
SIFTpack: a compact representation for efficient SIFT matching

Alexandra Gilinsky
Technion

Israel Institute of Technology
sashkagil@gmail.com

Lihi Zelnik-Manor
Technion

Israel Institute of Technology
lihi@ee.technion.ac.il

Abstract

Computing distances between large sets of SIFT descrip-
tors is a basic step in numerous algorithms in computer
vision. When the number of descriptors is large, as is of-
ten the case, computing these distances can be extremely
time consuming. In this paper we propose the SIFTpack:
a compact way of storing SIFT descriptors, which enables
significantly faster calculations between sets of SIFTs than
the current solutions. SIFTpack can be used to represent
SIFTs densely extracted from a single image or sparsely
from multiple different images. We show that the SIFTpack
representation saves both storage space and run time, for
both finding nearest neighbors and for computing all dis-
tances between all descriptors. The usefulness of SIFTpack
is also demonstrated as an alternative implementation for
K-means dictionaries of visual words.

1. Introduction
In numerous applications in computer vision a basic

building block is the computation of distances between sets

of SIFT descriptors [16]. Some applications require finding

the nearest match for each descriptor, e.g., image alignment,

scene classification and object recognition [9, 14, 19, 25]. In

other cases one needs to compute all the distances between

all the SIFTs, e.g., when constructing affinity matrices for

image segmentation [3], co-segmentation [11, 12] or self-

similarity [23]. As the number of descriptors increases, the

computation time of these distances becomes a major con-

sideration in the applicability of the algorithm.

Previous solutions to reduce the run-time, can be cate-

gorized into three different approaches. The first approach

reduces the dimensionality of the descriptors, thus decreas-

ing the computation time of each distance calculation [27].

This comes at the cost of loss of accuracy due to the re-

duced dimension. The second approach reduces the num-

ber of descriptors by using sparse sampling of the im-

age [26, 29]. This could compromise accuracy, as it was

repeatedly shown that dense-sampling yields better results

in recognition [9, 14, 19]. Furthermore, in many appli-

cations, the obtained set of descriptors could still be very

large, e.g., when reconstructing 3D scenes using thousands

of images. Hence, efficient methods for computing the dis-

tances are still required. Finally, the third approach is based

on approximate solutions [2, 8]. These reduce run-time sig-

nificantly, however, they are relevant only for the nearest-

neighbor case and become inefficient when all distances

need to be computed. Algorithms for approximate match-

ing across images are also highly efficient [5, 10, 13, 20],

but are limited to dense matching across a pair of images

and most of them cannot be applied for matching SIFTs.

In this paper we propose the SIFTpack: a compact form

for storing a set of SIFT descriptors that reduces both stor-

age space and run-time when comparing sets of SIFTs. Our

key idea is to exploit redundancies between descriptors to

store them efficiently in an image-like structure. Redun-

dancies can occur, for example, when two descriptors are

computed over overlapping image regions. In this case the

descriptors have a shared part that doesn’t need to be stored

twice. The SIFTpack construction identifies such redun-

dancies and hence saves in storage space. We show how

SIFTpack can be used to compactly represent descriptors

extracted densely from a single image. We further suggest

an algorithm for constructing SIFTpacks for descriptors ex-

tracted sparsely from one or many images. Such SIFTpacks

can serve as an efficient alternative to SIFT dictionaries.

The key contribution of this work is a significant reduc-

tion in run-time when computing distances between sets of

SIFTs. The speed-up is due to two reasons. First, we avoid

repeated calculations of the same distances. Second, since

the SIFTs are stored in an image-like form, we can utilize

existing efficient algorithms for fast matching between im-

ages. We suggest such solutions for both nearest-neighbor

matching and all-distances calculation. The proposed solu-

tions are shown to be useful for bag-of-words models.

