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Abstract

Effective reduction of false alarms in large-scale video
surveillance is rather challenging, especially for applica-
tions where abnormal events of interest rarely occur, such
as abandoned object detection. We develop an approach
to prioritize alerts by ranking them, and demonstrate its
great effectiveness in reducing false positives while keep-
ing good detection accuracy. Our approach benefits from a
novel representation of abandoned object alerts by relative
attributes, namely staticness, foregroundness and abandon-
ment. The relative strengths of these attributes are quan-
tified using a ranking function[19] learnt on suitably de-
signed low-level spatial and temporal features.These at-
tributes of varying strengths are not only powerful in dis-
tinguishing abandoned objects from false alarms such as
people and light artifacts, but also computationally efficient
for large-scale deployment. With these features, we apply
a linear ranking algorithm to sort alerts according to their
relevance to the end-user. We test the effectiveness of our
approach on both public data sets and large ones collected
from the real world.

1. Introduction

We present a robust and efficient approach to priori-
tize alerts in abandoned object detection (AOD) for large
scale video surveillance. AOD is one of the most impor-
tant video surveillance applications and has been well stud-
ied [4] in the literature. However, the issue of false alarms,
although being well-known in industry, has been little ad-
dressed in research. Consider for instance that a well de-
signed system yields an extremely low false alarm rate of
2 alerts/day/camera only. It will produce a total of 2, 000
alerts/day on 1, 000 cameras. Suppose that each alert can
be verified quickly in 2 minutes on average, then as many as
66.67 hours are still needed for human inspection of all the
alerts. This is equivalent to the workload of a team of more
than 8 full-time security officers! Hence, there is an urgent
need for development of highly scalable AOD approaches
with low false positive rates (FPRs) for urban surveillance.

Figure 1: An overview flow chart of our system (best view in color). An
abandoned object tends to indicate high staticness (S), foregroundness (F)
and abandonment (A). Our approach applies the technique [19] to learn
the strengths of these visual attributes (shown below each image). These
high-level attributes are then fed to a second level ranker to prioritize the
importance (I) of an object. Alerts are sorted (3rd column) by importance
and finally triggered if their relevance scores are high. (image courtesy of
iLIDS [2])

Making AOD deployable on a large scale raises many
new technical challenges. Firstly, scalability does not only
mean being able to work in real time. It also requires
that a system scale up to a large number of cameras with
various view angles and be robust to issues such as quick
lighting changes and weather condition changes. Secondly,
many other things can be confused with abandoned objects.
Among them, people who move around for a while and
then become stationary (Fig. 2) exhibit close resemblance
to abandoned objects. These types of errors cannot be easily
reduced by a pedestrian detector because of varied human
poses and occlusions. Finally, harmful or suspicious drops
occur rarely . In practice natural drops such as parked bikes
and traffic cones (Fig. 2) are considered as true drops, which
account for only a tiny portion of the total number of alerts
triggered in a system. Such an extremely high imbalance
between true and false alarms demands the system to have
good hit rates while at the same time working at low FPRs.

In this paper, we address the challenges aforementioned
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by prioritizing abandoned object alerts using ranking tech-
niques. Ranking is well suited for the problem of AOD ,
where false alarms dominate detection results. It has the
ability to move up alerts of higher importance to the top
of the adjudication process while significantly suppressing
false alarms.

In order to make alert prioritization feasible, we first pro-
pose a novel representation of abandoned objects by visual
attributes, namely, staticness, foregroundness and abandon-
ment. In general, abandoned objects are essentially fore-
ground objects that remain motionless over a certain period
of time in the scene. Compared to temporally static people
who often exhibit slight movement (internal motion), they
indicate much higher staticness. On the other hand, they are
more dissimilar to background than spurious foreground ob-
jects such as lighting artifacts and shadows, i.e. with high
foregroundness. One more attribute that abandoned objects
possess uniquely is abandonment, which is referred to in [9]
as some associated human activity or behavior around an
object just before it is dropped and left in isolation. Moti-
vated by the recent work of relative attributes by Parikh and
Grauman [19], we further specify the relative strengths of
these attributes on different types of alerts raised by vari-
ous objects in the scene, and apply the technique of [19] to
score the attributes. As demonstrated later, these high-level
semantic features are intuitively discriminative in separat-
ing abandoned objects from other types of alerts. They are
also invariant to camera view changes and can be computed
fast, making them well-suited for large-scale video analysis.

