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Abstract

Given a set of images which share an object from the
same semantic category, we would like to co-segment the
shared object. We define ‘good’ co-segments to be ones
which can be easily composed (like a puzzle) from large
pieces of other co-segments, yet are difficult to compose
from remaining image parts. These pieces must not only
match well but also be statistically significant (hard to com-
pose at random). This gives rise to co-segmentation of ob-
jects in very challenging scenarios with large variations in
appearance, shape and large amounts of clutter. We further
show how multiple images can collaborate and “score”
each others’ co-segments to improve the overall fidelity and
accuracy of the co-segmentation. Our co-segmentation can
be applied both to large image collections, as well as to very
few images (where there is too little data for unsupervised
learning). At the extreme, it can be applied even to a single
image, to extract its co-occurring objects. Our approach
obtains state-of-the-art results on benchmark datasets. We
further show very encouraging co-segmentation results on
the challenging PASCAL-VOC dataset.

1. Introduction
As the amount of visual and semantic information in the

web grows, there is an increasing need for methods to orga-
nize and mine it. These methods should automatically ex-
tract additional semantic information from the weak avail-
able information. For example, from the existing tagged
images on the web, one would like to obtain more accurate
information such as localization or even segmentation of the
main objects in each image.

In this work, we focus on the “object co-segmentation”
problem - given a set of images which share an object
from the same semantic category, we would like to co-
segment the common objects. Existing work in this field
has typically assumed a simple model common to the co-
objects such as common color [16, 13] or common distri-
bution of descriptors [19]. More sophisticated models for
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Figure 1. Co-Segmentations produced by our algorithm.

co-segmentation were proposed, such as a discriminative
model between the foreground and the background [11, 7]
or generative models of the co-objects [1, 22]. In [21], a
similarity measure between segments was learned for min-
ing the co-objects from an initial pool of object proposals.

However, observing the co-occuring objects in Fig. 1
(bike riders, ballet dancers, cats), we can see that there
seems to be no simple model common to the objects. The
co-objects within each set, may have different colors, poses
and shapes. Moreover, the objects may not be salient in
their image and may be surrounded by large amounts of dis-
tracting clutter. These kinds of dataset form a challenge to
existing methods.

In this paper we suggest an approach for co-
segmentation, which does not rely on any simple model
common to the co-objects. Instead, our approach is based
on the framework developed in [9, 5], which show that
when non-trivial (rare) image parts re-occur in another im-
age, they induce statistically meaningful affinities between
these images. However, unlike [9] which employs this idea
to induce affinities between entire images (for the purpose
of image clustering), we employ their approach to induce
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Figure 2. “Co-Segmentation by composition”. (a) The input images. (b) Co-occurring regions induce affinities between image parts

across images. (c) “Soup of Segments”. (d) The final co-segment.

affinities between parts of images, thus initializing our co-
segmentation process.

We expect “good” co-segments to be, on the one hand,
good image segments, and on the other hand, to be well
composed from other co-segments. That is, a co-segment
should share large non-trivial (statistically significant) re-
gions with other co-segments. Yet, it should not be easily
composable from image parts outside the co-segments.

Our approach is composed of three main building blocks:

I. Initialize the co-segmentation by inducing affinities
between image parts - Large shared regions are detected
across images, inducing affinities between those image
parts (see Fig. 2b). The larger and more rare those regions
are, the higher their induced affinity. The shared regions
provide a rough localization of the co-objcets in the images.
The region detection is done efficiently using a randomized
search and propagation algorithm, suggested by [9]. These
ideas are detailed in Sec. 3.

II. From co-occurring regions to co-segments - The
detected shared regions are usually not good image seg-
ments on their own. They are not confined to image edges,
and may cover only part of the co-objects. However,
they induce statistically significant affinities between parts
of co-objects. We use these affinities to score multiple
overlapping segment candidates (“soup of segments” – see
Fig. 2c). A segment which is highly overlapped by many
shared regions gets a high score. The segments and their
scores are then used to estimate co-segmentation likelihood
maps (See Fig. 3b). These ideas are detailed in Sec. 4.1.