The rest of the paper is organized as follows. We start by

describing the SIFTpack construction for dense-SIFT and

for an arbitrary set of SIFTs in Section 2. Efficient al-

gorithms for matching sets of SIFTs, based on SIFTpack,

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.101

777

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.101

777

Figure 1. Redundancy in overlapping SIFTs: When two SIFT

descriptors are computed over overlapping image regions the

shared region (marked in gray) could result in common SIFT val-

ues in the descriptors (marked in green). The joint values will

appear at different entries of the vectors and will be stored twice

by the standard approach of keeping SIFTs in an array.

are presented in Section 3. The usefulness of SIFTpack as

an efficient alternative to Bag-of-words is presented in Sec-

tion 4. Finally, we conclude in Section 5.

2. The SIFTpack representation
The SIFTpack construction that we propose is based on

two observations. The first is that two different SIFT de-

scriptors could still have shared components. This could

occur, for example, when the regions over which they were

computed have a highly similar appearance. Storing these

shared components twice is redundant and inefficient. The

second observation we make is that highly efficient solu-

tions have been proposed for computing nearest-neighbor

fields across images. This motivates us to seek an image-

like representation for a set of SIFTs. In what follows we

suggest a representation that builds upon these two obser-

vations. We first describe how SIFTpack is constructed for

dense-SIFT and then continue to present an algorithm for

constructing a SIFTpack for an arbitrary set of SIFTs.

2.1. SIFTpack for dense-SIFT

We start by briefly reviewing the structure of the SIFT

descriptor [16]. The SIFT at a pixel is based on the gra-

dients within a neighborhood around it. The neighborhood

is divided into 4 × 4 = 16 sub-regions and an 8-bin his-

togram of weighted gradients is computed for each sub-

region. The weights are set according to the distance from

the center pixel. The 16 histograms are then concatenated

into a 128-dimensional vector. Typically, SIFTs are stored

in a 128×M array, where M is the number of descriptors.

To efficiently store dense-SIFT descriptors [28] we start

by computing the SIFTs on a grid with an n pixel gap. We

Figure 2. Reshaping SIFT: SIFTpack requires reshaping the 128

dimensional SIFT descriptor into 8 layers of 4× 4 pixels each.

Figure 3. SIFTpack: is an 8-layer image, where each 4 × 4
patch corresponds to a single SIFT descriptor. Histograms that

are shared between descriptors are stored only once in this con-

struction, e.g., the gray area is mutual to the blue and red SIFTs.

set the scale such that each descriptor is computed over a

region of 4n× 4n pixels, i.e., each 8-bin histogram is com-

puted over a sub-region of size n×n pixels. As illustrated in

Figure 1, in this construction the spatial regions of neighbor-

ing descriptors overlap and the sub-regions are aligned. To

simplify the presentation we will assume for the time being

that no weighting is applied to the pixels when constructing

the descriptors. Later on we will remove this assumption.

Without the weighting, two descriptors with overlapping re-

gions will have at least one shared histogram. In fact, all

the descriptors including a certain sub-region will share its

corresponding gradient histogram. While the standard ap-

proach stores this histogram multiple times, once for each

descriptor, we wish to store it only once.

To enable a compact and image-like representation we

start by reshaping the extracted SIFT descriptors. As illus-

trated in Figure 2, we reshape each 128 dimensional SIFT

vector into a 3D array of dimensions 4 × 4 × 8. We think

of this 3D array as an image with 4 × 4 pixels and 8 lay-

ers. Each layer corresponds to one of the 8 bins of the his-

tograms, i.e., each layer captures one of the eight gradient

orientations considered by SIFT. Each “pixel” corresponds

to one of the 16 histograms used to construct the descriptor.

778778

Figure 4. Visualizing SIFTpack: The 8 gray scale images are the

layers of the SIFTpack of the center image. As expected, they

capture gradients at different orientations. The SIFTpack layers

are rescaled to the image size for visibility but their original size

is n times smaller in each axis.

The key idea behind our construction is that after the re-

shape step, the shared histograms of two neighboring de-

scriptors correspond to shared “pixels”. Therefore, to store

the descriptors compactly, we simply place them next to

each other, with overlaps, according to their original po-

sition in the image. This is illustrated in Figure 3. The

SIFTpack storage space is 16 times smaller than that of the

conventional approach of saving all SIFTs in an array. The

construction time is linear in the number of descriptors.

