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Abstract

The aim of this paper is fine-grained categorization with-

out human interaction. Different from prior work, which

relies on detectors for specific object parts, we propose to

localize distinctive details by roughly aligning the objects

using just the overall shape, since implicit to fine-grained

categorization is the existence of a super-class shape shared

among all classes. The alignments are then used to trans-

fer part annotations from training images to test images

(supervised alignment), or to blindly yet consistently seg-

ment the object in a number of regions (unsupervised align-

ment). We furthermore argue that in the distinction of fine-

grained sub-categories, classification-oriented encodings

like Fisher vectors are better suited for describing local-

ized information than popular matching oriented features

like HOG. We evaluate the method on the CU-2011 Birds

and Stanford Dogs fine-grained datasets, outperforming the

state-of-the-art.

1. Introduction

Fine-grained categorization relies on identifying the sub-

tle differences in appearance of specific object parts. Re-

search in cognitive psychology has suggested [24] and re-

cent works in computer vision have confirmed [10, 31, 34]

this mechanism. Humans learn to distinguish different types

of birds by addressing the differences in specific details.

The same holds for car types [8], sailing boat types, dog

breeds [15, 16], but also when learning to discriminate dif-

ferent types of pathologies. For this purpose, active learning

methods have been proposed to extract attributes [9], volu-

metric models [10] or part models [3]. They require expert-

level knowledge at run time, which is often unavailable. In

contrast, we aim for fine-grained categorization without hu-

man interaction.

Various methods have been proposed to learn in an un-

supervised manner, what details to focus on for identifying

Figure 1. The first image shows a Hooded Warbler, whereas the

second image shows a Kentucky Warbler. Based on example

images like these, fine-grained categorization tries to answer the

question: what fine-grained bird category do we have in the third

image? Rather than directly trying to localize parts (be it distinc-

tive or intrinsic), we show in this paper that better results can be

obtained if one first tries to align the birds based on their global

shape, ignoring the actual bird categories.

fine-grained sub-categories, such as the recent works rely-

ing on templates [31, 32]. In [32] templates rely on high

dimensionalities to arrive at good results, while in [31] they

are designed to be precise, being effectively analogous to

“parts” [11]. Yet, it remains unclear what is the most critical

aspect of “parts” in a fine-grained categorization context: is

it the ability to accurately localize corresponding locations

over object instances, or simply the ability to capture de-

tailed information? While often these go hand in hand, as

indeed is the case for templates, we defend the view that

actually it is the latter that matters. We argue that a very

precise “part” localization is not necessary and rough align-

ments suffice, as long as one manages to capture the fine-

grained details in the appearance.

Parts may be divided in intrinsic parts [3, 16] such as

the head of a dog or the body of a bird, and distinctive

parts [32, 31] specific to few sub-categories. Recovering in-

trinsic parts implies that such parts are seen throughout the

whole dataset. However, the large variability that naturally

arises for large number of classes complicates their detec-

tion. Distinctive parts, on the other hand, are destined to be

found on few sub-categories only. They are more consistent

in appearance, as the distinctive details are better tailored

to be detected on few sub-categories. On the downside,

however, the number of sub-category specific parts soon be-

comes huge for large number of classes, each trained on a
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small number of examples. This limits their ability to ro-

bustly capture the viewpoints, pose and lighting condition

changes. Hence, detecting parts, be it intrinsic or distinc-

tive, seems to involve contradictory requirements.

Different from prior work, we propose not to learn detec-

tors for individual parts, but instead localize distinctive de-

tails by first roughly aligning the objects. This alignment is

rough and insensitive to vast appearance variations for large

number of sub-categories. Furthermore, rough alignment

is not sub-category specific, thus the object representation

becomes independent of the number of classes or training

images [33, 32]. For alignments we only use the overall

shape.

A first novelty of our work is based on the observation

that all sub-categories belonging to the same super-category

share similar global characteristics regarding their shape

and poses. Therefore, it is effective to align objects, as

we will pursue. In the supervised case, annotated details

are transferred from training images to test images. In the

unsupervised case, we use alignments to delineate corre-

sponding object regions that we will use in the differential

classification.