III. Improving co-segmentation by “consensus scoring” -
We improve the the fidelity and accuracy of the co-
segmentation by propagating the co-segmentation likeli-
hood maps between the different images. This propagation
is done using the mapping between the co-occurring
(shared) regions across the different images. The co-
segmentation score is determined using the consensus
between each region and its co-occurring regions in other
images. This leads to improved co-segmentation likelihood

maps (see Fig. 3c). These ideas are detailed in Sec. 4.2.

Finally, we show results of applying our co-segmentation
both to large image collections, as well as to very few im-
ages (where there is too little data for unsupervised learn-
ing). We further show that it can even be applied to a sin-
gle image, to extract its co-occurring objects. Some such
examples are shown in Fig. 1. Our approach obtains state-
of-the-art results on benchmark datasets. We further show
very encouraging co-segmentation results on the challeng-
ing PASCAL-VOC dataset. These are detailed in Secs. 5, 6.

2. Closely Related Work
Co-segmentation methods which employ region corre-

spondence were also suggested by [18] and [12]. However,
their regions are image segments which are extracted from
each image separately ahead of time and then matched. In
contrast, our shared regions are usually not good image seg-
ments that can be extracted ahead of time. What makes
them “good” image regions is the fact that (i) they are rare
(have low chance of occurring at random), yet (ii) they co-
occur (are shared) by two images. When such a rare region
co-occurs, it is unlikely to be accidental, thus inducing high
meaningful affinity between those image parts.

Recently, [17] suggested to combine visual saliency and
dense pixel correspondences across images for the pur-
pose of co-segmentation. We also employ dense correspon-
dences for detecting our shared regions. However, we use
the statistical significance of the shared regions to initialize
the co-segmentation and not visual saliency like [17] does.
This enables us to perform co-segmentation, even if many
of the co-objects are are not salient within their images.

[14] suggested to incorporate into co-segmentation
generic knowledge transfer from datasets with human-
annotated segmentations of objects. We also transfer
knowledge from “soft” segmentation maps of other images
using our “consensus scoring”. However, we do not rely on
any external human-annotated dataset, but use only the im-
ages we wish to co-segment. Despite this, we are able to
obtain results comparable to [14], as will be shown Sec. 6.
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3. Inducing Affinities between Image Parts

Our framework for inducing affinities between image
parts is based on [5] and [9]. To make the paper self-
contained, we briefly review their main ideas.

3.1. “Similarity by Composition”

In the framework of [5], one image is inferred as being
similar to another image if it can be easily composed (like a
puzzle) from a few large pieces of the second image. These
regions must both match well, as well as be statistically sig-
nificant (hard to compose at random).

The co-occurring regions induce affinities between im-
age parts across different images. We use the definition of
[5] for computing the affinity of a co-occurring region R
between two images I1, I2:

Aff(R|I1, I2) = log
p(R|I1, I2)
p(R|H0)

(1)

where p(R|I1, I2) measures the degree of similarity of the
regions found in these two images and p(R|H0) measures
the chance of the region to occur at random (be generated
by a random process H0). If a region matches well, but is
trivial, then its likelihood ratio will be low (inducing a low
affinity). On the other hand, if a region is non-trivial, yet
has a good match in another image, its likelihood ratio will
be high (inducing a high affinity).

The following approximations were made by [9] in
order to get a simple expression for Eq(1):

1. Represent the region R ⊂ I1 by densely sampled de-
scriptors {di}. Assume {di} are i.i.d. The likelihood of
each descriptor di in the region R ⊂ I1 to be generated
from I2 is approximated by:

p(di|I1, I2) = exp
(
− |Δdi(I1, I2)|2 /2σ2

)
(2)

where Δdi(I1, I2) is the matching error of di (i.e, the l2
distance between di and its corresponding descriptor in its
region match in the other image I2).

2. Approximate the random process H0 by generating a de-

scriptor codebook D̂ (with a few hundred codewords). This
codebook is generated by applying k-means clustering to all
of the descriptors extracted from the image collection. Fre-

quent descriptors will be represented well in D̂ (have low
error relative to their nearest codeword). Rare descriptors,

on the other hand, will be represented poorly in D̂ (have
high error relative to their nearest codeword).Thus, the like-
lihood of each descriptor di in the region R ⊂ I1 to be
generated at random (using H0) is approximated by:

p(di|I1, I2) = exp
(
− |Δdi(H0)|2 /2σ2

)
(3)

where Δdi(H0) is the error of descriptor di with respect to
the codebook (i.e, the l2 distance between di and its nearest

neighbor descriptor in the codebook D̂)1.

