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Abstract

One of the key challenges in search-based image anno-
tation models is to define an appropriate similarity mea-
sure between images. Many kernel distance metric learning
(KML) algorithms have been developed in order to capture
the nonlinear relationships between visual features and se-
mantics of the images. One fundamental limitation in apply-
ing KML to image annotation is that it requires converting
image annotations into binary constraints, leading to a sig-
nificant information loss. In addition, most KML algorithms
suffer from high computational cost due to the requirement
that the learned matrix has to be positive semi-definitive
(PSD). In this paper, we propose a robust kernel metric
learning (RKML) algorithm based on the regression tech-
nique that is able to directly utilize image annotations. The
proposed method is also computationally more efficient be-
cause PSD property is automatically ensured by regression.
We provide the theoretical guarantee for the proposed algo-
rithm, and verify its efficiency and effectiveness for image
annotation by comparing it to state-of-the-art approaches
for both distance metric learning and image annotation.

1. Introduction
The objective of image annotation is to automatically an-

notate an image with appropriate keywords, often referred

to as tags, which reflect its visual content. Among vari-

ous approaches developed for automatic image annotation,

search based approaches have been proved to be quite ef-

fective, particularly for large image datasets with many key-

words [12, 17, 21, 29]. Their key idea is to annotate a test

image I with the common tags shared by the subset of train-

ing images that are visually similar to I.

The crux of search based annotation methods is to effec-

tively measure the visual similarity between images. Dis-
tance metric learning (DML) tackles this problem by learn-

ing a metric that pulls semantically similar images close and

pushes semantically dissimilar images far apart. Many stud-

ies on DML are restricted to learning a linear Mahalanobis

distance metric, failing to capture the nonlinear relation-

ships among images. Several nonlinear DML algorithms

have been proposed to overcome this limitation. The key

idea is to map data points from the original vector space to

a high (or even infinite) dimensional space through a non-

linear mapping, which can be either explicitly constructed

using boosting methods [14, 15, 26], or implicitly derived

through kernel functions, which is referred to as Kernel
Metric Learning (KML) [5, 7, 28], the focus of this work.

Despite the success of KML, there are several limita-

tions that make it difficult to directly apply KML to large-

scale image annotation. First, most KML algorithms are

developed for binary constraints, i.e., must-links for pairs

of “similar” instances and cannot-links for pairs of “dissim-

ilar” instances. In the case of image annotation, it could be

difficult to construct these binary constraints as two images

with different annotations may still share several common

keywords. In Table 5, although the 4-th and 5-th images

show different scenes, they share the same tag “palm”. In

[32], the authors proposed to generate binary constraints by

clustering images using a topic model, as demonstrated in

our experiments. However, we showed in our study that

this approach could result in significant information loss,

and thus suboptimal performance. Secondly, the high di-

mensionality (d) of KML usually leads to a high computa-

tional cost in solving the related optimization problems. In

particular, to ensure the learned metric to be Positive Semi-
Definite (PSD), the existing methods need to project the

learned matrix into a PSD cone whose computational cost is

O(d3). Finally, the high dimensionality of KML may lead

to the overfitting of training data [18]. Although several

heuristics [18, 28] were proposed to address this problem,

none of them has a solid theoretic support.

In this paper, we propose a regression based approach

for KML, termed Regression based Kernel Metric Learn-
ing (RKML), that explicitly addresses the challenges aris-

ing from high dimensionality and limitations of binary con-

straints. RKML directly utilizes image tags to compute a

real-valued semantic similarity, and therefore do not need

to construct the binary constraints. The projection step is

avoided by exploiting the special property of regression,

and the overfitting risk is alleviated by appropriately reg-
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ularizing the rank of the learned kernel metric. We demon-

strate the robustness of the proposed RKML algorithm to

high dimensionality by proving the theoretical guarantee of

the learned kernel metric. We also verify the efficiency and

effectiveness of RKML for search-based image annotation

by comparing it to the state-of-the-art approaches for both

DML and image annotation on several benchmark datasets.

2. Related Work

In this section we review the related work on image an-

notation and distance metric learning. Given the rich liter-

ature on both subjects, we only discuss the studies closely

related to this work, and refer the readers to [12, 21, 33, 35]

for the detailed surveys of the two topics.