Our second novelty is based on the observation that start-

ing from rough alignments instead of precise part loca-

tions, noticeable appearance perturbations will appear even

between very similar objects, due to common image de-

formations such as small translations, viewpoint variations

and partial occlusions. Using as fine-grained representa-

tions [10, 32, 34, 1] raw descriptors such as [17, 2, 32],

that are precise, yet sensitive to common image transforma-

tions, is therefore likely to be a sub-optimal choice, espe-

cially when part detection becomes challenging. We pro-

pose to use state-of-the-art feature encodings, like Fisher

Vectors [23], typically used for image classification, as

local descriptors. In contrast to the raw SIFT or template

features preferred in the fine-grained literature [16, 31, 32],

such localized feature encodings are less sensitive to mis-

alignments. Indeed, as our experiments indicate, they are

better suited than matching based features.

We present two methods for recovering alignments that

require varying levels of part supervision during training.

We evaluate our methods on the CU-2011 Birds and Stan-

ford Dogs dataset [30]. The results vouch for unsupervised

alignments, which outperform previous published results.

2. Related work

Fine-grained categorization has entered the stage in the

computer vision literature only recently. Prior works have

focused on various aspects of fine-grained categorization,

such as the description of fine-grained objects, the detection

of fine-grained objects and the use of human interaction to

boost recognition.

Fine-grained description. For the description of fine-

grained objects various proposals have been made in the lit-

erature. In [32] Yao et al. propose to use color and gradi-

ent pixel values, arriving at high-dimensional histograms.

Farell et al. [10] use color SIFT features, whereas Yang

et al. [31] propose to use shape, color and texture based

kernel descriptors [2]. Different from the above works,

we propose to use strong classification- and not matching-

oriented, encodings to describe the alignment parts and re-

gions. Sanchez et al. in [13] and Chai et al. in [6] rely

on classification-oriented encodings, Fisher vectors specifi-

cally, to learn a global object level representations. Inspired

by their work we also adopt Fisher vectors. However, we

use Fisher vectors not only as global, object level represen-

tations, but also as localized appearance descriptors.

Fine-grained detection. The detection of objects in a

fine-grained categorization setting ranges from the segmen-

tation of the object of interest [19, 5, 6] to fitting ellip-

soids [10] and detecting individual parts and templates [33,

34, 32, 31, 16]. In their seminal work [19] Nilsback and Zis-

serman show the importance of segmenting out background

information for recognizing flowers. Furthermore, in [5, 6]

Chai et al. demonstrate how co-segmentation may be em-

ployed to improve classification. In the current work we

also use segmentation, but with the intention to acquire an

impression of the object’s shape and to recover interesting

object regions.

Targeting more towards parts instead of segmentations,

Yao et al. propose to either sample discriminative features

using randomized trees [33] or convolute images with hun-

dreds of thousands of randomly generated templates [32].

Since a huge feature space is generated, tree pruning is em-

ployed to discard the unnecessary dimensions and make the

problem tractable. In [10, 34] Farrell et al. capture the poses

of birds, whereas in [34] Zhang et al. furthermore propose

to normalize such poses and extract warped features, arriv-

ing at impressive results. In [21] Parkhi et al. propose to use

deformable part models to detect the head of cats and dogs

and in [1] Berg and Belhumeur learn discriminative parts

from pairwise comparisons between classes. Also, in [16]

Liu et al. propose to share parts between classes to arrive at

accurate part localization.

Different from the above works, we do not directly aim

at localizing individual parts, but rather at aligning the ob-

ject as a whole. Based on this alignment, we then derive a

small number of predicted parts (supervised) or regions (un-

supervised). Such regions are highly repeatable, while few

in number, thus ensuring consistency across the dataset and

a smaller parameter space to learn our fine-grained object

descriptions.

