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Abstract

Modern descriptors like HOG and SIFT are now com-
monly used in vision for pattern detection within im-
age and video. From a signal processing perspective,
this detection process can be efficiently posed as a cor-
relation/convolution between a multi-channel image and
a multi-channel detector/filter which results in a single-
channel response map indicating where the pattern (e.g.
object) has occurred. In this paper, we propose a novel
framework for learning a multi-channel detector/filter ef-
ficiently in the frequency domain, both in terms of training
time and memory footprint, which we refer to as a multi-
channel correlation filter. To demonstrate the effectiveness
of our strategy, we evaluate it across a number of visual de-
tection/localization tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction
In computer vision it is now rare for tasks like convo-

lution/correlation to be performed on single channel image

signals (e.g. 2D array of intensity values). With the advent

of advanced descriptors like HOG [5] and SIFT [13] convo-

lution/correlation across multi-channel signals has become

the norm rather than the exception in most visual detection

tasks. Most of these image descriptors can be viewed as

multi-channel images/signals with multiple measurements

(such the oriented edge energies) associated with each pixel

location. We shall herein refer to all image descriptors as

multi-channel images. An example of multi-channel corre-

lation can be seen in Figure 1 where a multi-channel image

is convolved/correlated with a multi-channel filter/detector

in order to obtain a single-channel response. The peak of

the response (in white) indicating where the pattern of in-

terest is located.

Like single channel signals, correlation between two

multi-channel signals is rarely performed naively in the spa-
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Figure 1. An example of multi-channel correlation/convolution

where one has a multi-channel image x correlated/convolved with

a multi-channel filter h to give a single-channel response y. By

posing this objective in the frequency domain, our multi-channel

correlation filter approach attempts to give a computational &

memory efficient strategy for estimating h given x and y.

tial domain. Instead, the fast Fourier transform (FFT) af-

fords the efficient application of correlating a desired tem-

plate/filter with a signal. Contrastingly, however, most tech-

niques for estimating a detector for such a purpose (i.e. de-

tection/tracking through convolution) are performed in the

spatial domain [5]. It is this dilemma that is at the heart of

our paper.

This has not always been the case. Correlation fil-

ters, developed initially in the seminal work of Hester and

Casasent [8], are a method for learning a template/filter

in the frequency domain that rose to some prominence in

the 80s and 90s. Although many variants have been pro-

posed [8, 11, 12], the approach’s central tenet is to learn

a filter, that when correlated with a set of training sig-

nals, gives a desired response (typically a peak at the origin

of the object, with all other regions of the correlation re-

sponse map being suppressed). Like correlation itself, one

of the central advantages of the single channel approach is

that it attempts to learn the filter in the frequency domain

due to the efficiency of correlation/convolution in that do-

main. Learning multi-channel filters in the frequency do-

main, however, comes at the high cost of computation and

memory usage. In this paper we present an efficient strategy

for learning multi-channel signals/filters that has numerous

applications throughout vision and learning.
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Contributions: In this paper we make the following con-

tributions

• We propose an extension to canonical correlation filter

theory that is able to efficiently handle multi-channel

signals. Specifically, we show how when posed in the

frequency domain the task of multi-channel correlation

filter estimation forms a sparse banded linear system.

Further, we demonstrate how our system can be solved

much more efficiently than spatial domain methods.

• We characterize theoretically and demonstrate empiri-

cally how our multi-channel correlation approach af-

fords substantial memory savings when learning on

multi-channel signals. Specifically, we demonstrate

how our approach does not have a memory cost that

is linear in the number of samples, allowing for sub-

stantial savings when learning detectors across large

amounts of data.

• We apply our approach across a myriad of detec-

tion and localization tasks including: eye localization,

car detection and pedestrian detection. We demon-

strate: (i) superior performance to current state of the

art single-channel correlation filters, and (ii) superior

computational and memory efficiency in comparison

to spatial detectors (e.g. linear SVM) with comparable

detection performance.

Notation: Vectors are always presented in lower-case bold

(e.g., a), Matrices are in upper-case bold (e.g., A) and

scalars in italicized (e.g. a or A). a(i) refers to the ith el-

ement of the vector a. All M -mode array signals shall be

expressed in vectorized form a. M -mode arrays are also

known as M -mode matrices, multidimensional matrices, or

tensors. We shall be assuming M = 2 mode matrix sig-

nals (e.g. 2D image arrays) in nearly all our discussions

throughout this paper. This does not preclude, however, the

application of our approach to other M �= 2 signals.

