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Abstract

We propose a novel offline tracking algorithm based on

model-averaged posterior estimation through patch match-

ing across frames. Contrary to existing online and offline

tracking methods, our algorithm is not based on temporally-

ordered estimates of target state but attempts to select easy-

to-track frames first out of the remaining ones without ex-

ploiting temporal coherency of target. The posterior of the

selected frame is estimated by propagating densities from

the already tracked frames in a recursive manner. The den-

sity propagation across frames is implemented by an ef-

ficient patch matching technique, which is useful for our

algorithm since it does not require motion smoothness as-

sumption. Also, we present a hierarchical approach, where

a small set of key frames are tracked first and non-key

frames are handled by local key frames. Our tracking al-

gorithm is conceptually well-suited for the sequences with

abrupt motion, shot changes, and occlusion. We com-

pare our tracking algorithm with existing techniques in real

videos with such challenges and illustrate its superior per-

formance qualitatively and quantitatively.

1. Introduction

There is a tremendous amount of archived videos in lo-

cal hard drive, file repositories, and video sharing websites.

Offline tracker is a reasonable option for tracking objects in

such videos since more robust tracking results can be ob-

tained by utilizing observations from the multiple frames

regardless of their temporal order. However, most of ex-

isting online (and even most of offline) tracking algorithms

are limited to processing frames in a temporal order. Note

that tracking algorithms often fail eventually because a few

intermediate frames are extremely challenging due to fast

motion, shot changes, occlusion, shadow, and temporary

appearance changes. Therefore, we claim that tracking in

a non-temporal order improve performance by setting aside
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troublesome frames and taking easy-to-track ones first.

Recent studies about visual tracking problem are mainly

focused on robust appearance modeling [2, 3, 7, 10, 17, 18,

24, 25]; they handle the variations of target appearance on-

line by sparse reconstruction [3, 10, 17, 24, 25], incremen-

tal subspace learning [18], multiple instance learning [2],

P-N learning [11], and so on. While these methods are suc-

cessful in handling various appearance changes, they all as-

sume temporal smoothness of target motion; they often fail

to track objects in the presence of sudden changes in target

and scene. To overcome the challenge related to abrupt mo-

tion of target, [14] adopts the Wang-Landau Monte Carlo

sampling method. It successfully tracks objects even with

sudden changes of target location including shot changes in

an online manner. However, it may not be able to recover

from temporal failures as other online tracking algorithms,

and may not be sufficiently robust to other kinds of chal-

lenges such as occlusion, background clutter, and appear-

ance changes.

Offline tracking [4, 6, 20, 22, 23] is an alternative option

to handle abrupt motion, occlusion, and shot changes ro-

bustly since it can utilize entire frames within video at once.

Uchida et al. [22] formulates offline tracking as a global op-

timization problem, and solves it by dynamic programming

efficiently. This approach is further extended by [6], which

adopts generalized distance transform for additional com-

putational efficiency. Note that dynamic programming esti-

mates target state at each frame recursively, and still follows

a predefined order, typically temporal order, of a sequence;

the benefit of offline tracking is limited in practice. On

the other hand, [20] proposes a bi-directional tracking al-

gorithm, where a full trajectory of target is obtained by con-

necting a set of short trajectories with occlusion handling

through the optimization with a discrete Hidden Markov

Model (HMM). Some offline algorithms integrate user in-

teractions [4, 23], where dynamic programming or k-d tree

is employed in the optimization process.

We propose an offline tracking algorithm based on

model-averaged posterior estimation. Although our track-

ing algorithm is not based on a temporal order, it actively

finds the next frame to track out of the remaining ones and
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Figure 1. Main framework of our algorithm

estimates its posterior sequentially by a variant of sequen-

tial Bayesian filtering. The posterior is represented with a

mixture model—mixture of potential tracking orders—and

estimated by a weighted sum of multiple posteriors corre-

sponding to the models. The observation in each frame

is performed by a patch matching through hashing, which

is appropriate for computing likelihoods without temporal

smoothness assumption. Additionally, we present a hierar-

chical key frame based tracking algorithm, which exploits

the temporal unorderedness of our algorithm and reduces

computational cost significantly. The main framework is il-

lustrated in Figure 1.