To complete our construction, we next remove the tem-

porary assumption of no pixel weighting. In practice, Gaus-

sian weighting is applied to the region over which the de-

scriptor is computed, thus two overlapping SIFTs do not

share the exact same entry values. Therefore, we average

the values of all SIFTs that overlap i.e. we store only one,

averaged version, of all SIFT entries that describe the same

spatial bin. Figure 4 displays the layers of a SIFTpack con-

structed from dense-SIFT.

To examine the implications of averaging the SIFT val-

ues, we performed the following experiment. We used

SIFT-flow [15] to compute the flow-field between the pairs

of images of the Middlebury data-set [4] and on the “light”

data-set of “Mikolajczyk” [18]. We performed this twice,

once with the original SIFT descriptors, and once while

averaging overlapping descriptors. As shown in Table 1,

not only does the averaging not interfere, in fact it slightly

improves the correspondence accuracy and reduces errors.

This is probably due to the enhanced robustness to noise

when smoothing. For this experiment we used normalized

values of SIFT. While the averaging described above alters

the normaliztion a bit, this is not significant as matching

accuracy is not harmed.

To summarize, our method for constructing SIFTpack

for dense-SIFT is outlined in Algorithm 1.

Algorithm 1 SIFTpack for dense-SIFT

Input: Image

Compute dense-SIFT, each over a 4n×4n neighborhood,

on a grid with n pixels spacing.

for all SIFTs do
– Reshape into a 4× 4× 8 array.

– Place SIFT of pixel i, j at SIFTpack location

i/n, j/n (these are integer values due to the grid).

– Average all overlapping values.

end for
Output: SIFTpack

2.2. SIFTpack for a set of SIFTs

Next, we suggest a similar construction for the more pop-

ular case where SIFTs are extracted at isolated locations

(typically interest points), possibly from multiple different

images, of different scales and orientations. When the num-

ber of descriptors is large we expect to find many similar-

ities between part of them, e.g., when multiple descriptors

include sub-regions of similar appearance. However, unlike

the dense case, here we cannot tell a-priori which descrip-

tors have corresponding components.

To identify these repetitions and enable the construction

of a compact SIFTpack we build upon the dictionary opti-

mization framework of [1]. Given a set of M SIFT descrip-

tors yi, i = 1, . . . ,M we wish to find a SIFTpack S, of size

m×m× 8, that forms a sparsifying dictionary for them. S
is obtained by optimizing the following objective:

min
S,x

M∑
i=1

∥∥∥∥∥yi −
m∑

k=1

m∑
l=1

xi[k,l]C[k,l]Ŝ

∥∥∥∥∥
2

F

s.t. ‖xi‖0 ≤ θ, i = 1, . . . ,M (1)

where Ŝ is a vector obtained by column-stacking the SIFT-

pack S, C[k,l] is an indicator matrix that extracts the 128-

dimensional SIFT descriptor in location [k, l] in S and xi[k,l]

are the corresponding sparse coding coefficients.

Problem (1) is not convex with respect to both S and

x, however, when fixing either one of them it is convex

with respect to the other. Therefore, to find a local min-

imum of Problem (1) we iterate between optimizing for

the sparse coefficients x via Orthogonal Matching Pursuit

(OMP) [21, 17] and optimizing for the SIFTpack S. In all

our experiments we set the sparsity θ = 1 and xi[k,l] = 1
for only a single SIFTpack location [k, l] and all other val-

ues are 0. In practice, this implies that the OMP finds for

each original SIFT yi the closest SIFT within the current

SIFTpack. The SIFTpack update step is:

Ŝ = R−1p, (2)

779779

without averaging with averaging (SIFTpack)

name error (pixels) error (pixels)

Dimetrodon 1.6104 1.6089

Grove2 1.7314 1.7297

Grove3 1.9034 1.8883

Hydrangea 0.6690 0.6446

RubberWhale 1.2247 1.2211

Urban2 1.5638 1.5302

Urban3 141.1214 22.5310

Venus 1.2661 1.2435

(a)

without averaging with averaging (SIFTpack)

num error (pixels) error (pixels)