Image Annotation According to [12], automatic image

annotation methods can be categorized into three groups:

(i) generative models [3, 10], which are designed to model

the joint distribution between tags and visual features, (ii)

discriminative models [9, 22] that view image annota-

tion as a classification problems where each keyword is

treated as an independent class, and (iii) search based ap-

proaches [21, 29]. Recent studies on image annotation show

that search based approaches are more effective than both

generative and discriminative models. Here, we briefly re-

view the most popular search-based approaches developed

for image annotation. TagProp [12] constructs a similarity

graph for all images, and propagates the label information

via the graph. In [20] a majority voting scheme among the

neighboring images is proposed. A sparse coding scheme is

proposed in [11] to facilitate label propagation. Conditional

Random Field model is adopted in [17] to capture the spa-

tial correlation between annotations of neighboring images.

Distance Metric Learning Many algorithms have been

developed to learn a linear DML from pairwise con-

straints [35], and some of them are designed exclusively for

image annotation [17, 32, 34]. Recently, a number of non-

linear DML approaches have been developed to handle non-

linear and multimodal patterns. They are usually classified

into two categories, boosting based approaches [14, 15, 26]

and kernel based approaches, depending on how the nonlin-

ear mapping is constructed. Many KML algorithms, such

as Kernel DCA [16], KLMCA [28] and Kernel ITML [7],

directly extend their linear counterparts to KML using the

kernel trick. To handle the high dimensionality challenge

in KML, a common approach is to apply dimensionality re-

duction before learning the metric [5, 28]. Although these

studies show dimensionality reduction helps alleviate the

overfitting risk in KML, no theoretical support is provided.

3. Annotate Images by Kernel Metric Learning

Let X = (x1, . . . ,xn)
� be a set of training instances,

where xi ∈ R
d is a d-dimensional instance. Let m be the

number of classes, and Y = (y1, . . . ,yn)
� be the class

assignments of the training instances, where yi ∈ {0, 1}m
with yi,j = 1 if xi is assigned to class j and zero, oth-

erwise. In image annotation, each image can be assigned

to multiple classes, and thus each vector yi may contain

multiple ones. Let κ(x,x′) : Rd × R
d �→ R be a kernel

function, andHκ be the corresponding Reproducing Kernel
Hilbert Space. Without a metric, the similarity between two

instances xa and xb could be assessed by the kernel func-

tion as 〈κ(xa, ·), κ(xb, ·)〉Hκ
= κ(xa,xb). Similar to linear

DMLs, we modify the similarity measure as κ(xa,xb) =
〈κ(xa, ·), T [κ(xb, ·)]〉Hκ , where T : Hκ �→ Hκ is a linear

operator learned from the training examples. The objective

of KML is to learn a PSD linear operator T that is consis-

tent with the class assignments of training examples. Note

that this is different from similarity learning [4] because we

require T to be PSD. In this section, we first present the

proposed algorithm (RKML) for KML, followed by its the-

oretical properties and implementation issues.

3.1. Regression based Kernel Metric Learning

The proposed RKML is a kernel metric learning algo-

rithm based on the regression technique. Let si,j ∈ R be

the similarity measure between two images xi and xj based

on their annotations yi and yj . We note that si,j is a real-

valued measurement, which is different from the conven-

tional studies of DML that only consider a binary relation-

ship between two instances. The discussion of si,j will be

delayed to Section 3.3.1. We adopt a regression model to

learn a kernel distance metric consistent with the similarity

measure si,j by solving the optimization problem:

T̂ = argmin
T�0

n∑
i,j=1

1

2
(si,j − 〈κ(xi, ·), T [κ(xj , ·)]〉Hκ

)
2
.

Following the representer theorem of kernel learn-

ing [24], it is sufficient to assume that T̂ only operates in

the subspace spanned by κ(xi, ·), i = 1, . . . , n, leading to

the following definition for T̂ :

T̂ [f ](·) =
n∑

i,j=1

κ(xi, ·)Ai,jf(xj), (1)

where A ∈ R
n×n is a PSD matrix. Using (1), we can

change the optimization problem for T̂ into an optimization

problem for A as follows:

min
A�0

L(A) = 1
2 |S −KAK�|2F , (2)

where K = [κ(xi,xj)]n×n is the kernel matrix and S =
[si,j ]n×n includes all the pairwise semantic similarities be-

tween any two training images.
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It is straightforward to verify that A = K†SK† is an

optimal solution to (2), where K† stands for the pseudo in-

verse of K. Note that when the semantic similarity matrix

S is PSD, A will also be PSD, thus no additional projec-

tion is needed to enforce the linear operator T̂ to be PSD.