The characteristics and benefits of our tracking algorithm

are summarized below:

• Our tracking algorithm does not have any temporal

smoothness assumption, and is conceptually more ro-

bust to abrupt motion, occlusion, and shot changes of

target than existing techniques.

• We design a mixture of sequential—not necessarily

temporally ordered—Bayesian filters in a principled

way to support the correctness and efficient implemen-

tation of our tracking algorithm.

• A hierarchical tracking approach is proposed for fur-

ther efficiency, where a small number of key frames

are tracked first and non-key frames are handled by

nearby key frames.

The rest of the paper is organized as follows. We first

describe overall framework of our algorithm in Section 2.

The probabilistic framework of our algorithm is discussed

in Section 3, and hierarchical extension of our algorithm is

described in Section 4.
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Figure 2. An example of possible chain models when k = 4 and

T3 = {1, 5, 3}. Suppose that frame t4 is selected for tracking in

the 4th time step. (a) There are four possible ways to reach the

frame t4 from the initial frame. (b) Tracking result of the frame t4
is determined by average estimate of the four chain models.

2. Algorithm Overview

Let xi be the target state in the ith frame. Our objective

is to estimate the posterior density functions P (xi) for all

frames in a sequential but non-temporal order one-by-one

in a greedy manner, where the next frame is selected for

tracking based on the uncertainty score of each P (xi). Let

F = {1, . . . , N} be a set of frame indices. In the kth time

step of our algorithm,F is given by the union of two disjoint

sets as F = Tk ∪ Rk, where Tk = {t1, . . . , tk} is a set

of tracked frames sorted in the tracked order, and Rk =
F \ Tk = {r1, . . . , rN−k} is a set of remaining frames.

At the time step k + 1, where k frames are tracked, our

tracking algorithm performs the following procedure:

1. Given target posterior density functions of all tracked

frames P (xt), ∀t ∈ Tk, it estimates the intermedi-

ate posterior density functions of all remaining frames

P (xi), ∀i ∈ Rk, recursively.

2. Evaluate the uncertainty of each P (xi), ∀i ∈ Rk

3. Select a frame tk+1 with minimum uncertainty, and set

Tk+1 = Tk ∪ {tk+1}, andRk+1 = Rk \ {tk+1}.

Note that the new element tk+1 in Tk+1 also updates the

posterior densities of remaining frames from the next itera-

tion. Once a frame is inserted into the tracked list Tk, cor-

responding target posterior density would not change any

more. Our algorithm is terminated when TN = F and

RN = ∅, which indicates that we tracked all frames.

3. Probabilistic Framework of Our Algorithm

We present the main probabilistic framework of our algo-

rithm; we describe our posterior estimation technique called

model-averaged posterior estimation and discuss how it is

related to patch-based observation technique.

3.1. Model-Averaged Posterior Estimation

We first describe how target posterior density functions

are estimated for the remaining frames given k − 1 tracked
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frames and their corresponding posterior density functions.

Since our algorithm is not limited to temporally ordered es-

timation of posterior density functions, we employ a novel

Bayesian formulation to handle a tracking scenario with an

arbitrary sequence of frames.

If the temporal order of frames is ignored, there are a

number of possible ways to reach the kth tracking frame,

tk, from the tracked k − 1 frames as illustrated in Fig-

ure 2(a). We can take any sequence generated by any subset

of frames in Tk−1
1 as intermediate hops. Note that each

potential path from t1 to tk is modeled by the first order

Markov chain. We call each path chain model, which is

denoted by ΩS , S ⊆ Tk.

Choosing a chain model out of all possible ones is not

straightforward since it is often uncertain which model is

good for tracking. So, tracking by a single model is risky

especially when there are critical challenges in the model

such as abrupt motion and shot changes. For this reason,

we adopt a model averaging strategy [9]. That is, tracking

result of a frame is determined by average estimate of all

possible chain models instead of choosing one, as illustrated

in Figure 2(b).