A M -mode convolution operation is represented as the

∗ operator. One can express a M -dimensional discrete cir-

cular shift Δτ to a vectorized M -mode matrix a through

the notation a[Δτ ]. The matrix I denotes a D ×D identity

matrix and 1 denotes a D dimensional vector of ones. Aˆ
applied to any vector denotes the M -mode Discrete Fourier

Transform (DFT) of a vectorized M -mode matrix signal a
such that â ← F(a) =

√
DFa. Where F() is the Fourier

transforms operator and F is the orthonormal D×D matrix

of complex basis vectors for mapping to the Fourier domain

for any D dimensional vectorized image/signal. We have

chosen to employ a Fourier representation in this paper due

to its particularly useful ability to represent circular convo-

lutions as a Hadamard product in the Fourier domain. Addi-

tionally, we take advantage of the fact that diag(ĥ)â = ĥ◦â,

where ◦ represents the Hadamard product, and diag() is

an operator that transforms a D dimensional vector into

a D ×D dimensional diagonal matrix. The role of filter ĥ
or signal â can be interchanged with this property. Any

transpose operator T on a complex vector or matrix in this

paper additionally takes the complex conjugate in a similar

fashion to the Hermitian adjoint [12]. The operator conj(â)
applies the complex conjugate to the complex vector â.

2. Related Work

Multi-Channel Detectors: The most notable approach to

multi-channel detection in computer vision can be found

in the seminal work of Dalal & Triggs [5] where the au-

thors employ a HOG descriptor in conjunction with a lin-

ear SVM to learn a detector for pedestrian detection. This

same multi-channel detection pipeline has gone on to be

employed in a myriad of other detection tasks in vision

ranging from facial landmark localization/detection [19] to

general object detection [7].

Computational and memory efficiency, however, are is-

sues for Dalal & Triggs style multi-channel detectors. A

central advantage of using a linear SVM, over kernel SVMs,

for learning a multi-channel detector is the ability to treat

that detector as a multi-channel linear filter during evalu-

ation. Instead of inefficiently moving the detector spatially

across a multi-channel image, one can take advantage of the

fast Fourier transform (FFT) for the efficient application of

correlating a desired template/filter with a signal.

During training, however, all learning is done in the spa-

tial domain. This can be a slow and inefficient process.

The strategy involves the extraction of positive (aligned)

and negative (misaligned) multi-channel image patches of

the object/pattern of interest across large amounts of data.

From a learning perspective, much of this storage can be

viewed as inefficient as it often involves shifted versions of

the same multi-channel image. We argue in this paper, that

this is a real strength of correlation filters as the objective

provides a way for naturally modeling shifted versions of an

image without the burden of explicitly storing all the shifted

image patches.

Multi-Channel Descriptors: Motivation for working with

multi-channel image signals (i.e. descriptors) rather than

raw single channel pixel intensities stems from seminal

work on the mammalian primary visual cortex (V1) [9].

Here, local object appearance and shape can be well cat-

egorised by the distribution of local edge directions, with-

out precise knowledge of their spatial location. It has been

noted [10] that V1-inspired descriptors obtain superior pho-

tometric and geometric invariance in comparison to raw

intensities giving strong motivation for their use in many

modern vision applications.