To avoid overfitting, we replace K with Kr, the best rank r
approximation of K, and express A as

A = K−1
r SK−1

r . (3)

Evidently, the rank r makes the tradeoff between bias and

variance in estimating A: the larger the rank r, the lower

the bias and higher the variance. This will become clearer

in our theoretical analysis.

Using the learned linear operator T̂ , the similarity be-

tween any two data instances xa and xb is given by

κ(xa,xb) =
n∑

i,j=1

κ(xa,xi)κ(xb,xj)Ai,j = Φ(xa)
�AΦ(xb),

where Φ(x) : Rd �→ R
n is given by Φ(x) = [κ(x,x1), . . . ,

κ(x,xn)]
�. Thus, the proposed RKML algorithm maps a

vector of d dimensions into one with at most m dimensions.

3.2. Theoretical Guarantee of RKML

We will show that the linear operator learned by the pro-

posed algorithm is stochastically consistent, i.e., the lin-

ear operator learned from finite samples provides a good

approximation to the optimal one learned from an infinite

number of samples. To simplify our analysis, we assume

that the semantic similarity measure si,j = y�i yj
1.

Define the optimal linear operator T∗ that minimizes the

expected loss as follows,

min
T ′

E(xa,xb,ya,yb)

[(
y�a yb − 〈κ(xa, ·), T ′[κ(xb, ·)]〉Hκ

)2]
.

Let T∗(r) be the best rank-r approximation of T∗, and T̂
be the linear operator constructed by A given in (3). We

will show that under appropriate conditions, ‖T∗ − T̂‖2 is

relatively small, where ‖ · ‖2 measures the spectral norm.

Let gk(·) be the prediction function for the k-th class,

i.e., yi,k = gk(xi). We make the following assumption for

gk(·) in our analysis:

A1 : gk(·) ∈ Hκ, k = 1, . . . ,m.

Assumption A1 essentially assumes that it is possible to

accurately learn the prediction function gk(·) given suffi-

ciently large number of training examples. We also note

that assumption A1 holds if gk(·) is a smooth function and

κ(·, ·) is a universal kernel [23]. The following theorem

shows that under assumption A1, with a high probability,

the difference between T∗ and T̂ will be small, provided n
is sufficiently large.

1We note that our analysis can be easily extended to the case when

si,j = ŷ�
i ŷj , where ŷi is a deterministic transformation of yi.

Theorem 1 Assume A1 holds, and κ(x,x) ≤ 1 for any x.
Let r < n be a fixed rank, and λ1, . . . , λn be the eigenval-
ues of kernel matrix K/n ranked in the descending order.
For a fixed failure probability δ ∈ (0, 1), we assume n is
large enough such that

λr ≥ λr+1 +
8√
n
ln(1/δ). (4)

Then, with a probability 1− δ, we have ‖T̂ − T∗(r)‖2 ≤ ε,
where ‖ · ‖2 is the spectral norm of a linear operator and ε
is given by

ε =
8 ln(1/δ)/

√
n

λr − λr+1 − 8 ln(1/δ)/
√
n
.

The detailed proof can be found in the supplementary doc-

ument.

Remark Using the result from Theorem 1, we can ana-

lyze how rank r affects ‖T̂ − T∗‖, the difference between

the estimated linear operator and the optimal one. We have

‖T̂ − T∗‖2 ≤ ‖T̂ − T∗(r)‖2 + ‖T∗ − T∗(r)‖2.
As indicated by Theorem 1, ‖T̂ − T∗(r)‖2 ≤
O

(
1√

n(λr−λr+1)

)
, provided λr ≥ λr+1 + 16/

√
n ln(1/δ).

By choosing a small r, we would expect a large λr − λr+1

and consequentially a small ‖T̂−T∗(r)‖2, implying a small

variance in approximating T∗(r). On the other hand, as the

r goes smaller, the ‖T∗−T∗(r)‖2 becomes larger, implying

a large bias in approximating T∗. Thus, rank r essentially

makes the tradeoff between the bias and variance in the es-

timation of the optimal linear operator T∗.

3.3. Implementation

Regarding implementation, we have two important is-

sues to address: (1) how to appropriately measure the se-

mantic similarity si,j , and (2) how to efficiently compute

Kr, the best rank r approximation of K, without comput-

ing the full kernel matrix K. The second issue is particu-

larly important for applying the proposed algorithm to large

datasets consisted of millions of annotated images. Below,

we will discuss these two issues separately.