Let tk be the frame index selected for tracking in the kth

time step. In principle, to estimate the posterior of xtk , we

need to enumerate all chain models whose last nodes are tk
and calculate the average of their posteriors. We can esti-

mate the posterior of xtk in a simple and recursive fashion,

which is formally given by

P̃ (xtk) ∝
1

k − 1

∑
t∈Tk−1

P (Ztk |xtk)

∫
P (xtk |xt)P̃ (xt)dxt,

(1)

where t denotes a frame tracked before the kth time step,

and Ztk is an observation variable of frame tk. The poste-

rior probabilities are denoted by P̃ without observation vari-

ables for notational simplicity. The above equation is simi-

lar to an ordinary sequential Bayesian filtering equation ex-

cept that we marginalize out all possible models rather than

choose one. Note that all chain models arriving at frame t

are already averaged when calculating P̃ (xt). Once frame

tk is selected and tracked, P̃ (xtk) will not change any more,

so that we can reuse it for tracking in the future without up-

dating it. Therefore, we can marginalize all possible chain

models recursively, which makes our algorithm efficient. In

the followings, we show how to derive Eq. (1) in detail.

Let St be a subset of Tk−1 whose last element is t ∈
Tk−1. By Bayesian model averaging strategy, the posterior

of xt is given by

P̃ (xt) =
∑

St⊆Tk−1

P
(
xt|ΩSt

, ZSt

)
P (ΩSt

), (2)

1Since Tk is an ordered set, only one sequence is generated from each

subset of Tk .

where ZSt
is an observation variable corresponding to the

frames in St, and ΩSt
denotes a candidate chain model

given by St. P (ΩSt
) is the model prior corresponding to

St. The chain model is defined recursively by

ΩSt∪{tk} = 〈ΩSt
, pt→tk

〉, (3)

where pt→tk
denotes the path from the last node in ΩSt

to

tk and 〈·, ·〉 the concatenation operator of two paths. Note

that P (〈ΩSt
, pt→tk

〉)=P (ΩSt
)P (pt→tk

) holds probabilis-

tically. Then, P̃ (xtk) is given recursively from Eq. (2) by

P̃ (xtk)

=
∑

t∈Tk−1

∑
St⊆Tk−1

P
(
xtk |ΩSt∪{tk}, ZSt∪{tk}

)
P (ΩSt∪{tk})

=
∑

t∈Tk−1

P (pt→tk
)
∑

St⊆Tk−1

P
(
xtk |ΩSt∪{tk}, ZSt∪{tk}

)
P (ΩSt

).

(4)

Because each chain is modeled by the first order Markov

chain, we can use Bayes theorem as follows:

P
(
xtk |ΩSt∪{tk}, ZSt∪{tk}

)
∝

∫
P (Ztk |xtk)P (xtk |xt)P

(
xt|ΩSt

, ZSt

)
dxt. (5)

By Eq. (5), we rewrite Eq. (4) as

P̃ (xtk) ∝
∑

t∈Tk−1

P (pt→tk
)

∑
St⊆Tk−1

P (ΩSt
)×

{∫
P (Ztk |xtk)P (xtk |xt)P

(
xt|ΩSt

, ZSt

)
dxt

}
,

=
∑

t∈Tk−1

P (pt→tk
)

∫
P (Ztk |xtk)P (xtk |xt)×

{ ∑
St⊆Tk−1

P (ΩSt
)P

(
xt|ΩSt

, ZSt

)}
dxt. (6)

Since the underlined term in Eq. (6) is identical to Eq. (2),

P̃ (xtk) ∝∑
t∈Tk−1

P (pt→tk
)P (Ztk |xtk)

∫
P (xtk |xt)P̃ (xt)dxt, (7)

where the posterior density function for the kth tracking

frame is now defined recursively. The prior of the path,

P (pt→tk
), represents which path would be preferred to

tracking frame tk, and is simply given by

P (pt→tk
) ∝

1

k − 1
, t ∈ Tk−1. (8)

Finally, we can obtain Eq. (1) by substituting Eq. (8) to the

path prior of Eq. (7).
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3.2. Density propagation