Jarrett et al. [10] showed that many V1-inspired fea-

tures follow a similar pipeline of filtering an image through

a large filter bank, followed by a nonlinear rectification

30663073



step, and finally a blurring/histogramming step resulting in

a multi-channel signal (where the number of channels was

dictated by the size of the filter bank). Canonical features

such as HOG and SIFT employ filter banks with strong se-

lectivity to spatial frequency, orientation and scale (e.g. ori-

ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [3] re-

cently proposed an extension to traditional correlation fil-

ters referred to as Minimum Output Sum of Squared Error

(MOSSE) filters. This approach has proven invaluable for

many object tracking tasks, outperforming current state of

the art methods such as [1, 16]. A strongly related method

to MOSSE was also proposed by Bolme et al. [4] for object

detection/localization referred to as Average of Synthetic

Exact Filters (ASEF) which also reported superior perfor-

mance to state of the art. A full discussion on other vari-

ants of correlation filters such as Optimal Tradeoff Filters

(OTF) [15], Unconstrained MACE (UMACE) [17] filters,

etc. is outside the scope of this paper. Readers are encour-

aged to inspect [12] for a full treatment on the topic. Re-

cently, Boddeti et al. [2] introduced vector correlation fil-

ter to train multi-channel descriptors in the Fourier domain

for car landmark detection and alignment. This approach,

however, suffered from huge amount of memory usage and

computational complexity, since this approach required to

solve a KD × KD linear system, where K is the number

of channels and D is the length of vectorized signals.

3. Correlation Filters

Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the

frequency domain. There is nothing, however, stopping one

(other than computational expense) from expressing a cor-

relation filter in the spatial domain. In fact, we argue that

viewing a correlation filter in the spatial domain can give:

(i) important links to existing spatial methods for learning

templates/detectors, and (ii) crucial insights into fundamen-

tal problems in current correlation filter methods.

Bolme et. al’s [3] MOSSE correlation filter can be ex-

pressed in the spatial domain as solving the following ridge

regression problem,

E(h) =
1

2

N∑

i=1

D∑

j=1

||yi(j)− hTxi[Δτ j ]||22 +
λ

2
||h||22 (1)

where yi ∈ R
D is the desired response for the i-th ob-

servation xi ∈ R
D and λ is a regularization term. C =

[Δτ 1, . . . ,ΔτD] represents the set of all circular shifts for

a signal of length D. Bolme et al. advocated the use of a

2D Gaussian of small variance (2-3 pixels) for yi centered

at the location of the object (typically the centre of the im-

age patch). The solution to this objective becomes,

h∗ = H−1
N∑

i=1

D∑

j=1

yi(j)xi[Δτ j ] (2)

where,

H = λI+
N∑

i=1

D∑

j=1

xi[Δτ j ]xi[Δτ j ]
T . (3)

Solving a correlation filter in the spatial domain quickly be-

comes intractable as a function of the signal length D, as

the cost of solving Equation 2 becomes O(D3 +ND2).

Efficiency in the Frequency Domain: It is well understood

in the signal processing community that circular convolu-

tion in the spatial domain can be expressed as a Hadamard

product in the frequency domain. This allows one to express

the objective in Equation 1 more succinctly and equivalently

as,

E(ĥ) =
1

2

N∑

i=1

||ŷi − x̂i ◦ conj(ĥ)||22 +
λ

2
||ĥ||22 (4)

=
1

2

N∑

i=1

||ŷi − diag(x̂i)
T ĥ||22 +

λ

2
||ĥ||22 .

where ĥ, x̂, ŷ are the Fourier transforms of h,x,y. The

complex conjugate of ĥ is employed to ensure the oper-

ation is correlation not convolution. The equivalence be-

tween Equations 1 and 4 also borrows heavily upon another

well known property from signal processing namely, Parse-

val’s theorem which states that

xT
i xj = D−1x̂T

i x̂j ∀i, j, where x ∈ R
D . (5)

The solution to Equation 4 becomes

ĥ∗ = [diag(ŝxx) + λI]−1
N∑

i=1

diag(x̂i)ŷi (6)

= ŝxy ◦−1 (ŝxx + λ1)

where ◦−1 denotes element-wise division, and

ŝxx =
N∑

i=1

x̂i◦conj(x̂i) & ŝxy =
N∑

i=1

ŷi◦conj(x̂i) (7)

are the average auto-spectral and cross-spectral energies re-

spectively of the training observations. The solution for ĥ in

Equations 1 and 4 are identical (other than that one is posed

in the spatial domain, and the other is in the frequency do-

main). The power of this method lies in its computational

efficiency. In the frequency domain a solution to ĥ can be
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found with a cost of O(ND logD). The primary cost is

associated with the DFT on the ensemble of training sig-

nals {xi}Ni=1 and desired responses {yi}Ni=1.