3.3.1 Computing Semantic Similarity si,j

The most straightforward approach is to measure the se-

mantic similarity as si,j = y�i yj . We improve upon

this approach by incorporating the log-entropy weighting

scheme [19] which has been used for document retrieval. It

computes the weighted class assignment ỹi,j as

ỹi,j =

(
1 +

n∑
k

pk,j log pk,j
log n

)
· log(yi,j + 1), (5)
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where pk,j = yk,j/
∑n

i yi,j . We apply Latent Semantic

Analysis (LSA) [19] to further enhance the estimation of

semantic similarity, which allows us to remove the noise

and correlation in/between annotations. Let Ỹ = [ỹi,j ]n×m

include the weighted class assignments for all the training

images, and Ŷ ∈ R
n×m′

include the first m′ singular vec-

tors of Ỹ with each of its row L2-normalized by 1. We then

compute the semantic similarity as S = Ŷ Ŷ �.

3.3.2 Efficiently Computing Kr by Random Projection

The proposed RKML algorithm requires computing the full

kernel matrix K and its top r singular vectors. Since the

cost of computing K is O(n2), it will be expensive when

the number of training instances n is large. We can improve

the computational efficiency by exploiting the Nyström

method [8] to approximate Kr. To this end, we randomly

sample ns < n instances from the collection of n training

examples, denoted by x̂1, . . . , x̂ns
, then compute the rect-

angle matrix Kb ∈ R
n×ns , and approximate Kr by

K̃r = Kb[Ks
r ]
−1[Kb]�, (6)

where Ks
r is the best rank r approximation of Ks =

[κ(x̂i, x̂j)]ns×ns
, the kernel matrix for the sampled data.

According to [6], with a high probability, we have

‖K̃r −Kr‖2 ≤ O(1/
√
ns),

implying that K̃r is an accurate approximation of Kr pro-

vided the number of samples ns is sufficiently large. This is

also supported by our empirical study, i.e., kernel matrix K
can be well approximated by the Nytröm method when ns

is a few thousands. According to our implementation, we

observe that further approximating Kb in (6) to rank r usu-

ally yields more accurate prediction for tags. Thus, our final

approximation of Kr is given by K̂r = Kb
r [K

s
r ]
−1[Kb

r ]
�.

4. Experiments
4.1. Datasets and Experimental Setup

ESP Game IAPR TC12 Flickr1M

No. of Images 20,768 19,627 999,764

Vocabulary size 268 291 1,000

Tags per image 4.69/15 5.72/23 5.98/202

Images per tag 363/5,059 386/5,534 5,976/76,531

Table 1. Statistics for the datasets used in the experiments. The

bottom two rows are given in the format mean/maximum.

Three benchmark datasets for image annotation are used

in our study and their statistics are summarized in Table 1.

For both ESP Game and IAPR TC12 datasets2, a bag-of-

words model based on densely sampled SIFT descriptors is

2The features of both the datasets were obtained from [12] http://

lear.inrialpes.fr/people/guillaumin/data.php.

used to represent the visual content. Flickr1M dataset [34]

is comprised of more than one million images crawled from

the Flickr website that are annotated by more than 700, 000
keywords. Since most keywords are only associated with a

small number of images, we only keep the 1, 000 most pop-

ular ones. We follow [32, 34] and represent each image with

following features: grid color moment, local binary pattern,

Gabor wavelet texture, and edge direction histogram.

We randomly select 90% of images from each dataset

as training and use the remaining 10% for testing. Given a

test image, we first identify the k most visually similar im-

ages from the training set using the learned distance metric,

and then rank the tags by a majority vote over the k nearest

neighbors, where k is chosen by cross-validation.

An RBF kernel is used in our study for all KML algo-

rithms. In RKML we set ns = 5, 000 and m′ = 0.38m
based on our experience, and determine the kernel width

and rank r by cross-validation. Parameters for the baselines

are directly set to their default values suggested by the orig-

inal authors. Besides, annotation based on the Euclidean

distance, denoted by Euclid, is used as a reference in our

comparison. Since most DMLs are developed against must-

links and cannot-links, we apply the procedure described

in [32] to generate the binary constraints by performing a

probabilistic clustering over the images based on their tags.

More details of this procedure can be found in [32].

We evaluate the annotation accuracy by the average pre-

cision for the top ranked image tags. Following [33, 34],

we first compute the precision for each test image by com-

paring the top 10 annotated tags with the ground truth, and

then take the average over the test set. Average recall and

F1 score are reported in the supplementary document. The

computational efficiency is measured by the running time3.