1 1.5397 1.5239

2 1.9062 1.8774

3 1.9281 1.8884

4 1.2238 1.1979

5 2.0961 2.0459

(b)

Table 1. Flow-field accuracy on Middlebury (a) and Mikolajczyk data-set (b): As can be seen from both tables, the flow-fields com-

puted by SIFT-flow [15] are consistently more accurate when applied to descriptors packed in SIFTpack, than the original SIFTs (see

supplementary for more detailed results). This suggests that averaging overlapping SIFTs reduces noise and hence matching accuracy is

improved.

where:

R =
M∑
i=1

(
m∑

k=1

m∑
l=1

xi[k,l]C[k,l]

)T (m∑
k=1

m∑
l=1

xi[k,l]C[k,l]

)

p =

M∑
i=1

(
m∑

k=1

m∑
l=1

xi[k,l]C[k,l]

)T

yi

It can be shown that since we use sparsity θ = 1 and set

xi[k,l] = 1 , this is equivalent to the averaging of all SIFTs

that were assigned to the same location in S.

The above optimization requires initialization. When

the SIFTpack represents a set of SIFTs extracted at interest

points of multiple different images we have found empiri-

cally that best results were obtained when initializing with

a SIFTpack constructed from a dense-SIFT of a randomly

chosen image, as described in the previous section. Note

that the initial image should be textured, otherwise the re-

sults will be inferior.

Our method for constructing SIFTpack for any set of

SIFTs is summarized in Algorithm 2.

Figure 5.(a) visualizes a SIFTpack constructed by Algo-

rithm 2. The final SIFTpack is of size m×m× 8, where m
is a user defined parameter. The smaller m is, the more stor-

age space is saved. However, this comes at the cost of lower

accuracy, as illustrated in Figure 5.(b). When the SIFTs are

taken from multiple images, and m�M , a SIFTpack con-

structed by Algorithm 2 can be viewed as a dictionary of

visual words. It differs from the standard dictionaries in

exploiting redundancies between visual words to store the

dictionary more compactly. Note the resemblance between

Algorithm 2 and the K-means algorithm, as their complex-

ity is the same.

Since the proposed optimization framework is applicable

to any arbitrary set of SIFTs it is also applicable to dense-

SIFT, leading to further reduction in the required storage

Algorithm 2 SIFTpack for a set of SIFTs

Input:
– A set of M SIFTs

– The desired SIFTpack size m
Initialization
– Construct a SIFTpack of size m ×m × 8 using Algo-

rithm 1 on an arbitrary image.

repeat
– Assign each SIFT in the input set to its most similar

SIFT in the current SIFTpack.

– Update the SIFTpack by averaging SIFTs assigned

to overlapping SIFTpack entries.

until Objective of Eq. (1) converges.

Output: SIFTpack

space, as compared to that obtained by Algorithm 1. In-

spired by [24], when the input is dense-SIFT we iteratively

reduce the size of the SIFTpack to 95% of its previous di-

mension, initializing each iteration with a resized version of

the previous one. The iterations continue until the desired

size is reached. The advantage of the gradual resizing is

a more compact SIFTpack for the same representation er-

ror. On the down side, applying Algorithm 2 with gradual

resizing is slower, and hence is not always preferable.

It is important to note, that while Algorithm 2 is de-

scribed for the L2 distance between SIFTs, our framework

is generic and can be applied to many other distance met-

rics. Exchanging the distance metric amounts to replacing

the update step of Equation (2) by an appropriate calcula-

tion for averaging overlapping SIFTs and exchanging stage

1 with regards to the new metric.