To learn these attributes, we build an efficient
lightweight tracker to track objects in the scene. Since static
objects are of primary interest in AOD, we integrate the
tracker with the approach of [8] which models temporarily
static objects by a finite state machine. Doing so provides
rich information about the history of a static object, from
where and when it originates to where and when it becomes
static, even under occlusion. This information enables ef-
fective extraction of spatio-temporal features for staticness
and abandonment analysis. As we show later, these low-
level features, when combined together, can be transformed
into powerful high-level features for alert ranking.

We finally use these learnt attributes as input to a ranker
to sort alerts by importance. The degree of importance for
an alert is given in the order of bags > people > other
alerts. Here bags refer to true abandoned objects or true
alerts. We enforce such a relationship of ordering between
alerts in the ranker largely because people are the most con-
fusing alerts to bags and other alerts such as light artifacts
and shadows are of the least interest to the users. We again
adopt the technique of [19] for alert ranking due to its sim-
plicity and efficiency. In our experiments, it demonstrates
good generalization capability on new data.

An overview of our system is illustrated in Fig. 1. To

the best of our knowledge, this work is the first to propose
a general representation of abandoned objects by quantifi-
able visual attributes. While some of these attributes (or
concepts) have been tried in previous work [9] for false
alarm reduction, they were used qualitatively and mostly
in a heuristic way. Our approach is also one of the very few
that endeavor to make large-scale video surveillance prac-
tical, with significant focus on scalability and robustness.
In our experiments, we thoroughly validated the effective-
ness and robustness of our approach under various challeng-
ing urban scenarios, using both public data sets with staged
drops and a data set collected from deployed cameras in-
cluding natural drops.

2. Related Work

Abandoned object detection has received extensive re-
search attention recently due to its relevance to anti-
terrorism [4]. However most previous works [6, 13, 16]
focus on improving detection accuracy in crowded scenar-
ios and are only evaluated on some small public data sets
such as [3] and [1].

Most of these data sets contain a small number of short
test sequences captured in relatively simple scenarios. As
a consequence, the issue of false positives, though a noto-
riously known problem in industry, may not stand out as
an urgent issue to resolve in research. Some work such
as [25, 7] focus on detection of abandoned and removed
objects, but these approaches usually do not handle light-
ing changes very well or are susceptible to low textured-
ness and cluttered background. The idea of tracking has
been applied to abandoned objection detection in [23, 6, 13]
for owner identification. While these approaches may work
well in simple scenarios , they can possibly miss many ob-
jects in crowded scenarios where tracking fails easily. An-
other line of work is to use object recognition techniques to
detect bags or luggage directly ([18, 16]), but training ro-
bust detectors across cameras remains challenging. A par-
ticular limitation of these approaches is that they can only
detect a few specific types of objects. Recently, some works
have attempted to address the issue of false positives in a
more systematic way to meet the requirement of large-scale
deployment of abandoned object detection. For example,
in [9], a sequence of robust filters were developed to ad-
dress different types of false alarms by doing foreground
and abandonment analysis.

Attributes have been widely studied for a variety of mul-
timedia and vision tasks [17, 12, 5, 20] such as multimedia
retrieval, face verification and object classification. Due to
limited space, we refer readers to [19] for a good review of
these techniques.
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3. Abandoned Object Alerts

In the context of PETS2006 [3], an abandoned object is
defined as an item of luggage that has been left behind by its
owner. In this work, we consider abandoned objects as sta-
tionary objects that are physically isolated from other fore-
ground objects in the scene for some time. We relax the re-
quirement of ownership into a more realistic setting where
the owner of an object may not be trackable or even not be
visible. In practice, in addition to bags or luggage, interest-
ing drops picked up by a system include natural items such
as bikes, garbage cans and traffic cones (Fig. 2). For conve-
nience, we refer to all of them as bags (or true drops) in this
paper as opposed to false alarms described below.

Among false alarms, people and quick lighting changes
are two dominant sources (Fig. 2), followed by shadows
and ghosts (spurious foreground objects detected after tem-
porarily static objects move again in a scene). Sometimes
adverse weather conditions such as rain and snow could
cause a sudden significant increase of false alarms. For
these types of alerts, we place them into the same category
as that of quick lighting changes due to their similarity.