The integration in Eq. (1) corresponds to density propa-

gation process; given the target density at frame t ∈ Tk−1,

we want to estimate P̃ (xtk) through prediction and update

steps, P (xtk |xt) and P (Ztk |xtk), respectively. One impor-

tant property of our algorithm is that we do not assume any

spatio-temporal coherency of target between t and tk. Be-

cause the integral in continuous domain in Eq. (1) is infea-

sible, we approximate it by sampling as

P̃ (xtk) ≈
1

k − 1

∑
t∈Tk−1

∑
x
i

t
∈St

P (Ztk |xtk)P (xtk |x
i
t), (9)

where St denotes a set of samples drawn from P̃ (xt).
The transition model and likelihood are jointly defined

by patch matching and voting process. Let ct denote the

center of a patch in It, image at frame t. Suppose that we

match all patches in It to Itk by a function fPM . For a set of

patches within target window corresponding to each sample

x
i
t in It, we obtain a voting result with respect to Itk as

V (xtk ;x
i
t) =

Ki

t∑
j=1

N (xtk ; fPM (cjt )− a
j
t ,Σ), (10)

where c
j
t is the center position of the jth patch within the

target bounding box centered at xi
t, K

i
t is the number of

patches within the bounding box, and a
j
t is the offset from

c
j
t to x

i
t. Then, we use Eq. (10) to rewrite Eq. (9) as

P̃ (xtk) ≈ (11)

1

k − 1

∑
t∈Tk−1

∑
x
i

t
∈St

Ki

t∑
j=1

N (xtk ; fPM (cjt )− a
j
t ,Σ).

Note that our algorithm has no predefined appearance

model. Since it relies only on patch matching and voting

between frames, a density propagated from a single frame

may cause drift problem. In our algorithm, however, the

problem can be alleviated by aggregating all the propagated

densities through Bayesian model averaging.

As the matching function fPM , we adopt Coherency

Sensitive Hashing (CSH) [12], which is fast and efficient.

To handle multiple scales, we generate multiple voting

maps with several different offsets a
j
t . Matching and vot-

ing by CSH has several good properties as follows:

1. CSH searches entire image area with very low com-

putational cost, and it is natural to effectively handle

abrupt motion, shot changes, and occlusion of target

without temporal smoothness assumption.

2. Our patch-based voting algorithm is robust to local

changes of target appearance such as partial occlusion

and moderate non-rigid transformation.

3. Although we need to consider multiple hypotheses and

scales for the computation of the posterior in Eq. (11),

matching between a pair of frames are to be computed

at most once throughout tracking.

Note that the choice of density propagation technique in this

work is orthogonal to our model-averaged posterior estima-

tion framework for offline tracking. For example, it is pos-

sible to use [14] for this step.

3.3. Identifying Subsequent Frame

Until now, we have assumed that the newly selected

frame in each time step is given. We now describe how to

determine the next frame tk out of Rk−1 based on the un-

certainty analysis for the rest of frames, which corresponds

to the second and third steps of Section 2.

Tracking result in a frame is likely to be reliable if its

posterior density function has a clear mode, and we mea-

sure the uncertainty using entropy. To calculate the entropy

of the target density, we first divide the state space into M

regular grid blocks, Bm (m = 1, . . . ,M). For each frame

r ∈ Rk−1, we compute the marginalized posterior proba-

bility of each block, which is given by

P (Bm
r ) =

∑
xr∈Bm

r

P̃ (xr), (12)

and obtain an M -dimensional vector. Note that P̃ (xr) is

estimated by applying Eq. (11) to frame r. We perform the

same procedure for different scales, concatenate the prob-

ability vectors, and normalize the concatenated vector to-

gether. Then, entropyH for xr is given by

H(xr) =
∑
s

M∑
m=1

−P (Bm,s
r ) logP (Bm,s

r ), (13)

where s denotes scale index. We compute the entropy for

every frame in Rk−1 and choose the frame with minimum

entropy as

tk = argmin
r
H(xr), r ∈ Rk−1. (14)

By the above criterion, our algorithm tends to select easy-

to-track frames first regardless of their temporal order, and

it helps to prevent the entire track from being corrupted by

few tracking failures. After frame selection, we update the

sets for tracked and remaining frames by Tk = Tk−1 ∪{tk}
andRk = Rk−1\{tk}. Once a frame is inserted into Tk, its

posterior does not change during remaining iterations any

more.