Memory Efficiency: Inspecting Equation 7 one can see an

additional advantage of correlation filters when posed in the

frequency domain. Specifically, memory efficiency. One

does not need to store the training examples in memory be-

fore learning. As Equation 7 suggests one needs to sim-

ply store a summation of the auto-spectral ŝxx and cross-

spectral ŝxy energies. This is a powerful result not often dis-

cussed in correlation filter literature as unlike other spatial

strategies for learning detectors (e.g. linear SVM) whose

memory usage grows as a function of the number of train-

ing examples O(ND), correlation filters have fixed mem-

ory overheads O(D) irrespective of the number of training

examples.

4. Our Approach
Inspired by single-channel correlation filters we shall ex-

plore a multi-channel strategy for learning a correlation fil-

ter. We can express the multi-channel objective in the spa-

tial domain as

E(h) =
1

2

N∑

i=1

D∑

j=1

||yi(j)−
K∑

k=1

h(k)Tx
(k)
i [Δτ j ]||22 +

λ

2

K∑

k=1

||h(k)||22 (8)

where x(k) and h(k) refers to the kth channel of the vec-

torized image and filter respectively where K represents

the number of filters. As with a canonical filter the de-

sired response is single channel y = [y(1), . . . ,y(D)]T

even though both the filter and the signal are multi-channel.

Solving this multi-channel form in the spatial domain is

even more intractable than the single channel form with a

cost of O(D3K3 + ND2K2) since we now have to solve

a KD ×KD linear system.

Fourier Efficiency: Inspired by the efficiencies of posing

single channel correlation filters in the Fourier domain we

can express Equation 8 equivalently and more succintly

E(ĥ) =
1

2

N∑

i=1

||ŷi −
K∑

k=1

diag(x̂
(k)
i )T ĥ(k)||22 +

λ

2

K∑

k=1

||ĥ(k)||22 (9)

where ĥ = [ĥ(1)T , . . . , ĥ(K)T ]T is a KD dimensional

supervector of the Fourier transforms of each channel. This

can be simplified further,

E(ĥ) =
1

2

N∑

i=1

||ŷi − X̂iĥ||22 +
λ

2
||ĥ||22 . (10)

where X̂i = [diag(x̂
(1)
i )T , . . . , diag(x̂

(K)
i )T ]. At first

glance the cost of solving this linear system looks no differ-

ent to the spatial domain as one still has to solve a KD ×
KD linear system:

ĥ∗ = (λI +
N∑

i=1

X̂T
i X̂i)

−1
N∑

i=1

X̂T
i ŷi (11)

Fortunately, X̂ is sparse banded and inspecting Equa-

tion 10 one can see that the jth element of each corre-

lation response ŷi(j) is dependent only on the K val-

ues of V(ĥ(j)) and V(x̂(j)), where V is a concatena-

tion operator that returns a K × 1 vector when applied

on the jth element of a K-channel vectors {a(k)}Kk=1, i.e.

V(a(j)) = [conj(a(1)(j)), ..., conj(a(K)(j))]T . Therefore,

we can equivalently express Equation 10 through a simple

variable re-ordering as:

E(V(ĥ(j))) =
1

2

N∑

i=1

||ŷi(j)− V(x̂i(j))
TV(ĥ(j))||22 +

λ

2
||V(ĥ(j))||22,

for j = 1, ..., D. (12)

Therefore, an efficient solution of Equation 10 can be

found by solving D independent K ×K linear systems us-

ing Equation 12 as:

V(ĥ(j))∗ = Ĥ
−1

N∑

i=1

V(x̂i(j))ŷi(j) (13)

where,

Ĥ = λI +
N∑

i=1

V(x̂i(j))V(x̂i(j))
T (14)

This results in a substantially smaller computational cost

of O(DK3 + NDK2) than solving this objective in the

spatial domain O(D3K3 +ND2K2).

Memory Efficiency: As outlined in Section 3 an additional

strength of single channel correlation filters are their mem-

ory efficiency. Specifically, one does not need to hold all

the training examples in memory. Instead, they need to just
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compute the auto-spectral ŝxx and cross-spectral ŝxy en-

ergies respectively of the training observations (see Equa-

tion 7). The memory saving become sizable as the num-

ber of training examples increase as the memory over-

head remains constant O(D) instead of O(ND) if one was

to employ a spatial objective. A similar strategy can be

taken advantage of in our multi-channel correlation form.