Human interaction. In [20] Parikh and Grauman itera-

tively generate discriminative attributes. They then evaluate

and retain the “nameable” ones, that is the ones that can be

interpreted by humans. In [4] Branson et al. try to determine
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Figure 2. The computation of the segmentation mask can be accu-

rate as in the left, ok as in the middle or completely fail as in the

right image. Most times segmentations are somewhere in between

the left and middle example, thus allowing us to obtain a rather

good impression of the object’s shape.

the object’s sub-category using visual properties that can be

easily answered by a user, such as whether the object “has

stripes”. In [29] Wah et al. propose an active learning ap-

proach that considers user clicks on object part locations, so

that the machine learns to select the most informative ques-

tion to pose to the user. In [9] Duan et al. propose to use a la-

tent conditional random field to generate localized attributes

that are both machine and human friendly. A user then picks

those attributes that are sensible. And in [3] Branson et

al. show that part models designed for generic objects do

not always perform equally well for fine-grained categories.

They therefore propose online supervision to learn better

part models. The above approaches require time-consuming

user input and often expert-knowledge. Hence, their appli-

cability is usually restricted to small datasets covering only

a limited number of fine-grained categories [9]. In the cur-

rent work we propose a fine-grained categorization method

that does not require any human interaction.

3. Alignments

A local frame of reference serves to identify the spatial

properties of an object. In the following we will employ

both shape masks and ellipses as local frames of reference.

We say an image is aligned with other images if we have

identified a local frame of reference in the image that is

consistent with (a subset of) the frames of reference found

in other images. Consistent means that corresponding parts

are found in similar locations, when expressed relative to

this frame of reference.

As is common in fine-grained categorization [33, 32, 31],

we have available both at training and at test time the bound-

ing box locations of the object of interest. We focus exclu-

sively on the classification problem, leaving the problem of

object detection for another occasion. Ignoring the image

content outside the bounding box is a reasonable thing to

do, since context is unlikely to play any major role in recog-

nition of sub-categories, e.g., all birds are usually either on

trees or flying in the sky.

The rectangular bounding box around an object allows

for extracting important information, such as the approxi-

mate shape of the object. More specifically, we use Grab-

Cut [25] on the bounding box to compute an accurate figure-

ground segmentation. Although GrabCut is not always as

accurate and in rare cases fails to recover even a basic con-

tour, in the vast majority of cases it is able to return a rather

precise contour of the object, see Fig. 2.

3.1. Supervised alignments

In the supervised scenario the ground truth locations of

basic object parts, such as the beak or the tail of the birds,

are available in the training set. This is a typical scenario

when the number of images is limited, so that human ex-

perts can provide information at such a level of granularity.

In this setting, we aim at accurately aligning the test image

with a small number of training images. Then, we can use

the common frame of reference to predict the part locations

in the test image.

Our first goal is to retrieve a small number of training

pictures that have a similar shape as the object in the test

image. Note that, at this stage, it does not matter whether

these are images that belong to the same sub-category or

not. To this end, we first obtain the segmentation mask of

the object as described before. Since we are interested only

in the outer shape of the object, we suppress all the interior

shape information. This gives us a shape mask for the im-

age, which we effectively summarize in the form of HOG

features [7].

A HOG feature forms in theory a high-dimensional,

dense space. In practice, however, all the sub-categories be-

long to the same super-category, hence the generated poses

will mainly lie on a lower dimensional manifold. Therefore,

we can expect that given an object, there are several oth-

ers with similar shapes and, that due to the anatomical con-

straints of the super-category they belong to, are likely to be

found in similar poses. Given the �2-normalized HOG fea-

ture of the image shape mask, we retrieve the nearest neigh-

bor images from the training set using a query-by-example

setting. As a result, we end up with a shortlist of other sim-

ilarly posed objects, see Fig. 3.