This yields the following expression for Aff(R|I1, I2):

Aff(R|I1, I2) =
∑
di∈R

|Δdi(H0)|2 − |Δdi(I1, I2)|2 (4)

Namely, the affinity induced by a co-occurring region
is equal to the difference between the total descriptor er-
ror with respect to a codebook and the total matching error
between the matched regions in the two images. A high
affinity will be obtained for image parts which are both rare
(high codebook errors) and match well across images (low
matching errors). These image parts tend to coincide with
unique and informative parts of the co-occurring objects,
yielding a good seed to the co-segments.

The notion of composition is illustrated in Fig 2. Bal-
let dancer #1 appears in a different pose than any of the
two other Ballet dancers. However, Ballet dancer #1 can
compose its arm gesture (red region) from Ballet dancer
#2 and most of its leg gesture (yellow region) from Bal-
let dancer #3. Note that these regions are complex, thus
have a low chance of appearing at random. Therefore, the
fact that these regions found good matches in other images
can not be accidental, providing high evidence to the high
affinity between those regions.

3.2. Detecting Co-occurring Regions between Images
Detecting large non-trivial co-occurring regions between

images is in principle a very hard problem (already between
a pair of images, let alone in a large image collection).
Moreover, the regions may be of arbitrary size and shape.
Therefore, [9] suggested a randomized search algorithm
which guarantees with very high probability the efficient de-
tection of large shared regions. Regions are represented by
densely sampled descriptors (e.g., HOG descriptors).

The region matching algorithm of [9], which is an ex-
tension of “PatchMatch” [3], is based on the following idea.
Each descriptor in each image, randomly samples several
descriptors in another image and chooses the one with the
best match. It then tries to propagate its match (with appro-
priate shift) to its neighboring descriptors. The neighboring
descriptors will change their current match only if the new
suggested match is better. Therefore, it is enough for one
descriptor in a recurring region to find its correct match-
ing descriptor in another image, and it can then propagate
the correct matches to all the other descriptors in that co-
occurring region.

Moreover, [9] quantified the number of random samples
per descriptor, which are required to guarantee the detec-

1Note that our algorithm is not sensitive to the exact vocabulary size.

Very few words (k ∼ 100) suffice to represent well frequent descriptors

(smooth patches, vertical/horizontal edges, etc.). Due to the heavy-tail

distribution of natural image descriptors, adding more words would only

refine the frequent descriptor representatives, and not add the rare ones [6].

Thus, rare descriptors will have a high error w.r.t the codebook regardless

of its size.
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tion of a co-occurring region between two images with high
probability. For example, using 40 random samples per de-
scriptor guarantees the detection of recurring regions of at
least 10% of the image size, with very high probability -
above 98%. Therefore, large co-occurring regions between
two images can be detected at linear time.

If shared regions are searched between every pair of im-
ages, then the complexity will grow quadratically with the
number of images, making it prohibitive for large image
collections. Fortunately, [9] showed that collaboration be-
tween images can resolve this problem, maintaining linear
complexity in the size of the collection. This is done by al-
lowing descriptors to randomly sample from the entire im-
age collection, while images “suggest” to each other where
to sample and search in the next iteration. This induces a
guided random walk with high probability of finding the
large shared regions between the images in the collection,
at linear time. For more details, see [9].

Incorporating Scale Invariance: In order to handle scale
invariance, we generate from each image a cascade of multi-
scale images (with scales 1, 0.8, . . . , 0.85). The region de-
tection algorithm is applied to the entire multi-scale collec-
tion of images, allowing shared regions to be detected also
between co-objects of different scales.

4. From Co-occurring Regions to Co-segments
The detected non-trivial co-occurring regions induce

meaningful affinities between image parts across different
images. However, they cover only portions of the co-
segments and may cross their boundaries (See Fig 2.b). We
use the regions and their affinities to seed the co-segments
and estimate for each pixel its ‘co-segment likelihood’.