For multi-channel correlation filters this saving becomes

even more dramatic as the memory overhead remains con-

stant O(K2D) as opposed to O(NDK). This property

stems from the sparse banded structure of multi-channel

correlation filters such that the problem can be posed as D
independent K ×K linear systems.

5. Experiments
We evaluated our method across a number of challeng-

ing localization and detection tasks: facial landmark local-

ization, car detection, and pedestrian detection. For all our

experiments we used the same parametric form for the de-

sired correlation response, which we defined as a 2D Gaus-

sian function with a spatial variance of two pixels whose

the peak is centered at the location of the target of interest

(facial landmarks, cars, pedestrians, etc.). Across all our

experiments we used the same multi-channel image repre-

sentation, specifically HOG [5]. All correlation filters, both

single-channel and multi-channel, employed in this paper

used a 2D cosine window (as suggested by Bolme et al. [3])

to reduce boundary effects.

5.1. Facial Landmark Localization

We evaluated our method for facial landmark localiza-

tion on the Labeled Faces in the Wild (LFW) database1, in-

cluding 13,233 face images stemming from 5749 subjects.

The images were captured in the wild with challenging vari-

ations in illumination, pose, quality, age ,gender, race, ex-

pression, occlusion and makeup. For each image, there are

ground truth annotations for 10 facial landmarks as well as

the bounding box of the face. We used the bounding box to

crop a 128×128 face image enclosing all the landmarks. We

then employed a 10-fold cross validation procedure to com-

pute evaluation results across folds. 10% of images were

approximately used for testing, with the remaining 90% be-

ing used for learning/training the detectors. The folds were

constructed carefully to have no subjects in common.

All the cropped images were first pre-processed using

Gamma correction and Difference of Gaussian (DoG) fil-

tering to compensate for the large variations in illumination.

Multi-channel HOG descriptors were computed using 9 ori-

entation bins normalized by cell and block sizes of 6×6 and

3×3, respectively. Localization occured by correlating each

landmark detector across the cropped face image where the

1http://vis-www.cs.umass.edu/lfw

peak response location was used as the predicted landmark

location. The facial landmark localization was evaluated

using normalized distance between the desired location and

the predicted coordinate of the landmarks:

d =
‖pi −mi‖2
‖ml −mr‖2 (15)

where mr and ml respectively indicate the ground truth of

the right and left eye, and mi and pi are respectively the true

and predicted locations of the landmark of interest. A local-

ization with d < τ was considered successful where τ is a

threshold defined as a fraction of the inter-ocular distance

(the denominator of the above equation).

Results and Analysis: Inspecting Figure 2 one can see the

superiority of our multi-channel approach compared to state

of the art single-channel correlation filter methods MOSSE

and ASEF. Further, we compare our performance to leading

non-correlation filter methods: specifically Everingham et

al. [6] and Valstar et al. [18] which also show the superi-

ority of our approach. Some visual examples of the output

from our approach employed for facial landmark localiza-

tion can be seen in Figure 3. It should be noted that this

approach to landmark localization employs no shape prior,

relying instead solely on the landmark detectors making a

fair comparison with more recent methods in facial land-

mark localization such as Zhu and Ramanan [19] difficult.

5.2. Car Detection

The objective of this experiment is to evaluate our pro-

posed multi-channel correlation filter (MCCF) strategy for

car localization in street scene images. We selected 1000

images from the MIT StreetScene 2 database, each image

contains one car taken from an approximate left-half-frontal

view. All the selected images were first cropped to a size

of 360×360, and then power normalized to have zero-mean

and unit norm. Our MCCF was trained and evaluated in the

same manner to the previous experiment using 100 × 180
car patches cropped from training images (excluding street

scenes). The peak of the Gaussian desired responses was

located at the center of the car patches. We selected the

peak of the correlation output as the predicted location of

a car in street scene of the testing images. Figure 5.2 de-

picts our localization performance in comparison to leading

single-channel correlation filters MOSSE and ASEF where

we obtain superior performance across all thresholds. Vi-

sual examples of our car detection results can be seen in

Figure 5.

5.3. Pedestrian Detection

We evaluated our method for pedestrian detection using

Daimler pedestrian dataset [14] containing five disjoint im-

2http://cbcl.mit.edu/software-datasets/
streetscenes
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Figure 2. The performance of facial features localization: localization rate versus threshold (best viewed in color).