Having retrieved the training images with the most simi-

lar poses, the bounding boxes can be used as frames of ref-

erence. We are now in position to use the ground truth lo-

cations of the parts in the training images and predict the

corresponding locations in the test image. To calculate the

positions of the same parts on the test image, one may ap-

ply several methods of varying sophistication, ranging from

simple average pooling of part locations to local, indepen-

dent optimization of parts based on HOG convolutions. We

experimentally witnessed that averaging yields accurate re-

sults, accurate enough to recover rough alignments. To en-

sure maximum compatibility we repeat the above procedure

for all training and testing images in the dataset, thus pre-

dicting part locations for all the objects in the dataset.
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Figure 3. In the top left, we have a test image, for which we want to predict part locations. On the right, we have the nearest neighbor

training images, their ground truth part locations and their HOG shape representations, based on which they were retrieved. Regressing

the locations from the nearest neighbors to the test image we get the predicted parts, shown as the colorful symbols. The predicted part

locations look quite consistent.

3.2. Unsupervised alignments

In the unsupervised scenario no ground truth information

of the training part locations is available. However, we still

have the bounding box that surrounds the object, based on

which we can derive a shape mask per object.

Since no ground truth part locations are available, it does

not make sense to align the test image to a small subset of

training images. Instead, we derive a frame of reference

based on the global object shape, inspired by local affine

frames used for affine invariant keypoint description [18].

While not as accurate as the alignments in the previous sub-

section, this procedure allows us to obtain robust and con-

sistent alignments over the entire database.

More specifically, we fit an ellipse to the pixels X of the

segmentation mask and compute the local 2-d geometry in

the form of the two principal axes

aj = x̄+ �ej
√
λj (1)

In eq. (1) λj and �ej stand for the j-th eigenvalue and eigen-

vector of the covariance matrix C = E[(X − x̄)(X − x̄)T ]
and x̄ is the average location of the mask pixels, see Fig. 4.

GrabCut does not always return very accurate contours

around the objects. Still, the centre of mass of the object

is relatively stable to random fluctuations of the object con-

tour. Thus, we let the ellipse axes meet each other at this

point. To this end we extract the principal axes using all the

foreground pixels of the shape mask.

For objects that have an elliptical shape the longer axis is

usually the principal axis. Additionally, we follow the grav-

ity vector assumption [22] and adopt the highest end point

of the principal axis as its origin. Regarding the ancillary

axis, we cannot easily define an origin in a consistent way.

We therefore decide not to use the ancillary axis in the gen-

eration of consistent regions. This procedure fully defines

the frame of reference, see Fig. 4.

Relative to this frame of reference, we can define dif-

ferent locations or regions at will. Here, we divide the

principal axis equally from the origin to the end in a fixed

number of segments, and define regions as the part of the

foreground mask that falls within one such segment. Given

accurate segmentation masks, the corresponding locations

in different fine-grained objects are visited in the same or-

der, thus resulting in pose-normalized representations, see

Fig. 4. Small errors in the segmentations, as in the last row

of picture of Fig. 4, have only a limited impact on the re-

gions we obtain.

4. Final Image Representation

Our alignments are designed to be rough. Thus, using

features that are precise, but sensitive to common image

transformations, is likely to be suboptimal. Instead, we pro-

pose to use Fisher vectors [23] extracted in the predicted

parts/regions. There are different ways one could sample

from the alignment region to generate a Fisher vector. We

turn our focus into two approaches, one that is more relevant

to part based models and another one that is more relevant

to consistent regions. For the first approach we sample in a

T × T window around the center of the part, sampling de-

scriptors every d pixels. Together with the object informa-

tion this approach also captures some of the context that sur-

rounds the object parts. For the second approach we sample

densely every d pixels only on the intersection area of the

segmentation mask and the region. This approach includes

less context, as no descriptors centered to the background

are extracted. Note that although the second approach is

theoretically more accurate in capturing only the object ap-

pearance details, at the same time it might either include

background pixels or omit foreground pixels, since segmen-

tation masks are not perfect.
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Figure 4. In the left column we see random birds, for which we

have already extracted a segmentation mask. After fitting an el-

lipse, we obtain the two axes in the middle column pictures, the

principal green and the ancillary magenta ones. After the gravity

vector assumption [22] we assume the origin of the principal axis

to be the highest point in the direction of the green arrow. Based

on this frame of reference, we split equally in the right column

pictures the principal axis to obtain consistent regions.