Abandoned objects are primarily static items. We detect
them using the method of [8], a technique based on back-
ground subtraction (BGS). This technique features a finite
state machine (FSM) that tracks temporarily static objects
robustly even under occlusion. The FSM provides the back-
ground model with object-level information that allows for
region-level background modeling and updating, thus im-
proving the model’s capabilities in handling crowds and oc-
clusions and in detecting static objects. A static object is
identified after a large portion of its pixels are observed mo-
tionless.

Figure 2: Typical abandoned object alerts in video surveillance. a)
a sample staged drop from PETS2006 b) a sample staged drop from i-
LIDS c) two natural drops (trash cans and traffic cones) d) a non-occluded
sitting person e) an occluded sitting person f) a light artifact

4. Attributes of Alerts

Many computer vision tasks have been traditionally ad-
dressed with by a supervised learning approach using a
training dataset with low-level features and ground truth

Alerts ST FG AB
B+ High High High
P− Low High Medium
L− High Low Low
S− High Medium Low
G− High Low Low

Relative B+ > P− B+, P− > S− B+ > P−

Order L−, S−, G− > P− S− > L−, G− P− > S−, L−, G−

Table 1: Staticness (ST), foregroundness (FG) and abandonment (AB)
attributes and their relative strengths for different types of abandoned ob-
ject alerts: Bags (B), People (P ), Light artifacts (L), Shadows (S) and
Ghosts (G). The superscript ’+’ denotes the class of true drops and ’-’
denotes false alarms. The bottom row shows the relative orderings of the
different objects w.r.t. the attribute of the corresponding column. X > Y

implies X exhibits a higher degree of a particular attribute than Y , while
X,Y implies that X and Y possess a similar degree of that attribute.

labels. The hope is that the classifier can learn the un-
derlying semantic structure in the data. More recently,
designing semantic features that are also physically inter-
pretable by humans has been seen to yield promising re-
sults [17, 12, 5, 20]. Further, obtaining ground truth labels
for pairs of points indicating the relative degree of such fea-
tures in the points is easy. In other words, the pairwise re-
lationships between points can be fully established by only
defining the relative ordering between objects, which are
much fewer. We take a similar approach here and design
three physically expressible features (attributes) that seem
plausible for abandoned object detection.

Specifically, our attributes are called staticness, fore-
groundness and abandonment, as mentioned previously.
Staticness is designed to refer to the degree of immobility
or stillness of an object across multiple video frames. Simi-
larly, foregroundness refers to the distinctiveness of the ob-
ject relative to the background based on its appearance. Fi-
nally, abandonment expresses the notion of the object being
left in isolation after remaining in possession or vicinity of
some other entity. In our work, the level of abandonment
for an object is related to the magnitude of external mo-
tion around the object right before it is left in isolation. In
such a way, we bypass the problem of solving the challenge
of owner identification and tracking in crowded scenes and
instead focus on analyzing the motion around the abandon-
ment of an object.

It is possible to describe the relative strengths of different
kinds of objects associated with alerts in terms of the above
attributes (Table 1). We expect that a truly abandoned object
(B+) such as a bag or a piece of luggage remains static in
the scene for a long time (high staticness), is very different
from the background (high foregroundness) and has been
previously in the possession of its owner (high abandon-
ment). On the other hand, an object associated with a false
alarm is not expected to exhibit high degrees of all the three
attributes. For instance, a person (P−) is highly distinctive
from the background (high foregroundness) but may indi-
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cate slight movement occasionally (low staticness). In addi-
tion, he can be part of a group initially in the scene and iso-
lated later exhibiting abandonment somewhere between a
bag and a static background (medium abandonment). Sim-
ilarly other situations associated with false alarms such as
lighting changes (L−), shadows (S−) and ghosts (G−) ex-
hibit different degrees of the proposed attributes and hence
different relative rankings as shown in Table 1. The order-
ing and similarity labels for the attribute ranking algorithm
(Section 5) are derived from these hypotheses.

Fig. 3 shows a small sample of our data points repre-
sented in the relative attributes space (3D) as learned by at-
tribute rankers (Section 5). Clearly, bags, which are our ob-
jects of interest, are separated well from other objects cor-
responding to false alarms.

Figure 3: Attribute scores of staticness (ST), foregroundness (FG) and
abandonment (AB) learned from two data sets CITY and S-iLIDS for
bags(◦), people(+), lighting artifacts(×), shadows (�), and ghosts (∇).