3. Efficient matching solutions

So far we have described algorithms for constructing a

space-efficient representation for multiple SIFTs, extracted

780780

(a)

(b)
Figure 5. SIFTpack for a set of SIFTs: (a) The 8 layers of a

SIFTpack constructed of ∼ 50, 000 SIFTs extracted at interest

points from different images with different scales. (b) The average

representation error (blue) and saving in storage space (red) as a

function of the SIFTpack size m. The smaller the SIFTpack, the

more space we save, at the price of a larger representation error.

from either one or multiple images. While saving in storage

space is a desirable property, our main goal is to obtain a

significant reduction in computation time as well. A main

advantage of the SIFTpack is that it can be viewed as an 8-

layer image, therefore, one can employ existing algorithms

for efficient matching across images.

3.1. Computing all distances

In applications such as image segmentation, co-

segmentation and self-similarity estimation one needs to

compute all (or multiple) distances between all (or multiple)

pairs of descriptors within a given set or across two sets of

SIFTs. When the number of descriptors is large, comput-

ing all distances naively is highly time consuming: O(M2),
where M is the number of descriptors.

Storing the descriptors in a SIFTpack enables a more

efficient computation since we avoid redundant calcula-

tions. As described in Section 2, the SIFTpack stores joint

descriptor-parts only once, hence, they are used only once

when computing distances. We next present an efficient al-

gorithm, which makes use of the special image-like struc-

ture of the SIFTpack to avoid redundant calculations.

Let S1 and S2 denote the SIFTpacks constructed for two

set of SIFTs. In applications where distances are to be com-

puted between the descriptors of a single set, we assign

S2 = S1. We further denote by Si,j the SIFT descriptor

in location i, j in S, and define S[k,l] as the shift of S by k, l
pixels in x, y directions, respectively.

Our approach for efficiently computing all distances be-

tween the descriptors of S1 and S2 is adopted from [20],

where it was used to compare image patches. We use the

Integral Image [6] to compute the distance between all pairs

of descriptors in S1 and S2 that have the same location i, j.

To compute distances between descriptors at different loca-

tions we loop through all shifts k, l of S2. Our algorithm

can be summarized as follows:

Algorithm 3 All distances between SIFTs

Input: SIFTpacks S1 and S2
for all shifts k, l do

– Compute the element-wise square difference

Δ = (S1− S2[k,l])2

– Compute the Integral Image F (Δ) , summing the 8

layers.

– The distance between S1i,j and S2k,li,j is equal to:

F (i, j) + F (i+ 3, j + 3)− F (i+ 3, j)− F (i, j + 3)
end for
Output: Distances between all SIFTs

Algorithm 3 loops through all possible shifts k, l, simi-

larly to the naive solution. However, it computes the dis-

tances between all pairs of descriptors with a location shift

k, l, faster than the standard solution. The speedup is due to

the integral image approach, that is possible here since our

SIFTpack has an image-like structure.

Figure 6 ascertains this via empirical comparison be-

tween the run-time of the naive approach and Algorithm 3.

For this experiment we first extract the dense-SIFT [28] de-

scriptors of images of varying sizes. We then compute the

distances between all pairs of SIFTs within a a radius R of

each other, using the naive approach. Next, we construct a

SIFTpack for each image, using Algorithm 1, and compute

the distances between the same pairs of SIFTs using Algo-

rithm 3. We use the “RetargetMe” data-set [22] together

with some images collected by us, that together consist of

90 images. We used different sizes for each image by ap-

plying resizing. For each image we repeated the distances

computation 100 times and averaged the results. As can be

seen, for all image sizes and for all radii R the reduction

in run-time of the SIFTpack approach varies between one

and two orders of magnitude. This experiment, as well as

all others presented in this paper, were performed on an i7

2.53GHz Linux machine with 16Gb RAM, using one core.

Similar results were obtained on i7 3.4GHz, 16Gb Windows

machine.