For the state estimation of target, the location of target

for each scale is obtained first by

X∗
tk

= argmax
xtk

P̃ (xtk), (15)

and we choose the scale with maximum probability.
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4. Efficient Hierarchical Approach

A drawback of the proposed algorithm is that the com-

putational cost of the proposed algorithm increases quadrat-

ically with respect to the length of video because it needs to

propagate the density function
(
N
2

)
times by Eq. (11). Con-

trary to most of tracking algorithm, our techniques does not

rely on any temporal or spatial coherency of target and it is

reasonable to track a subset of frames first and estimate the

posteriors of the rest of frames based only on the tracked

frames. Although this idea does not improve theoretical

time complexity, it reduces empirical processing time sig-

nificantly. This section describes the details about this hier-

archical approach2.

4.1. Key Frame Selection

Key frames should capture important characteristics of

entire video, especially in case that the video contains a lot

of variations inside such as shot changes, fast motion, and

occlusion. We employ a similar idea in [8] to identify key

frames from an input video.

Our key frame selection technique first embeds all

frames in a metric space, and selects a subset of frames

by solving a metric facility location problem. For the pur-

pose, we compute dissimilarities between all pairs of frames

based on the bidirectional similarity [19], and construct an

N ×N dissimilarity matrix, which is given by

D(I1, I2) =

1

n1

∑
P∈I1

min
Q∈I2

d(P,Q) +
1

n2

∑
Q∈I2

min
P∈I1

d(Q,P ), (16)

where n1 and n2 indicates the number of patches in I1 and

I2, respectively, and P and Q denote patches in I1 and

I2, respectively. To identify matching patches by minimiz-

ing distance between patches, d(P,Q) or d(Q,P ), we also

adopt the same patch matching algorithm [12].

Given the dissimilarity matrix D, all frames can be em-

bedded in a metric space by a non-linear manifold learning

technique, and we employ Isomap [21] algorithm. Note that

original dissimilarities (distances) between frames are pre-

served maximally through the manifold embedding; if the

distance between two frames is small, they are likely to be

located in a neighborhood.

To select κ most representative frames, we solve the κ-

center problem [16] in the metric space. The κ-center prob-

lem is NP-hard, but a simple and efficient 2-approximation

algorithm—Gonzalez’s algorithm [16]—is well known. We

find a subset of frames K ⊆ F , where |K| = κ, based on

the following objective function:

K∗ = arg min
K⊆F

max
v∈F

min
u∈K

dE(u, v) (17)

2Sequence partitioning is another idea to make our algorithm much

faster, but we focus on this hierarchical approach in this paper.

where F denotes the entire set of frames and dE is the dis-

tance in the embedded space. The selected frames by solv-

ing κ-center problem serve as anchor frames to the rest of

frames in the local area in the embedded space. Therefore,

it typically captures important variations in the input video.

We set κ to 10% of an input video length.

4.2. Density Propagation to Non-Key Frames

After selecting key frames by the method described in

Section 4.1, we perform the inference for the posterior of

the key frames based on the procedure presented in Sec-

tion 3. To propagate the density functions estimated in the

key frames to the non-key frames, we exploit the embedding

result as described below.

1. Compute the distance in the embedded space between

the frames, dE(u, v), where v ∈ K and u ∈ F \ K.

2. Convert the distance into similarity by wuv =
exp (−α · dE(u, v)), and normalize it by w̃uv =

wuv∑
v
wuv

.

3. For each frame u ∈ F \ K, compute the posterior of

each frame by a single hop density propagation, which

is given by

P̃ (xu) =
∑
v⊆K

P
(
xu|pv→u, ZK

)
· w̃uv. (18)

In step 2, we discard the key frames with negligible weights

by setting their weights to 0, and re-normalize weights. As a

result, only a few frames—typically less than 5—involved

in the computation of Eq. (18). Note that all models are

based on single hops and we replace P (pv→u) by w̃uv . By

Eq. (18), we give more weights on the closer key frames to

estimate the posterior for each frame in F \ K.