Figure 3. Visualizing facial features localization, first and second rows show successful localizations, and the third row show wrong

localizations.
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Figure 4. Car detection rate as a function of threshold (pixels).

ages sets, three for training and two for testing. Each set

consists of 4800 pedestrian and 5000 non-pedestrian images

of size 36 × 18. The oriented gradient channels were com-

puted using 5 orientation bins with cell and block sizes of

3 × 3. Our MCCF was trained using all the negative and

positive training samples with their corresponding desired

responses. Given a test image, we first correlate it with the

trained MCCF and then measure the Peak-to-Sidelobe Ra-

tio (PSR)3 of the output with a threshold for detection. This

threshold was chosen through a cross-validation process.

Comparison with Linear SVM: In this experiment we

chose to compare our MCCF directly with a spatial detec-

tor learned using a linear SVM (as originally performed by

Dalal and Triggs [5]). The linear SVM was trained in al-

most exactly the same fashion as our MCCF so as to keep

the comparison as fair as possible. Inspecting Figure 6 (a)

one can see our MCCF obtains similar detection results to

linear SVM in terms of detection performance as a func-

tion of different false positive rates. This result is not that

surprising as the linear SVM objective is quite similar to

the MCCF objective (which can be interpreted as a ridge

regression when posed in the spatial domain). It is well

understood that the linear SVM objective enjoys better tol-

erance to outliers than ridge regression, but in practice we

have found that advantage to be only marginal when learn-

ing multi-channel detectors.

3Peak-to-Sidelobe Ratio (PSR) is a common metric used in correlation

filter literature for detection/verification tasks. It is the ratio of the peak

response to the local surrounding response, more details on this measure

can be found in [12].

30703077



Figure 5. Car detection results. The first and second rows: true detections, and the third row: wrong detections. The red, blue and green

boxes represents detection by our method, MOSSE and ASEF, respectively.

250 500 1000 2000 4000 8000 16000 24000

MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32
Table 1. Comparing minimum required memory (MB) of our method with SVM as a function of number of training images.

Inspecting Figure 6 (b) one can see detection perfor-

mance as a function of number of training data. It is in-

teresting to note that our MCCF objective can achieve good

detection performance with substantially smaller amounts

of training data when compared to linear SVM. This supe-

rior performance can be attributed to how correlation filters

implicitly use synthetic circular shifted versions of images

within the learning process without having to explicitly cre-

ate the images. As a result our MCCF objective can do

“more with less” by achieving good detection performance

with substantially less training data.

Computation and Memory Efficiency: Figure 6(c) de-

picts one of the major advantages of MCCF, and that is its

superior scalability with respect to training set size. One

can see how training time starts to increase dramatically for

linear SVM4 where as our training time only increases mod-

estly as a function of training set size. The central advan-

tage of our proposed approach here is that the solving of

the multi-channel linear system in the frequency domain is

independent to the number of images. Therefore the only

component of MCCF that is dependent on training set size

4We employed the efficient and widely used LibLinear linear SVM

package http://www.csie.ntu.edu.tw/˜cjlin/liblinear
in all our experiments.

is the actual FFT on the training images which should only

have the moderate computational cost O(ND logD) as the

training set size N increases.

Finally, inspecting Table 1 one can see the superior na-

ture of our MCCF approach in comparison to linear SVM

with respect to memory usage. As discussed in Section 4

our proposed MCCF approach has a modest fixed memory

requirement independent of the training set size, whereas

the amount of memory used by the linear SVM approach is

a linear function of the number of training examples.

6. Conclusion
In this paper, we propose a novel extension to correla-

tion filter theory which allows for the employment of multi-

channel signals with the efficient use of memory and com-

putations. We demonstrate the advantages of our new ap-

proach across a variety of detection and localization tasks.
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Figure 6. Comparing our method with SVM + HOG (a) ROC curve of detection rate as a function of false positive rate (8000 training

images), (b) pedestrian detection rate at FPR = 0.10 versus number of training images, and (c) training time versus the number of training

images.

Figure 7. Some samples of (top) true detection of pedestrian (true positive), (middle) false detection of non-pedestrian (false negative), and

(bottom) false detection of pedestrian (false positive).
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