5. Experiments

5.1. Experimental setup

Datasets. We first run our experiments on the CU-2011

Birds dataset [30], one of the most extensive datasets in

the fine-grained literature. The CU-2011 Birds dataset is

composed of 200 sub-species of birds, several of whom

bear tremendous similarities, especially under common im-

age transformations, see Fig. 1. We use the standard train-

ing/test split provided by the authors. Following the stan-

dard evaluation protocol [33, 32, 31], we mirror the train

images to double the size of the training set and use the

bounding boxes to normalize the images. In total, we

have 11,788 training and 5,894 testing images. We use

the ground truth part annotations only during learning, un-

less stated otherwise. We also include results for Stanford

Dogs [15], using similar experimental settings as for CU-

2011 Birds. For both datasets we use their standard evalua-

tion metrics, that is the category normalized mean accuracy.

Implementation details. We extract SIFT descrip-

tors [28]. We sample densely every 3 pixels and at mul-

tiple scales (16x16, 24x24, 32x32 and 40x40 windows) for

all experiments, unless stated otherwise. After extracting

the SIFT descriptors we reduce dimensionality to 64 by ap-

plying a PCA transformation. For Fisher vectors we use a

Gaussian mixture model with 256 components. We extract

HOG [28] features on an 8 pixel spaced grid. We apply

power- and �2- normalization on Fisher vectors [23] and �2
normalization on HOG. We use a linear SVM classifier [26]

with a fixed parameter C = 10.

Descriptors

Part selection HOG Fisher vectors

Oracle 31.8 52.5

Table 1. Comparison of Matching vs Classification Descriptors

based on accuracy. Fisher vectors are better equipped in describing

part appearance than HOG for fine-grained categorization.

5.2. Matching vs Classification Descriptors

In this first experiment we evaluate what are good de-

scriptors for describing parts in a fine-grained categoriza-

tion setting. In order to ensure a fair comparison, as well as

to test the maximum recognition capacity of parts for such a

task, we use the ground truth part annotations both in train-

ing and in testing, as if an oracle algorithm for the part lo-

cations was available. If Fisher vectors outperform HOG on

perfectly aligned ground truth parts, then we expect this to

be the case even more for less accurate parts. The CU-2011

Birds contains 15 part annotations per bird, many of which

are spatially very close to each other. In order to avoid a

too strong correlation between the parts and also control the

dimensionality of the final feature vector we use only the

following 7 parts, which cover the bird silhouette: beak,

belly, forehead, left wing, right wing, tail and throat. In a

square window of T × T pixels centering the part location

we extract HOG and Fisher vectors. We set T = 100 pix-

els, a value that seemed to work well in practice. The Fisher

vectors from the 7 parts are concatenated with a Fisher vec-

tor from the whole bounding box to arrive at the final object

representation. Similarly, for the HOG object descriptors

we also compute a HOG vector using the bounding box,

rescaled to 100× 100 pixels.

As we see in Table 1, Fisher vectors are much better in

describing parts for fine-grained categorization than match-

ing based descriptors like HOG. Where HOG scores an ac-

curacy of 31.8 the Fisher vectors result in a final score of

52.5. The reason is that HOG descriptors capture only zero

order spatial gradient information of the window around the

part. However, for fine-grained classes the gradients are

often quite similar, since they belong to the same super-

class. Hence, Fisher vectors are able to better describe the

little nuances in the gradients, since they are specifically de-

signed to capture also first and second order statistics of the

gradient information. We plot in the left image of Fig. 5 the

individual accuracies per class for Fisher vectors and for

HOG, noticing that Fisher vectors outperform for 184 out

of the 200 sub-categories. In the following experiments we

report results using only Fisher vectors for describing the

appearance of parts and alignments.