4.1. Initializing the Co-segments

Although the detected shared regions do not form ‘good’
segments on their own, they provide a rough estimation of
the location of the co-objects within the image. We use a
“soup of segments” (i.e. multiple overlapping segment can-
didates) to refine and better localize the co-segments. This
is done as follows:

1. For each image I , extract a “soup of segments” {Sl} us-
ing the hierarchal segmentation of [8]. This yields several
hundred segments per image, with sizes from small to large.
Examples of such segments can be found in Fig 2.c.

2. Compute the co-segment score for each segment Sl by
its “affinity density”, induced by the shared regions:

Score(Sl) =
1

|Sl|
∑
m

Aff(Rm|I, Iχ(m)) (5)

where {Rm} are shared regions detected between image I

and other images, with high intersection with segment Sl

(at least 75% intersection). χ(m) is the index of the im-

Figure 3. The co-segmentation likelihood maps. (a) The input

image (b) The initial estimation (Sec. 4.1) (c) The final estimation

after 5 iterations of “consensus scoring” (Sec. 4.2).

age in which Rm detected its region match. Summing the
contributions of all of these regions and normalizing by the
segment size |Sl| results in the “affinity density” of the seg-
ment. This allows comparing segments of different sizes.

3. For each pixel p find the K (we use 10) segments {Sk}
with the highest co-segment scores {Score(Sk)} which
contain that pixel. Estimate the co-segmentation likelihood
per pixel CSL(p) by averaging the co-segment scores of its
K best segments:

CSL(p) =
1

K

∑
k

Score(Sk) (6)

4. Normalize the co-segmentation likelihood map of the
entire image to be in the range between 0 to 1.

4.2. “Consensus Scoring”

In Sec. 4.1, we have shown how to estimate co-
segmentation likelihood maps, induced by detecting statis-
tically significant co-occurring regions for each image in
the collection, combined with information about segment
boundaries extracted from a “soup of segments”. We next
show how images can collaborate and share information
with each other regrading their co-segmentation likelihood
maps to improve the overall quality of the co-segmentation.
This is done by allowing images to “score” each other’s co-
segments. The co-segmentation score is determined using
the consensus between each region and all its detected co-
occurring regions in other images (according to their co-
segmentation likelihood maps). We regard this as using the
“wisdom of crowds of images” for increasing the fidelity
and accuracy of the co-segmentation.
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Figure 4. Co-Segmentations applied to a single image: Repetitive structures in a single image are detected and co-segmented. The

co-segments within each image may have different appearance and scale and may be surrounded by large amounts of clutter. We compare

our results to two baselines: (i) Grab-cut initialized with a central window of size 25% of the image (ii) Saliency map of [10]

More precisely, the likelihood of each pixel to be a part
of a co-segment increases/decreases according to the con-
sensus belief of (i) its spatially surrounding pixels within
the same image and (ii) its corresponding pixels in other
images, determined by the detected shared regions 2.

Let p ∈ I be a pixel. Let p1, . . . , pM ∈
Neighborhood(p) (we use a neighborhood of radius 5 pix-
els). Let q1, . . . , qM ′ be corresponding pixels to p in all
other images induced by the detected shared regions. Then
we update the co-segmentation likelihood of each pixel
CSL(p) at iteration (t+ 1) as follows:

logCSL(t+1)(p) =

1
2 · 1

M ·
M∑
i=1

logCSL(t)(pi) +
1
2 · 1

M ′ ·
M ′∑
j=1

logCSL(t)(qj)

(7)

We initialize the co-segmentation likelihood of each im-
age (at t = 0) using the estimation made in Sec. 4.1 and
then perform the re-scoring iteratively (we use 5 iterations).
By performing several such scoring phases, we allow re-
gions which are not directly connected to each other to
also collaborate and ‘share’ information regarding the co-
segmentation likelihood.

Examples of the estimated co-segmentation likelihood
before and after performing the re-scoring iterations can be
found in Fig. 3. Note that in the initial co-segmentation like-
lihood maps there may still remain clutter with high values.
Using several iterations of “consensus scoring” suppresses
the clutter and reveals the ‘true’ co-segments. Our experi-
ments show that adding “consensus scoring” yields an im-
provement of 4%− 7% in the co-segmentation results.