5. Ranking Using Relative Attributes

We adopt the relative attribute framework [19] to rank
order our data points in terms of their degree of staticness,
foregroundness and abandonment. It is an extension of
the SVM ranking formulation [11] by incorporating known
similarities between pairs of points in addition to relative
orderings. Given a set of data points x i in R

n with known
pairwise rank orderings and similarities between some pairs
of points in terms of a set of attributes a ∈ A, the rank-
ing function fa is a linear combination of the measurements
parametrized by a weight vector w a

fa(x i) = w
T
ax i, a ∈ A (1)

The weight vector w a for a particular attribute a is learnt by
optimizing an SVM-like objective function. Let (i > j) ∈
Oa represent known pairwise rankings between points w.r.t.
attribute a and similarly (k ≈ l) ∈ Sa represent known
pairwise similarities on the same attribute. The optimum
weight vector w ∗

a is obtained by minimizing the following

objective function

w
∗

a = argmin
w a

⎛
⎝1

2
w

T
aw a + C

⎛
⎝ ∑

(i,j)∈Oa

ξ2ij +
∑

(k,l)∈Sa

γ2
kl

⎞
⎠
⎞
⎠

(2)

ξij = max
(
0, 1− (x i − x j)

T
w a

)

γkl = |(x k − x l)
T
w a|

where ξij ≥ 0 and γkl ≥ 0 denote slack variables that pe-
nalize wrong rank orderings and dissimilarities respectively
between the labeled pairs in the training data set. The coef-
ficient C emphasizes the ordering and similarity errors rel-
ative to the margin. Note that the margin here refers to the
difference between the two nearest ranking scores among
all pairs of known rankings in the training data. The above
objective function is convex and is optimized using New-
ton’s method with a line search for the optimum step size.

6. Object Tracking And Low-level Features

One of the main challenges is to deal with alerts raised
by people, which often exhibit high similarity to aban-
doned objects. Two useful clues for separating people from
bags are how an object arrives at the current location and
how it remains static in the same location. This requires
understanding the history of an object in the scene, and
thereby object tracking, which is challenging in crowded
scenes. Fortunately, tracking does not need to be perfect
in our case. Even if one can only track an object for a
short period of time prior to its being static, such informa-
tion turns out to be helpful for staticness and abandonment
analysis when combined with other BGS-related informa-
tion, as described later. Different from other tracking-based
approaches [23], tracking in our approach is not intended
to identify the owner of an abandoned object. Instead it
aims to provide sufficient evidence for differentiating peo-
ple from truly static objects for the purpose of suppressing
false alarms.

6.1. Mini-tracker

Our tracker is a simplified version of the one used in [22]
that does blob association with bipartite matching. While
appearance has proved useful, we only use size and location
information for computational efficiency. The mini-tracker
also keeps track of only the start and end positions of a track
for space efficiency. It is understandable that such a tracker
is by no means expected to perform well in a crowd. How-
ever, as demonstrated later, the tracking information enables
extraction of low-level features that can be turned into pow-
erful high-level features by attribute learning.

Occlusions occur frequently in typical urban environ-
ments with human activity. Losing an object due to oc-
clusion will not allow us to fully leverage the information
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from the tracker. We thus enhance the mini-tracker’s ca-
pability of maintaining a static object for a longer term,
especially under occlusion. This is achieved by enabling
interactions between the tracker and the FSM in the back-
ground model (see section 3 for details about FSM), which
understands when a static object is occluded. Specifically,
we place on hold an object marked as “occluded” by FSM,
and check how well it matches the original blob right after
it re-appears in the scene. The track of the object is re-
activated in the case of a good match being found. It should
be mentioned that identity switchings still occur on moving
people, but fortunately they are usually not harmful to the
system performance. Fig. 4 shows a few tracks in a crowded
scene. Note that each of the two bag tracks in Fig. 4a) and
4b) starts and ends almost at the same location, indicating
possibly high staticness. On the other hand, the long track
of the person in Fig. 4c) implies a strong movement of the
object, i.e low staticness.

6.2. Low-level Features

The tracker provides the start and end locations of an
object as well as its size at each location (bounding box),
denoted here by (Ls, Rs) and (Le, Re) respectively. For the
purpose of abandonment analysis, we further search for the
blob Ra that maximally overlaps with Re right before the
object gets tracked by the mini-tracker. For a truly static
object, this region is supposed to be a larger external mo-
tion either associated with the owner (Fig. 4a)) or a crowd
(Fig. 4b)) in the case of high-level activity.