5.3. Supervised alignments

In the second experiment we test whether supervised

alignments actually benefit the recognition of fine-grained

categories, as compared to a standard classification pipeline.
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Figure 5. A fine-grained category-by-category comparison. We report results on the 200 concepts in CU-2011 Birds, measured in terms of

accuracy. Falling at the right side of the reference line x=0 means that for oracle parts the Fisher vector is better than HOG (left picture),

Fisher vector on parts is more accurate than a 2×2 spatial pyramid kernel (middle picture), and Fisher vectors on unsupervised alignments

are more accurate than Fisher vectors on parts derived from supervised alignments (right picture). The difference is not that big (2%), but

note that for Fisher vector unsupervised alignments no ground truth part locations are required.

Part selection Fisher vectors

[2× 2] spatial pyramid kernel 39.8

Supervised alignment on beak only 37.8

Supervised alignments 47.1

Table 2. Supervised alignments are more accurate than a spatial

pyramid kernel and an alignment based on the beak of a bird only,

while being rather close to the theoretical accuracy of the oracle

parts in Table 1.

Here our supervised alignments use ground truth part anno-

tations only in training. We use the same 7 parts as in the

previous experiment plus a Fisher vector extracted from the

whole bounding box. We predict their location by averag-

ing the locations of the parts in the top 20 nearest neighbors.

If a part is not present for the majority of the top 20 nearest

neighbors, we consider this part absent and set the corre-

sponding Fisher vector to zero. We compare our proposed

supervised alignment method against a 2 × 2 spatial pyra-

mid using Fisher vectors computed from all SIFT descrip-

tors in the bounding box. Also, inspired by [16], we repeat

the same experiment using only the predicted location of

the beak, whose window captures most of the information

around the head. We extract the Fisher vector on T×T win-

dows around the predicted part locations, where T is again

set to 100 pixels. We show the results in Table 2.

As we observe in Table 2, parts bring an 17% accuracy

improvement over a standard spatial pyramid classification

approach, since they better capture the little nuances that

differentiate sub-classes that are otherwise visually very

similar. Furthermore, we note that extracting Fisher vec-

tors on the supervised alignments is 47.1% accurate, which

is rather close to the 52.5% obtained when extracting Fisher

vectors on the parts provided by the ground truth. This in-

dicates that we capture the part locations well enough for

an appearance descriptor like the Fisher vector. In fact,

the mean squared error between our estimated parts and the

ground truth ones is 12%, after normalizing the respective

locations with respect to the bounding box geometry. We

plot in the middle picture of Fig. 5 the individual accura-

cies per class for our part prediction method and the spatial

pyramids. Our supervised alignments perform consistently

better for 141 out of the 200 classes. We conclude that ex-

tracting localized information in the form of alignments or

parts matters in a fine-grained categorization setting.

5.4. Unsupervised Alignments

In this experiment we compare the unsupervised align-

ments with the supervised ones. After extracting the prin-

cipal axis we split the bird mask into four regions, start-

ing from the highest point, considering only the pixels

within the segmentation mask. We furthermore compare

our method against a horizontally split [4× 1] spatial pyra-

mid. We show the results in Table 3.

We observe that describing the object based on the un-

supervised alignments results in more accurate predictions

compared to the supervised case (49.4% vs 47.1%). When
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Figure 6. Best recognized categories, that is Pied billed Grebe,

Heermann Gull, Bobolink and European Goldfinch. We observe

that birds in these sub-classes have consistent appearance.

Part selection Fisher vectors

Supervised alignments 47.1

[4× 1] spatial pyramid kernel 39.4

Fisher vector from the foreground mask only 42.6

Unsupervised alignments 49.4

Table 3. Unsupervised alignments are more accurate than super-

vised ones, while at the same time requiring no supervision at all.

computing a single Fisher vector only from the foreground

mask we obtain an accuracy of 42.6%. Note that unsuper-

vised alignments use no ground truth part annotations, nei-

ther in training nor in testing. We repeat the experiment

considering different number of regions. For 2 regions the

accuracy decreases from 49.4% to 46.2%, whereas for 6 re-

gions we obtain 49.3%. In the subsequent experiments we

always use 4 regions.