Obtaining the final co-segments: The above process re-
sults in a continuous map for each image (with values be-
tween 0 and 1). To obtain the final co-segments (i.e., binary
co-segmentation maps), we use Grab-cut [15], where the
unary terms (background/foreground likelihood) are initial-

2Recall that when shared regions are detected, each pixel in one region

is mapped to a pixel in the other region.

ized using our continuous co-segmentation likelihood maps.
We use the modified Grab-cut implementation of [14]. Re-
sults are shown in Fig. 5 and Tables. 1,2, and are explained
and analyzed in Sec. 6

Computational Complexity: Our algorithm is linear in the
number of images we wish to co-segment, due to the lin-
earity of all its components. This includes linearity of our
co-occurring region detection algorithm among all images
(Sec. 3.2), due to its randomized nature.

5. “Co-segmentation” of a Single Image
To show the power of our approach, we start with an

extreme case – co-segmentation of a single image. Co-
segmentation methods that apply to very few (e.g., 2) im-
ages, usually assume high similarity in appearance between
the co-objects (e.g., same colors). Handling large variability
in appearance between the co-segments usually requires a
large number of images, in order to “discover” shared prop-
erties of the co-objects (e.g., using unsupervised learning).
Thus, a single image with few non-trivial co-occurrences of
an object (such as the examples in Fig. 4), will pose a chal-
lenge for existing co-segmentation methods. We next show
that our framework can handle even those extreme cases.

When a complex region recurs in the image, and is un-
likely to recur at random (i.e., is statistically significant),
it provides high evidence that those two image parts should
be grouped together (segmented jointly). This is true even if
this region never recurs elsewhere again. The co-occurring
regions are detected by applying the randomized search and
propagation algorithm internally on the image itself. To pre-
vent a trivial composition of a region from itself, we restrict
each descriptor to sample descriptors only outside the im-
mediate neighborhood around the descriptor (typically of
radius 1

16 of the image size). The co-segmentation likeli-
hood is estimated the same way as described in Sec. 4 and
so is the final extraction of the co-segments. However, here
we use “consensus” of co-occurring regions within the same
image and not across different images as before. To cope
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Figure 5. Co-segmentations produced by our algorithm on MSRC (top), iCoseg (middle) and PASCAL-VOC (bottom). In each box,

we show co-segmentation results for a few images from a certain class (all the images in the class were used for the co-segmentation).

with scale difference of the co-segments, we search for co-
occurring regions across different scales of the same image.

Examples of co-segmentation produced by our algorithm
on single images with recurring objects (but with non-trivial
recurrences) can be found in Fig. 4. The descriptors used
were HOG descriptors. Note that such image segmenta-
tion requires no prior knowledge nor any training data be-
yond the individual segmented image. Moreover, the co-
objects segmented in a single image need not repeat in
their entirety, and may vary in appearance in their dif-
ferent instances within the image. One co-object can be
composed using regions extracted from several other co-
segments (possibly at different image scales), thus gener-
ating a new configuration.

In a way, this is very similar to the definition of [2],
which defines a “good image segment” as one which is easy
to compose (like a puzzle) from other regions of the seg-
ment, yet is hard to compose from the rest of the image
outside the segment. However, unlike [2], we do not re-
quire any external user-assisted marking on the desired ob-
ject to be segmented. Moreover, we do not require that the
entire co-segment will be composed of other parts of the
co-segment, only sufficient portions of it.

Regular image segmentation algorithms will produce
more fragmented segmentations of these images. Apply-
ing Grab-cut, using an initialization with a central window
of size 25% of the image, fails to produce meaningful co-
segmentations on such images (see Fig. 4 – second column
from the right). Similarly, saliency based segmentation will
not suffice either, since the co-occuring object is not nec-
essarily salient in the image, and there can be other salient

image parts (e.g. the red tree in Fig. 4d – the saliency maps
were generated using [10]).

We, on the other hand, are able to produce good co-
segmentations of these images by employing the reoccur-
rence of large non-trivial regions within each image. As can
be seen in Fig. 4, we are able to co-segment the president
faces in Mount Rushmore (although their color is similar to
the the rest of the mountain) and the women on the Pink-
Floyd wallpaper (despite their different appearance). More-
over, our co-segments can be disconnected segments (such
as the bikes and horse riders), and may have difference in
scale (such as the child and his parents in Fig. 4e).