Based on the tracking results, we extract the following
features that are more relevant to abandonment:

1. the time taken for an object to get static;
2. the distance between Re and Rs, i.e. ||Le − Ls||;
3. the total length of the track;
4. the aspect ratio of the static region;
5. the ratio of the area of the static region over that of the

start region, i.e. maxA(Rs)/A(Re), A(Re)/A(Rs))
where A(.) represents the area of a region;

6. the height of the static region over that of the start re-
gion, i.e. max(hRs

/hRe
, hRe

/hRs
);

7. repeat 4 and 5 for region Ra and Re if Ra exists.

The following features are more relevant to staticness
and mostly extracted from BGS,

1. the maximum and average movements of the object
since its being static;

2. the total residence time of the object in FSM
3. the percentages of frames above a good matching

threshold

Note that the FSM starts to track an object if it remains static
for more than 1 second in the scene. The level of matching
between the object Ri at frame i and its original region R0

are measured using area matching for efficiency, i.e. r =
Ri∩R0

Ri∪R0
. A matching is considered “good” if r ≥ 0.85 in

our system.

Figure 4: Examples of tracks for people and bags. solid box (red or
blue): abandoned object; yellow box: the start position of an object; cyan
box: the foreground object from which the object is split. It is expected
that the track of a true drop is extremely short (a & b) while the track of a
person is sufficiently long to indicate his movement (c).

For foreground analysis, we directly adopt the feature
set developed in [9], which has demonstrated superior per-
formance in separating foreground objects and background
artifacts related to lighting changes. These features include
several edge/texture-based measures that are invariant or ro-
bust to illumination changes.

The features described above are used as input for the at-
tribute ranker discussed in Section 5 to compute the ranking
scores of staticness, foregroundness and abandonment. As
seen from Fig. 3, bags are separated reasonably well from
other types of objects even though these features are learned
from data with large variations in terms of camera views and
human activity.

7. Alert Ranking

We design a second level ranker to sort alerts using the
attribute scores learnt previously in Section 5. In practice,
some types of false alarms are more important than oth-
ers to the end user. It is found that investigating irrele-
vant alerts caused by shadows and lighting artifacts leads
to wasteful utilization of a security officer’s time and effort.
While alerts raised by activities of people in the scene are
also less interesting, investigating such alerts sometimes can
be useful in detecting potentially harmful situations. More-
over, people alerts present more ambiguity to true drops
than other alerts (see Fig. 3). This suggests a relative or-
dering of alerts themselves based on both their relevance to
the end user and their separability, i.e. bags > people >
other alerts. We enforce such a relationship of ordering be-
tween alerts in a ranker. Due to its simplicity and efficiency,
we adopt the technique of [19] again for alert ranking by
treating relevance as one single attribute.
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Data #camera duration #drops Bag People Light Shadow Ghost Total
(hrs) (B+) (P−) (L−) (S− (G−)

PETS2006 1 0.15 6 5 0 1 0 0 6
AVSS-AB 1 0.01 3 3 1 3 0 0 7
i-LIDS 2 3.8 60 48 21 19 0 5 93
CITY 30 70.5 255 196 203 187 9 83 678
NATS 2 96 19 19 139 238 9 107 512

Table 2: evaluation data and alert distributions.

A binary SVM classifier with probabilistic output can
also be used for ranking. In our experiments, we compare
such a SVM-based approach to ours and demonstrate the
superiority of the latter.

8. Experimental Results

8.1. Evaluation Data and Annotations

We tested our approach on two public data sets com-
monly used in AOD evaluation: PETS2006 [3] and AVSS-
AB [1]. PETS2006 consists of 7 different scenarios cap-
tured by 4 cameras from different viewpoints. We chose
View 3, which has been extensively tested in previous work.
AVSS-AB includes 3 drops selected from i-LIDS [2], one of
the most challenging AOD data sets that was captured in
two subway scenarios at different levels of activity.