The above experiment shows the speed-up that can be

obtained for applications that require computing distances

781781

Figure 6. Run-time saving by SIFTpack when computing mul-
tiple distances: The curves represent the average run-time for

computing distances between all pairs of SIFTs of an image,

within a radius R of each other. Solid curves correspond to the

naive approach and dotted lines correspond to Algorithm 3. As

can be seen, the standard approach is an order of magnitude slower

than using SIFTpack and Algorithm 3. This holds for varying im-

age sizes and different R values.

between dense descriptors, e.g., image segmentation and

self-similarity. When one needs to compute all distances

between two arbitrary sets of SIFTs, the SIFTpack con-

struction needs to be performed via Algorithm 2, which is

time consuming on its own. In such cases using our ap-

proach makes sense when the SIFTpack can be computed

and stored a-priori.

3.2. Exact Nearest-Neighbor matching

When a single nearest-neighbor is needed, the naive so-

lution is to compute all distances and take the minimum.

Alternatively, one could use more efficient tree-based meth-

ods such as that proposed in [2]. We propose to use SIFT-

packs and Algorithm 3, with the slight modification that

only the nearest neighbor is stored for each descriptor. We

performed an experiment on the “VidPairs” data-set [13]

which consists of 133 pairs of images. We used resized ver-

sions of each pair to test on images of different sizes. We

computed the exact NN field between each pair of different

sizes. Figure 7 shows that our solution is much faster than

that of [2].

3.3. Approximate Nearest-Neighbor matching

Due to the high computational demands of finding the

exact nearest-neighbor, more efficient approaches have

been proposed that settle for finding the Approximate-

Nearest-Neighbor (ANN) [2, 8]. These methods provide

Figure 7. Run-time saving by SIFTpack for Exact-Nearest-
Neighbor: Computing the exact NN using SIFTpacks and Algo-

rithm 3 is significantly faster than using Kd-trees [2].

significant run-time reduction at the price of loss in accu-

racy. More recently it has been shown that even faster al-

gorithms can be developed when computing ANN densely

across images [5, 10, 13, 20]. These algorithms utilize the

coherency between near-by image patches to speed-up the

matching. Since the SIFTpack can be viewed as an 8-layer

image, where each patch represents a SIFT descriptor, we

can apply these algorithms to find ANN between SIFTs.

Figure 8 presents an empirical evaluation of the ben-

efits of SIFTpack for computing ANN. Given a random

pair of images and their corresponding dense-SIFT descrip-

tors, we find for each descriptor in one image its ANN in

the second image, using four methods: (i) SIFT-flow [15],

(ii) Kd-trees [2] computed over the set of SIFTs, (iii)

PatchMatch [5] applied to standard dense-SIFT and (iv)

TreeCANN [20] applied to the SIFTpack. TreeCANN is

one of the fastest algorithms for ANN that can be applied

only for finding ANN between image patches. Note, that

the standard approaches to date are (i)–(iii), while our pro-

posed SIFTpack, being an image, enables method (iv). Sim-

ilarly to the exact NN experiment, we test the performances

on the “VidPairs” data-set [13], repeating 100 times each

NN field calculation and averaging. As can be seen, SIFT-

pack+TreeCANN significantly outperforms both Kd-Trees

and PatchMatch in both accuracy and run-time. We have

omitted the results of SIFT-flow as their quality was too low,

probably since this approach is designed only for pairs of

highly similar images.

4. SIFTpack as a Bag-of-Words

Another advantage of our construction is that a SIFTpack

built from SIFTs extracted from multiple different images,

using Algorithm 2, can be viewed as an alternative for the

highly popular dictionaries of visual words [7], which are

typically constructed by K-means clustering. The dictio-

nary construction process is performed off-line, hence, its

computation time is of lesser interest. Our main objectives

782782

Figure 8. Run-time saving by SIFTpack for ANN: Computing

the ANN using SIFTpack and TreeCANN leads to significantly

lower errors and faster run time than both Kd-trees and Patch-

Match. These graphs are for images of size 800× 800, but similar

results were obtained for other image sizes as well.

are thus two-fold. First, we wish to evaluate the benefits in

storage space and representation error of SIFTpack in com-

parison with the standard K-means dictionary. Second, we

wish to examine the contribution in run-time when using the

SIFTpack to compute the histogram of word frequencies.

The histogram is obtained by finding for each given SIFT

the most similar SIFT word in the SIFTpack/dictionary.