5. Experiment

We describe the details about our experiment setting, and

illustrate the performance of our algorithm compared to the

state-of-the-art techniques in challenging sequences.

5.1. Datasets

For the evaluation of our tracking algorithm, we col-

lected 10 video sequences; 7 out of 10 sequences—animal

from [15], tennis, boxing, youngki from [14], and TUD,

campus, accident from [13]—are well known to tracking

community, and the rest—skating, psy, and dance—are

downloaded from YouTube.

All the sequences involve at least one critical challenges;

animal has fast motion and motion blur, tennis is with

abrupt location changes and pose variations, TUD, campus,

accident contain severe occlusions, and the others involve

shot changes and pose variations. Additionally, psy has a

lot of lighting condition changes.
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1-13-42-50-64-72-81-102-92-123-35-29

(a) TUD sequence

1-17-6-4-3-5-16-13-14-26-27-21-19-28-20-24-8-29-22-30

(b) tennis sequence

1-246-647-638-57-40-22-2-753-770-795-603-526-521-268-340-288-297-501-503

(c) boxing sequence

Figure 3. Found tracking order. We present the subsets of target

windows by their tracked orders. Numbers below each sequence

correspond to frame indices. Note that tracked order is not consis-

tent with temporal order; we can observe that the proposed algo-

rithm tends to track easy frames first.

5.2. Found Tracking Order

We first present ordered tracked list T that our tracker

automatically finds during tracking. In each time step k,

our tracker analyzes all the frames in Rk−1 to decide next

move; it measures uncertainty of every frame, and add the

most confident one into Tk. It tends to choose frames in

an increasing order of difficulty, as illustrated in Figure 3,

which may not be same with temporal order. Note that, in

Figure 3(a) and 3(c), visually similar frames to the initial

frame have been selected at the beginning even with very

different temporal locations. Also, Figure 3(b) shows that

targets in different poses and relatively low resolutions com-

pared to the initial target are typically selected later.

5.3. Quantitative and Qualitative Performance

We compared our algorithm with the state-of-the-art

tracking methods, which include L1 [17], L1-APG [3],

SCM [25], ASLSA [10], MTT [24], MIL [2], IVT [18],

FRAG [1], WLMC [14], and OTLE [6]. Most of them

Figure 5. Examples of tracking failure

are online trackers except OTLE, and WLMC is a special-

ized technique to handle abrupt motion of target; these two

methods are more related to the proposed algorithm. We

also compare our algorithm with its sequential version3 to

show the advantages of orderless approach. Our algorithm

and its sequential version are denoted by OMA (orderless

model-averaged) and SMA (sequential model-averaged),

respectively. To evaluate performance, we use two common

measures—center location error and bounding box overlap

ratio [5]. For fair comparison, we used downloaded source

codes with default setting but made target state space of all

methods identical to ours by eliminating affine transform

and non-uniform scaling. In our algorithm, the patch size is

8 × 8, 9 scales are used from 0.6 to 1.4, and the number of

samples to populate hypotheses to other frames is 900.

As observed in Table 1 and 2, our algorithm performs

very well compared to other methods, especially in the chal-

lenging sequences with shot changes. As expected, the

performance of WLMC is comparable to ours in the se-

quences, but it does not work well for the sequences with

other challenges. It is probably because the algorithm is

specialized for the sudden location changes of target but is

not good enough to handle other variations such as occlu-

sion in TUD and campus and background clutter in animal.

The offline tracking algorithm, OTLE, is generally worse

than ours. Other trackers have significant troubles to handle

shot changes and abrupt motion of target. The qualitative

results of a subset of algorithms are illustrated in Figure 4.

Some examples of tracking failure in psy are presented

in Figure 5. Although our algorithm fails in some frames

due to severe deformation or lighting changes, error propa-

gation to other frames is minor since our algorithm tends to

postpone processing the failed frames and their influence is

curbed by the model-averaged posterior estimation.