Apparently both PETS2006 and AVSS-AB are too small
for model training, so we included another 3 larger data
sets in our evaluation. The first one is S-iLIDS, a subset
of i-LIDS where we picked two video clips from each sce-
nario in the public training data 1. The data set has a to-
tal of 60 staged drops, and was selected in a way to en-
sure that the baseline approach used for comparison can de-
tect a reasonably good portion of the drops in the video.
The second is a challenging data set( CITY) used in [9],
containing 255 staged drops within over 70 hours of video
footage captured from 30 cameras in typical urban scenar-
ios such as streets and parks. It covers almost all kinds of
confounding issues known in video surveillance. For in-
stance, high activity, occlusions, low contrast, confusing
people and weather/lighting changes. To further validate the
effectiveness of our approach in challenging realistic envi-
ronments, we collected data for 2 days in a row from 2 cam-
eras monitoring busy streets with a lot of loitering people.
This data set, which we call NATS, only contains natural
drops such as bikes and trash cans.

We detected static objects using the approach in [8] on
all data sets (See Section 3), and manually classified all the
objects into 5 categories, i.e. bags, people, light artifacts,
shadows and ghosts (Table 2). This forms the ground truth
of our evaluation. Note that the number of bags may be
smaller than the number of drops in Table 2 due to detection
failures in [8].

1
Scene 1: ABTEA104a,ABTEA105a; Scene 2: ABTEA201a, ABTEA201b

8.2. Evaluation

Not many currently existing approaches are suitable for
our evaluation as most of them only focus on improving
detection accuracies. We use a recently developed ap-
proach [9] (FSM-AOD) as our baseline for comparison,
which has demonstrated good capability in handling light
artifacts on CITY by robust foreground analysis.

We developed three approaches based on the low-level
and high-level features and compared them against the base-
line. The first one is an alert ranker using high-level at-
tributes (HL-RANK) as described in Section 7, and the other
two are basically binary SVMs using low-level features
(LL-SVM) and high-level attributes (HL-SVM) respectively.
The two SVMs treat bags as positive labels and other alerts
as negative and are trained with a linear kernel. While pa-
rameter tuning generally leads to better performance, we set
all the model parameters to default in our evaluation.

Results on CITY and S-iLIDS. We first evaluated our
approaches on CITY and S-iLIDS in two ways, general test
and cross-data validation. The former is a traditional test,
i.e. splitting a data set into half for training and half for
testing. We conducted 10 runs for each model, and re-
ported the averages of the runs here. The latter further
validates the generalization ability of an approach to new
data, i.e. training on one data set and testing on another.
We show the results as ROCs in Fig. 5 and 6, respec-
tively. The independent axis is the False Positive Rate
(FPR=#FPs/#Total Alerts) as a function of the classifica-
tion or ranking score. The dependent axis is the True Pos-
itive Rate (TPR=#TPs/#Total TPs). We do not adopt the
widely used performance metrics such as Mean Average
Precision (MAP) and Normalized Discounted Cumulative
Gain (NDCG) here [14] because all our approaches rank
true positives well on these two data sets, leaving these met-
rics less effective in measuring ranking quality.

General Test. First of all, we observe that all the
proposed approaches outperform the baseline on the two
datasets (Fig. 5), suggesting both low-level and high-level
features enable better modeling capability. At the same re-
call, all our approaches show a significant reduction of false
alarms in comparison with the baseline.

HL-RANK achieves the best performance on S-iLIDS,
but is not as good as LL-SVM and HL-SVM on CITY. We
speculate that LL-SVM is overfitting on CITY as it is known
that high-dimensional features are more prune to overfitting.
We will confirm this later in the cross-data validation where
LL-SVM fails to yield consistently comparable performance
over other data sets.

Cross-data Validation. In this test, HL-RANK outper-
forms HL-SVM and LL-SVM on both data sets (Fig. 6).
Especially, when trained on the larger data set (CITY), HL-
RANK provides a big improvement over other approaches
on the smaller data set (S-iLIDS). In addition, while LL-
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Figure 5: TPR v.s. FPR on different approaches (general test)
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Figure 6: TPR v.s. FPR on different approaches (cross-data validation)

SVM built upon CITY gives the best results in the general
test above, apparently it has difficulty generalizing well to
new data.

Fig. 7 shows some examples of true and false positive
alerts detected by our system(HL-RANK). Our approach is
able to eliminate difficult people alerts such as those two
illustrated in the top of the figure. Also shown in the bottom
of the figure are two very challenging false positives, which
are mis-detected possibly due to failures of the tracker.

Results on PETS2006 and AVSS-AB. We cross-
validated the effectiveness of our approaches on
PETS2006 and AVSS-AB using the models directly
trained on CITY. In order to compare our results with those
reported in other work( [4]), we normalize the rank scores
from HL-RANK into [0, 1] and set the detection threshold
to 0.5.