We, furthermore, plot the individual accuracy differences

per class for supervised and unsupervised alignments in

the right picture in Fig. 5. The distribution of classes is

split roughly equally for supervised and unsupervised align-

ments, with unsupervised alignments having slightly larger

accuracy differences. We conclude that compared to super-

vised parts, unsupervised alignments describe the localized

appearance of fine-grained objects at least as good, often

better.

Birds Accuracy

Pose pooling kernels [34] 28.2

Pooling feature learning [12] 38.9

POOF [1] 56.9

This paper: Unsupervised alignments 62.7

Table 4. State-of-the-art comparison in CU-2011 Birds [30]. Un-

supervised alignments with Fisher vectors outperform the state-of-

the-art considerably.

Dogs Accuracy

Discriminative Color Descriptors [14] 28.1

Edge templates [31] 38.9

This paper: Unsupervised alignments 50.1

Table 5. State-of-the-art comparison in Stanford Dogs [15]. Unsu-

pervised alignments with Fisher vectors outperform the state-of-

the-art considerably.

5.5. State-of-the-art comparison

In experiment 4, we compare our unsupervised align-

ments with state-of-the-art methods reported on CU-2011

Birds and Stanford Dogs. We add color by sampling SIFT

descriptors from the opponent color spaces [27]. Results

for birds are shown in Table 4. Compared to the very

recently published POOF features [1], unsupervised color

alignments are 10% more accurate, while not requiring

ground truth part annotations. Compared to the pose pool-

ing kernels, unsupervised alignments recognize bird sub-

categories 84% more accurately. And compared to learned

features proposed in [12] unsupervised alignments perform

36.5% better. Also for Stanford Dogs we outperform the

state-of-the-art, in spite of the larger shape and pose varia-

tion among the dogs compared to the birds, see Table 5.

Although no direct comparison can be made, we report

also some numbers from prior works on CU-2010 Birds,

which is the previous version of CU-2011 Birds. The high-

est recorded accuracy is 28.2% for templates and kernel de-

scriptors [32]. Using co-segmentation, [6] reports an accu-

racy of 25.5%, whereas randomized features [33] perform

19.2% accurately. On a subset of 14 out of 200 bird species

the codebook-free approach of [32] is 44.7% accurate. It is

interesting to note that interactive approaches on CU-2010

Birds report approximately 50% accuracy either within 25

seconds of human interaction [29] or after asking 15 ques-

tions to the user [4]. Our approach requires no supervision

to reach a similar accuracy, albeit on a bigger dataset.

In Fig. 6 we plot pictures from four categories for which

alignments reach high accuracy, i.e. Pied billed Grebe,

Heermann Gull, Bobolink and European Goldfinch. The

primary reason for the good recognition performance of

these classes appears to be their consistent appearance both

in training and testing sets.

In Fig. 7 we show images of the two categories most
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Figure 7. The two most confused categories, that is Loggerhead

Shrikes in the left column and Great Grey Shrikes in the right col-

umn. These two classes have very similar appearance, thus often

resulting in confusion also for alignments.

confused to each other: Loggerhead Shrike and Great Grey

Shrike. These two sub-species belong to the same family

and have very similar appearance even when color is added,

resulting to high confusion.

6. Conclusions

In this paper we aim for fine-grained categorization with-

out human interaction. Different from prior work, we show

that localizing distinctive details by roughly aligning the ob-

jects allows for successful recognition of fine-grained sub-

classes. We show that for rough alignments, classification-

oriented encodings, such as Fisher vectors, are a better

choice than matching based features, such as HOG. We

present two methods for extracting alignments, requiring

different levels of supervision. We evaluate on the CU-

2011 Birds and Stanford Dogs dataset, outperforming the

state-of-the-art. We conclude that rough alignments lead to

accurate fine-grained categorization.
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