Storage space saving: To assess the benefits of SIFTpack

in terms of storage space we performed the following ex-

periment. Given a set of SIFTs we use Algorithm 2 to con-

struct the corresponding SIFTpack, of size m×m× 8. We

then compute the representation error of the SIFTpack as

the average L2 difference between each original SIFT and

its nearest-neighbor in the SIFTpack. In addition, we also

construct a standard dictionary using K-means, setting K
such that the same (as much as possible) representation er-

ror is obtained. Finally, we compare the array size of the

SIFTpack and of the K-means dictionary. We have repeated

this experiment for varying representation errors.

Figure 9 presents the obtained results for two setups.

Figure 9.(a) shows the results when the set of SIFTs was ex-

tracted at interest points of ∼ 1700 images from the scene

classification database [9] of 6 different scenes: “kitchen”,

“bedroom”, “MITcoast”, “MIThighway”, “MITmountain”

and “MITstreet”. Figure 9.(b) shows the results when rep-

resenting dense-SIFT of a single image. The results are

averaged over 80 repetitions of the experiment. We used

m = [10, 20, 30. . . 100]. The units of space are the num-

ber of entries (m ×m × 8 for SIFTpack and K × 128 for

K-means dictionary). As can be seen, the saving in stor-

age space is tremendous for both setups. When packing

dense-SIFTs the space-reduction is more significant since

the SIFTpack is more compact due to the gradual resizing

during its construction.

(a) (b)
Figure 9. Space saving by SIFTpack for BoW: The plots present

the required storage space of SIFTpacks of varying representa-

tion errors, constructed with Algorithm 2, and of corresponding

k-means dictionaries (with the same representation error). (a) The

results when representing a set of SIFTs from multiple different

images. (b) The results when representing dense-SIFT of a single

image. In all cases SIFTpack is significantly more space-efficient

than the standard k-means dictionary.

Run-time saving: Next, we assess the run-time benefits

of SIFTpack when constructing the bag-of-words represen-

tation for an image. The evaluation is done via the following

experiment. We use as test-bed the SIFTpack and K-means

dictionaries constructed in the previous experiment from

∼ 1700 images of 6 different scenes (corresponding pairs

with the same representation error). Given an arbitrary input

image we first extract dense-SIFT descriptors and construct

the corresponding SIFTpack using Algorithm 1. Next, we

find for each descriptor its nearest-neighbor in the k-means

dictionary and in the SIFTpack. We use the common naive

approach as well as the kd-tree algorithm [2] for searching

the K-means dictionary. We apply Algorithm 3 to find the

exact nearest neighbor within the SIFTpack.

Figure 10 presents the obtained results, averaged over

multiple experiments. As can be seen, using SIFTpack is

significantly faster than using the popular k-means dictio-

nary, even when kd-trees are used. We should note that as

far as exact NN are concerned, the kd-tree algorithm doesn’t

outperform the naive one significantly.

5. Conclusions

This paper suggested an approach for compactly storing

sets of SIFT descriptors. We have shown that the proposed

SIFTpack saves not only in storage space, but more impor-

tantly, it enables huge reductions in run-time for matching

between SIFTs. While our key idea is very simple, its impli-

cations could be highly significant as it can speed-up many

algorithms. In particular, we have shown empirically the

benefits of using SIFTpack instead of the traditional Bag-

of-Words dictionary and as an alternative image signature

for retrieval purposes. We believe that storing SIFTs as

an image could open the gate to using other algorithms on

SIFTs that were restricted to only images before. In addi-

783783

Figure 10. Run-time saving by SIFTpack for BoW: Comput-

ing the bag-of-words model (constructing the histogram of fre-

quencies) is significantly faster when using SIFTpack to represent

the dictionary, instead of the standard k-means dictionary with the

same representation error.

tion, our framework could be easily extended to other de-

scriptors whose spatial properties are similar to SIFT.

Acknowledgements This research was supported in part

by the Ollendorf foundation and by the Israel Ministry of

Science. We’d also like to thank Prof. Michael Elad for

useful conversations and good ideas.