As illustrated in Table 3, while all previous works have a
perfect recall of 1.0, most of them, due to lack of attention
to false alarms, suffer greatly from this issue even on video
data of just a few minutes in relatively simple scenarios.
As a comparison, all our proposed approaches yield very
few false alarms (high precision). HL-RANK continues
to demonstrate good generalization ability on PETS2006,
which has a different camera view from others. However
HL-RANK fails to detect one bag in PETS2006. A closer
examination of the results reveals that the missed bag is
long and skiny, resembling a person. LL-SVM produces the
worst recall performance again, confirming our speculation
of model overfitting.

Results on NATS. Natural drops vary from staged ones
in many aspects. It raises a question whether or not our
models trained on staged data are still effective in realistic
environments. We thus further evaluated our approaches us-

Methods PETS2006 AVSS-AB
P R P R

[24] 0.05 1.0 0.01 1.0
[10] 0.6 1.0 0.1 1.0
[15] 0.5 1.0 0.03 1.0
[13] 0.75 1.0 0.33 1.0
[21] 0.37 1.0 0.05 1.0

FSM-AOD [9] 0.83 0.83 0.5 1.0
LL-SVM 1.0 0.26 1.0 0.40
HL-SVM 1.0 0.42 1.0 0.90

HL-RANK 0.95 0.80 0.97 1.0

Table 3: Precision (P) and Recall (R) of different approaches on
PETS2006 and AVSS-AB.

Data MAP NDCG
LL-SVM HL-SVM HL-RANK LL-SVM HL-SVM HL-RANK

Cam #1 0.20 0.16 0.22 0.46 0.41 0.53
Cam #2 0.15 0.15 0.18 0.42 0.47 0.51

Table 4: Ranking quality comparisons on NATS using MAP and NDCG.

Data FSM-AOD [9] HL-RANK
#TPs #FPs #TPs #FPs

Cam #1 8 110 8 49
Cam #2 8 100 6 56

Table 5: #TPs and #FPs of different approaches on NATS.

ing challenging natural data. Note that NATS only includes
few natural drops and we do not expect that our approaches
can rank them as high as those staged drops, so it makes
sense in this case to evaluate the ranking quality of our ap-
proaches with MAP or NDCG [14]. For NDCG, we treat
all true drops as relevant (i.e. a relevance of 1) and all false
positives as irrelevant (i.e. a relevance of 0). As shown
in Table 5, HL-RANK consistently provides the best per-
formance on this data set, suggesting that a proper ranking
technique is promising for large-scale surveillance.

To better understand how much our system can benefit
from a ranking technique, we turned HL-RANK into a
classifier by thresholding the ranking scores by 0.5, as the
same as what has been done on PETS2006 and AVSS-AB.
In Table 5, HL-RANK demonstrates clear advantages over
the baseline by reducing half of the false alarms while still
achieving a comparable detection rate with the baseline.We
also notice that even with our best approach, the false alarm
rate on this data set is still quite high (20− 30/day/camera).
However this data set probably represents the most complex
scenario we could imagine in urban surveillance, including
rainy weather, high loitering activity and various day-night
light artifacts.

Computational Scalability. We benchmarked our sys-
tem based on HL-RANK on a 4-core VM with 2.93 GHz
CPU and 4G RAM. The system can process 12 i-LIDS
video files at 25 FPS by downsampling the video to 180 ×
144 (half of the original size). This is 3 times faster than
real time in a busy subway scenario.
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Figure 7: Example alerts provided by our system. The top row shows
correct detections while the bottom row illustrates false detections (a false
positive is highlighted with a red bounding box around the image while a
green box indicates a false negative). Shown in the brackets are the ranking
scores of the alerts. Also see Fig. 4 for explanation of the bounding boxes.

9. Conclusions

We propose a novel approach to abandoned object detec-
tion using the framework of relative attributes. Specifically,
we design three physically interpretable attributes (static-
ness, foregroundness and abandonment) to characterize dif-
ferent kinds of alerts raised by various objects in the scene.
We learn ranking functions for each of the attributes to rank
order the alerts based on their strengths on the correspond-
ing attributes. The attributes are used as input to an alert
prioritization method which performs a ranking using alert
importance. Our results suggest that ranking is a promising
technique for large-scale video surveillance.
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