜bbabenko/project miltrack.shtml;
http://www.cs.toronto.edu/˜dross/ivt/; http://cv.snu.ac.kr/research/˜vtd/;
http://www4.comp.polyu.edu.hk/˜cslzhang/CT/CT.htm[34];
http://www.eng.tau.ac.il/˜oron/LOT/LOT.html[24];
http://lrs.icg.tugraz.at/research/houghtrack/ [8]
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(A) Animal & Car4 (B) David Indoor & Kitesurf (C) Shaking & Faceocc2
#014 #038 #160 #272 #060 #333

#194 #240 #035 #082 #149 #511

(D) Sylv & Tiger1 (E) DH & Bolt (F) Skating1 & Gym
#455 #759 #058 #451 #224 #369

#111 #284 #123 #187 #114 #253

 
 L1T MTT VTD MIL IVT MTMVT

Figure 5. Tracking results of different algorithms. Frame indexes are shown in the top left of each figure.

with five other popular trackers: L1 Tracker (L1T) [19],
Multi-Task Tracking (MTT) [35], tracking with Multiple
Instance Learning (MIL) [1], Incremental Learning for
Visual Tracking (IVT) [26], and Visual Tracking Decompo-
sition (VTD) [14]. It should be noted that VTD is a multi-
view tracker which employs hue, saturation, intensity, and
edge template for the features. We conducted the exper-
iments by running source codes provided by the original
authors. The recommended parameters are set for initial-
ization.

4.1. Implementation Details

To take the advantage of complementary features, we
employed four popular features: color histograms, inten-
sity, histograms of oriented gradients (HOG) [6] and local
binary patterns (LBP) [23]. HOG is a gradient-based feature
that captures edge distribution of an object. Local binary
patterns (LBP) is powerful for representing object texture.
Moreover, to ensure the quality of extracted features, a
simple but effective illumination normalization method
used in [27] is applied before the feature extraction. The
unit-norm normalization is applied to the extracted feature
vector of each particle view respectively as done in [19].

For all reported experiments, we set 𝜆1 = 𝜆2 = 0.5, the
number of particles 𝑛 = 400 (the same for L1T and MTT),
the number of template samples 𝑁 = 10. The template of
intensity is set to one third size of the initial target (half size

for those whose shorter side is less than 20), while the color
histograms, HOG, LBP are extracted in a larger region that
doubles the size of the intensity template.

4.2. Qualitative Comparison

The Animal and Car4 sequences shown in Figure 5(A)
track the head of a fast running deer and a moving car,
respectively. The main challenges of these two sequences
are the fast motion, background clutter, scale changes and
illumination changes. For the Animal sequence, only MIL
and MTMVT succeed in tracking the target over the whole
sequence, while MTT is able to track most of the frames.
IVT gradually drifts from the target after the second frame
and totally loses the target in the seventh frame. L1T
fails in the presence of fast motion and motion blur. The
multi-task manner appears to make MTT and MTMVT
more robust than L1T. However, MTT is not as robust as
MTMVT since MTMVT takes advantage of the comple-
mentary features and is capable of detecting outlier tasks. In
the Car4 sequence, both MTMVT and IVT perfectly track
the moving car despite the dramatic illumination and scale
changes, which are shown in the second row of Figure 5(A).
By contrast, VTD and MIL lose the target and L1T tends to
include much of the background area into the bounding box
when undergoing significant illumination changes.

The David Indoor, Kitesurf, Shaking, Face2 sequences
track human faces under different circumstances and chal-
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lenges. The experimental results show that MTMVT is
able to handle the scale changes, pose changes, fast motion,
occlusion, appearance variation, and angle variation prob-
lems encountered in face tracking tasks. For example, the
Shaking sequence captures a person performing on stage.
The task is to track his face under significant illumination
changes and appearance variations. Our tracker is more
robust to the illumination changes as a result of the employ-
ment of rich feature types. In the David Indoor sequence,
a moving face is tracked, which presents many challenges
such as pose and scale changes. Compared to L1T and
MTT, MTMVT perfectly tracks the target under different
challenges due to the robustness of the additional features.
From the experiments, we find that IVT is vulnerable to the
appearance variations, while VTD is prone to drift in occlu-
sion scenarios. See Figure 5(B - C).

In Sylv and Tiger1 sequences, the tasks are to track
moving dolls in indoor scenes. Almost all the trackers
compared can track the doll in the earlier part of the
Sylv sequence. However, L1T, MIL VTD and IVT lose
the target when it undergoes pose changes. The Tiger1
sequence is much harder due to the significant appear-
ance changes, occlusion, and distracting background, so
all trackers continuously lock in the background except
MTMVT. Our tracker faithfully tracks the tiger, and obtains
the best performance. Some examples are shown in Figure
5(D).