Both the mean and standard deviation of evaluation metrics

over 20 experimental trials are reported in this paper.

4.2. Comparison with State-of-the-art Distance
Metric Learning Algorithms

Comparison to nonlinear DML algorithms. We first

compare the proposed RKML4 algorithm to six state-of-the-

art KML methods: (1) Kernel PCA (KPCA) [25], (2) Gener-

alized discriminant analysis (GDA) [2], (3) Kernel discrim-

inative component analysis (KDCA) [16], (4) Kernel local

Fisher discriminant analysis (KLFDA) [27], (5) Kernel in-

formation theoretic based metric learning (KITML) [7], and

(6) Metric learning for kernel regression (MLKR) [31]. We

also include three boosting DML algorithms, i.e., Distance

Boost (DBoost) [14], Kernel Boost (KBoost) [15], and met-

ric learning with boosting (BoostM) [26], for comparison.

3All the codes are downloaded from the authors’ websites, and run in

Matlab on the AMD 2 core @2.7GHz and 64 GB RAM machine.
4Without specific notification, RKML stands for the proposed RKML

algorithm with Nyström approximation. The source code and supplemen-

tary document can be found in out website (Link).
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Figure 1 shows the average precision for the top t an-

notated tags obtained by nonlinear DML baselines and the

proposed RKML. Surprisingly, we observe that most of the

nonlinear DML algorithms are only able to yield perfor-

mance similar to that based on the Euclidean distance, and

more disturbingly, some of the nonlinear DML algorithms

even perform significantly worse than the Euclidean dis-

tance. On the other hand, the proposed algorithm performs

significantly better than the Euclidean distance for almost

all cases. Table 5 shows the annotations of exemplar im-

ages by different DML algorithms.

We attribute the failure of baseline KML methods mostly

to the binary constraints. As described before, all DML al-

gorithms require converting image annotations into binary

constraints, which does not make full use of the annotation

information. To verify this point, we run RKML with sim-

ilarity measure si,j computed from the binary constraints

that are generated for the baseline DML algorithms, and

denote this method by RKMLH. We observe in Table 2 that

RKMLH performs significantly worse than RMKL which

directly uses the real-valued similarity measures, confirm-

ing the significance of using real-valued similarities for

DML in automatic image annotation. Besides log-entropy,

we further explore other weighting schemes. And besides

clustering using a topic model, we also experiment other

binary constraint generation methods. More experimental

results can be found in the supplementary document.

AP@t(%) t=1 t=4 t=7 t=10

RKML 55 ± 1.1 41 ± 0.6 33 ± 0.5 28 ± 0.4

RKMLH 49 ± 1.1 36 ± 0.7 29 ± 0.7 24 ± 0.5

RLML 52 ± 1.3 38 ± 0.8 31 ± 0.5 26 ± 0.4

Table 2. Comparison of various extensions of RKML for the top

t annotated tags on the IAPR TC12. RKMLH runs RKML using

binary constraints, and RLML is the linear version of RKML.

Comparison to linear DML algorithms. We compare

our RKML to seven state-of-the-art linear DMLs, includ-

ing Relevant component analysis (RCA) [1], Discrimina-

tive component analysis (DCA) [16], Large margin nearest

neighbor classifier (LMNN) [30], Local Fisher discriminant

analysis (LFDA) [27], Information theoretic based metric

learning (ITML) [7], Probabilistic RCA (pRCA) [32], and

Logistic discriminant-based metric learning (LDML) [13].

Figure 3 shows the average annotation precision for the

linear DML baselines. Similar to KML, we observe that

even the best linear DML algorithm is only slightly better

than the Euclidean distance, while RKML significantly out-

performs all linear DML baselines. Again, we believe that

the failure of linear DML is likely due to the binary con-

straints generated from image annotations. Since none of

the baseline algorithms, neither linear nor nonlinear DML,

is able to significantly outperform the Euclidean distance, it

remains unclear if kernel DML is advantageous to a linear

DML. To examine this point, we implement the linear ver-

sion of RKML, denoted by RLML. Table 2 shows the per-

formance of RLML on IAPR TC12. It is clear that RKML

significantly outperforms its linear counterpart RLML, ver-

ifying the advantage of using kernel in DML. More results

for RLML can be found in the supplementary document.

Figure 2. Average precision for the first tag predicted by RMKL

using different values of rank r on IAPR TC12 data. To make the

overfitting effect clearer, we turn off the Nyström approximation

in this experiment.