References
[1] M. Aharon and M. Elad. Sparse and redundant modeling of

image content using an image-signature-dictionary. SIAM J.
Imaging Sciences, 1(3):228–247, 2008.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest

neighbor searching fixed dimensions. J. ACM, 45(6):891–

923, 1998.

[3] S. Bagon, O. Boiman, and M. Irani. What is a good im-

age segment? a unified approach to segment extraction. In

ECCV, pages 30–44, 2008.

[4] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and

R. Szeliski. A database and evaluation methodology for op-

tical flow. IJCV, 92(1):1–31, 2001.

[5] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-

man. Patchmatch: a randomized correspondence algorithm

for structural image editing. SIGGRAPH, 28(3):24:1–24:11,

July 2009.

[6] F. C. Crow. Summed-area tables for texture mapping. SIG-
GRAPH, 18(3):207–212, Jan. 1984.

[7] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.

Visual categorization with bags of keypoints. In ECCV, vol-

ume 1, pages 1–22, 2004.

[8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable distri-

butions. In SoCG, pages 253–262, 2004.

[9] L. Fei-Fei and P. Perona. A bayesian hierarchical model for

learning natural scene categories. In CVPR, pages 524–531,

2005.

[10] K. He and J. Sun. Computing nearest-neighbor fields via

propagation-assisted kd-trees. In CVPR, pages 111–118,

2012.

[11] A. Joulin, F. Bach, and J. Ponce. Discriminative cluster-

ing for image co-segmentation. In CVPR, pages 1943–1950,

2010.

[12] A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation.

In CVPR, pages 542–549, 2012.

[13] S. Korman and S. Avidan. Coherency sensitive hashing. In

ICCV, pages 1607–1614, 2011.

[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, pages 2169–2178, 2006.

[15] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-

dence across scenes and its applications. TPAMI, 33(5):978–

994, 2011.

[16] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[17] S. Mallat and Z. Zhang. Matching pursuits with time-

frequency dictionaries. IEEE Transactions on Signal Pro-
cessing,, 41(12):3397 –3415, 1993.

[18] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. TPAMI, 27(10):1615–1630, 2005.

[19] E. Nowak, F. Jurie, and B. Triggs. Sampling strategies for

bag-of-features image classification. In ECCV, pages 490–

503, 2006.

[20] I. Olonetsky and S. Avidan. Treecann - k-d tree coherence

approximate nearest neighbor algorithm. In ECCV, pages

602–615, 2012.

[21] Y. C. Pati, R. Rezaiifar, Y. C. P. R. Rezaiifar, and P. S. Krish-

naprasad. Orthogonal matching pursuit: Recursive function

approximation with applications to wavelet decomposition.

In Proceedings of the 27 th Annual Asilomar Conference on
Signals, Systems, and Computers, pages 40–44, 1993.

[22] M. Rubinstein, D. Gutierrez, O. Sorkine, and A. Shamir.

A comparative study of image retargeting. SIGGRAPH,

29(5):160:1–160:10, 2010.

[23] E. Shechtman and M. Irani. Matching local self-similarities

across images and videos. In CVPR, pages 1–8, 2007.

[24] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-

marizing visual data using bidirectional similarity. In CVPR,

pages 1–8, 2008.

[25] J. Sivic and A. Zisserman. Video google: A text retrieval ap-

proach to object matching in videos. In CVPR, pages 1470–

1477, 2003.

[26] C. Strecha. Dense matching of multiple wide-baseline views.

In ICCV, pages 1194–1201, 2003.

[27] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for

dense matching. In CVPR, pages 1–8, 2008.

[28] A. Vedaldi and B. Fulkerson. VLFeat: An open

and portable library of computer vision algorithms,

http://www.vlfeat.org/, 2008.

[29] J. Yao and W. kuen Cham. 3d modeling and rendering from

multiple wide-baseline images by match propagation. Sig.
Proc.: Image Comm., 21(6):506–518, 2006.

784784