The DH, Bolt, Skating1 and Gym sequences track fast
moving human bodys in sports scenarios. In the DH
sequence, L1T and IVT lose the target because of the
distracting background and fast motion. MIL loses the
target when the illumination changes suddenly. In the Bolt,
Skating1 and Gym sequences, the poses of targets changes
rapidly and the appearance deforms frequently, which make
them more challenging for existing trackers. Both L1T and
IVT fail on all the sequences. MTT loses the targets soon
on the Bolt and Gym sequences due to the deformation of
the targets. VTD succeeds in Bolt and Gym because of the
benefit of multiple types of features but drifts apart from
the target at end of the Skating1 sequence. However, only
MTMVT successfully tracks all these targets in our experi-
ments, which indicates the proposed tracker is not as sensi-
tive to shape deformation as previous single view trackers,
due to the effective use of the complementary features.

4.3. Quantitative Comparison

To quantitatively evaluate the performance of each
tracker, we calculate the distance between the centers of the
tracking result and the ground truth for each frame and plot
these center location errors versus frame numbers, as done
in [1] and [35]. Due to space limitation, we only show the
error plots for eight sequences here and provide those for all
twelve sequences in supplementary material. For a perfect

Table 1. Average position error (pixels). Bold number in red
indicates the best performance, while green indicates the second
best. Note that the average is computed as a weighted average
with respect to the sequence length.

L1T MTT VTD MIL IVT MTMVT MTT+O MTMVT−O

Animal 23.1 7.3 13.9 3.7 143.9 6.9 10.0 7.8
Car4 5.7 2.0 28.8 59.4 1.4 1.6 3.5 2.8
David 26.1 38.7 27.0 16.0 20.1 3.5 7.6 5.3
Kitesurf 34.6 43.6 102.3 3.3 64.5 4.2 10.8 5.0
Shaking 59.9 11.9 8.4 8.2 112.2 4.5 6.6 5.6
Faceocc2 9.1 6.9 23.0 13.9 4.7 5.6 5.8 5.7
Sylv 16.2 7.1 23.9 17.7 27.9 3.2 6.9 5.1
Tiger1 20.7 30.9 28.9 26.3 122.3 8.1 15.3 10.4
Bolt 197.4 74.8 9.3 14.2 158.8 6.0 21.7 11.4
DH 18.5 4.3 3.7 4.9 62.0 4.1 5.9 4.3
Skating1 33.9 6.6 34.2 41.4 53.9 4.7 5.2 25.3
Gym 93.8 71.8 5.9 25.4 32.8 7.3 11.9 6.9

Average 41.5 24.5 20.6 23.1 48.7 4.7 8.4 7.4

result, the position error should be zero. As shown in Figure
6, the error plots of our tracker are generally lower than
those of other trackers. This implies that our tracker outper-
forms other trackers on the test sequences. For a more intu-
itive comparison, the average position errors for the twelve
sequences are summarized in Table 1. This shows that
our tracker achieves the best average performance over all
tested sequences.
Outlier Handling Performance: To illustrate improve-
ment of the proposed outlier handling method which
including the introduction of auxiliary matrix 𝑄 and the
outlier rejection scheme presented in Section 3.3. We
implement a Multi-Task Tracker with Outlier handling
(MTT+O) using the robust multi-task sparse representa-
tion presented in Section 3.2, but let 𝐾 = 1 using intensity
feature only. We also implement a Multi-Task Multi-View
Tracker without Outlier handling (MTMVT−O) using the
representation presented in Section 3.2 but removing auxil-
iary matrix 𝑄. As shown in Table 1, MTT+O demon-
strates overall better performance comparing to the orig-
inal MTT, while MTMVT shows its superiority comparing
to MTMVT−O in terms of average error. Experimental
results suggest that outliers should be specifically consid-
ered in mutli-task learning.

5. Conclusion
In this paper, we have presented a robust multi-task

multi-view joint sparse learning method for particle filter-
based tracking. By appropriately introducing the 𝑙1,2 norm
regularization, the method not only exploits the underlying
relationship shared by different views and different parti-
cles, but also captures the frequently emerging outlier tasks
which have been ignored by previous works. We imple-
mented our method using four types of complementary
features, i.e. intensity, color histogram, HOG and LBP, and
extensively tested it on numerous challenging sequences.
The experimental results demonstrate that the proposed
method is capable of taking advantage of multi-view data
and correctly handling the outlier tasks. Compared to five
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Figure 6. Location Error (in pixel) plot of each tracker on eight test sequences for quantitative comparison.

popular trackers, our tracker demonstrates superior perfor-
mance. Moreover, the proposed method can potentially be
extended to handle data obtained from sensors other than
cameras.
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