Sensitivity to parameters. We finally examine the role

of rank r in the proposed algorithm by evaluating the pre-

diction accuracy with varied r on the IAPRTC 12 dataset

for both training and testing images (Figure 2). To make

it clear, we turn off the Nyström approximation used by

RMKL in this experiment. We observe that while the aver-

age accuracy of test images initially improves significantly

with increasing rank r, it becomes saturated after certain

rank. On the other hand, the prediction accuracy of train-

ing data increases almost linearly with respect to the rank,

and becomes almost 1 for very large r, a clear indication of

overfitting training data. We also examine the sensitivity of

the other parameters used by the proposed algorithm (i.e.,
m′, the number of retained eigenvectors of Ỹ , and ns, the

number of sampled images used for Nyström approxima-

tion). Detailed results of examining parameters m′ and ns

can be found in the supplementary document. Overall, we

found that our algorithm is insensitive to the values of these

parameters over a wide range.

4.3. Comparison with State-of-the-art Image Anno-
tation Methods

Additionally, we compare RKML algorithm to several

state-of-the-art image annotation models including: (1) Two

versions of the TagProp method [12], using either rank-

based weights (TP-R) or distance-based weights (TP-D),

(2) TagRelevance (tRel) [20] based on the idea of neighbor

voting, (3) 1-vs-1 SVM classification, using either linear

(SVML) or RBF kernel (SVMK) classifiers5. We include Pop
as a comparison reference which simply ranks tags based on

their occurring frequency in the training set.

5SVM was unable to perform over Flickr 1M due to its large size.
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(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 1. Average precision for the top t annotated tags using nonlinear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3. Average precision for the top t annotated tags using linear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 4. Annotation performance with different annotation models. SVM method is not included in (c) due to its high computational cost.

TIME DCA LMNN ITML LDML DBoost BoostM KPCA GDA KDCA KLFDA KITML MLKR RKML

IAPR TC12 1.5e4 1.4e4 4.2e4 4.2e5 1.7e4 1.1e6 2.8e4 4.8e4 2.2e4 8.8e4 5.3e4 2.2e3 4.6e2

ESP Game 2.3e4 1.7e4 5.8e4 5.5e5 4.3e4 1.2e6 3.3e4 5.4e4 3.7e4 3.2e5 6.8e4 3.5e4 1.3e3

Flickr 1M 8.1e4 6.0e4 3.0e4 5.2e5 1.2e4 3.2e5 7.3e3 3.3e4 1.3e5 1.0e5 3.7e6 7.9e3 3.4e3

Table 3. Comparison of running time (s) for several different metric learning algorithms.

Figure 4 shows the comparison of average precision ob-

tained by different image annotation models. It is not sur-

prising to observe that most annotation methods signifi-

cantly outperform Pop, while the proposed RMKL method

outperforms all the state-of-the-art image annotation meth-

ods on IAPR TC12 and ESP Game datasets, and only per-

forms slightly worse than TP-D on the Flickr 1M dataset.

4.4. Efficiency Evaluation

Table 3 summarizes the running time of different DML

algorithms. We observe that RKML is significantly more

efficient than any DML baseline. Table 4 compares the effi-

ciency of different baselines for annotation, where the run-

TIME TP-R TP-D tRel SVML SVMK RKML

IAPR TC12 9.1e2 4.6e2 1.0e1 2.5e3 4.0e5 4.8e2

ESP Game 2.7e2 1.5e2 1.5e1 1.6e2 8.9e4 1.3e3

Flickr 1M 1.6e5 9.9e4 5.7e3 - - 3.4e3

Table 4. Running time (s) for image annotation. SVM methods

Flickr 1M are not included due to their high computational costs.

ning time includes the time for both learning a distance met-

ric and predicting image tags. We observe that compared to

the other annotation methods, the proposed RKML algo-

rithm is particularly efficient for large datasets (i.e., Flickr

1M), making it suitable for large-scale image annotation.
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5. Conclusions and Future Work
In this paper, we propose a robust and efficient method

for kernel metric learning (KML). The proposed method ad-

dresses (i) high computational cost by avoiding the projec-

tion into PSD cone, (ii) limitation of binary constraints in

tags by adopting a real-valued similarity measure, as well

as (iii) the overfitting problem by appropriately regularizing

the learned kernel metric. Experiments with large-scale im-

age annotation demonstrate the effectiveness and efficiency

of the proposed algorithm by comparing it to the state-of-

the-art approaches for DML and image annotation. In the

future, we plan to improve the annotation performance by

developing a more robust semantic similarity measure.
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