6. Conclusion

We presented a novel offline tracking algorithm based

on model-averaged density estimation, where the posterior

of a newly selected frame for tracking is estimated by a

weighted mixture model. In other words, this strategy hy-

pothesizes all the linear first-order Markov chains available

from tracked frames, and estimates the target density of the

new frame by marginalizing the densities of all chain mod-

3The sequential version is identical to the proposed algorithm except

that it tracks both key and non-key frames in their temporal order.
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Table 1. Average center location error (in pixels). Red: best, blue: second best.

IVT MIL SCM L1APG MTT ASLSA L1 FRAG WLMC OTLE OMA SMA

animal 10.6 32.0 16.6 48.8 12.6 179.6 164.9 94.1 64.8 19.4 7.7 7.4

TUD 12.6 57.1 12.2 7.4 37.2 67.2 64.7 17.3 68.2 27.4 4.4 5.9

campus 38.7 37.1 12.2 16.1 6.0 12.2 68.4 3.3 13.5 5.8 3.2 7.0

accident 27.6 24.8 3.0 20.3 21.9 2.9 32.4 7.4 12.2 9.1 2.6 6.5

tennis 68.7 74.4 65.9 85.0 65.6 68.8 111.4 67.4 31.0 37.0 6.9 11.9

boxing 128.1 88.9 96.0 117.6 87.0 106.8 103.5 80.0 11.7 41.7 10.5 22.6

youngki 95.2 115.2 115 137.9 176.5 151.8 121.8 97.5 16.0 15.7 11.4 14.0

skating 77.8 15.0 49.4 143.9 100.4 22.8 72 35.4 14.7 18.3 8.0 10.8

psy 156.5 220.6 213.3 71.8 117.8 146.8 124.6 95.2 66.0 61.2 15.0 21.9

dance 283.9 169.4 208.0 113.9 133.4 118.1 143.1 132.4 39.7 118.8 15.1 19.7

Table 2. Average overlap ratio. Red: best, blue: second best.

IVT MIL SCM L1APG MTT ASLSA L1 FRAG WLMC OTLE OMA SMA

animal 0.60 0.42 0.55 0.4 0.57 0.04 0.04 0.08 0.31 0.48 0.71 0.71

TUD 0.65 0.34 0.67 0.85 0.52 0.32 0.62 0.59 0.38 0.48 0.82 0.75

campus 0.56 0.45 0.62 0.52 0.76 0.63 0.01 0.77 0.52 0.72 0.78 0.67

accident 0.58 0.53 0.87 0.69 0.69 0.84 0.45 0.60 0.57 0.59 0.85 0.76

tennis 0.06 0.20 0.11 0.29 0.11 0.12 0.03 0.11 0.43 0.31 0.63 0.56

boxing 0.05 0.06 0.13 0.13 0.06 0.11 0.16 0.22 0.65 0.38 0.70 0.51

youngki 0.09 0.13 0.13 0.02 0.10 0.06 0.02 0.19 0.62 0.54 0.62 0.54

skating 0.01 0.41 0.20 0.02 0.03 0.29 0.06 0.25 0.46 0.41 0.42 0.37

psy 0.07 0.08 0.07 0.02 0.23 0.17 0.25 0.23 0.39 0.40 0.63 0.57

dance 0.03 0.07 0.07 0.10 0.10 0.11 0.11 0.14 0.45 0.30 0.52 0.50

els. Our tracking algorithm is free from temporal smooth-

ness assumption, and tends to choose easy-to-track frames

first and challenging frames last. So, it is conceptually ro-

bust to various challenges such as abrupt motion, occlusion,

and shot changes. To handle observations efficiently with-

out temporal coherency across frames, a patch matching

technique by hashing is employed. We evaluated the per-

formance of our algorithm qualitatively and quantitatively,

and compared with the state-of-the-art tracking algorithms.
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Figure 4. Tracking results for all sequences: (From top to bottom) animal, TUD, campus, accident, tennis, boxing, youngki, skating, psy,

and dance
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