6. Experimental Results
We empirically tested our algorithm on various datasets,

including evaluation datasets (MSRC, iCoseg), on which
we compared results to others, as well as more difficult
datasets (PASCAL), on which to-date no results were re-
ported for unsupervised co-segmentation.

6.1. Experiments on Benchmark Datasets
We used existing benchmark evaluation datasets

(MSRC, iCoseg) to compare results against [11, 21, 13, 14,
18, 17] using their experimental setting and measures - see
Table 1. The co-segmentation is performed on each class
of each dataset separately and we report the average perfor-
mance of all classes in each dataset. There are two common
measures for co-segmentation performance: (a) “average
Precision” (P) - the percentage of correctly segmented pix-
els (of both the foreground and background pixels) (b) “Jac-
card index” (J) - the intersection divided by the union of the
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iCoseg Ours [14] [17] Joint
Grab-Cut

Grab-Cut
[15]

P 92.8% 91.4% 89.8% 88.2% 82.4%

J 0.73 - 0.69 - -

iCoseg subset Ours [17] [21] [18] [11]
P 94.4% 89.6% 85.4% 83.9% 78.9%

J 0.79 0.68 0.62 - -

MSRC Ours [17] [11] [13]
P 89.2% 87.7% 73.6% 54.6%

J 0.73 0.68 0.5 0.37

MSRC subset Ours [17] [21]
P 92% 92.2% 90.2%

J 0.77 0.75 0.71

Table 1. Comparison to previous co-segmentation methods on
benchmark datasets. P and J denote the average Precision and

average Jaccard index, respectively.

PASCAL Ours Grab-Cut
[15]

best
proposal

of [8]

[11]

All P 84% 76% 60.4% 59.5%

Subset P 86.8% 78.9% 63.5% 60.8%

All J 0.46 0.38 0.3 0.23

Subset J 0.53 0.45 0.35 0.25

Table 2. Performance evaluation of co-segmentation on
PASCAL-VOC 2010. P and J denote the average Precision and

average Jaccard index, respectively.

co-segmentation result with the ground truth segmentation.
The Jaccard index reflects more reliably the true quality of
the co-segmentation. We report both measures wherever the
information was available.

The MSRC dataset [20] contains 420 images from 14
classes. The co-segments in each class have color, pose and
scale differences, yet tend to be quite salient in the image
with few clutter. The iCoseg dataset [4] consists of 643
images from 38 classes. The co-segments in each class typ-
ically have similar color properties, but may occur at differ-
ent poses and scales. Visual examples of co-segmentation
results on MSRC and iCoseg can be found in Fig. 5.

For the MSRC dataset, we used dense HOG (Histogram
of Oriented Gradients) descriptors in order to be invariant
to the large difference in appearance of each class. For
the iCoseg dataset we added color descriptors in addition
to the HOG descriptors (we used densely sampled descrip-
tors, which are concatenation of HOG and LAB color his-
tograms). The color descriptors were added here to leverage
on the color similarity of the co-segments within each class,
which is a characteristic of the iCoseg dataset. We built a
descriptor dictionary for each class separately and used it to
compute the error of each descriptor with respect to the dic-
tionary, which is required in the affinity calculation (Eq(4)).

We obtain state-of-the-art results on the MSRC dataset,

obtaining 50% and 100% improvement in Jaccard index
over [11] and [13], and 7% improvement over [17]. We
also compared to [17, 21] on the subset of MSRC that they
used (7 classes with 10 images per class). Our results in
Jaccard index are slightly better than [17], and 9% better
than [21].

In the iCoseg dataset, in order to obtain the final binary
co-segments from our continuous likelihood maps, we fol-
lowed the ‘Joint-Grab-Cut’ suggestion of [14]. Namely,
instead of applying Grab-cut to each image separately, it is
applied jointly to all the images (initializing and updating
the color models to all images at once). This makes sense
since the co-segments in each class of iCoseg are known to
have similar color properties. We initialize the ‘Joint-Grab-
Cut’ with our continuous co-segmentation likelihood maps.

We obtain state-of-the-art results also on the iCoseg
dataset, exceeding [17, 21, 18, 11] on the subset they used
(16 classes), by a significant gap. We obtain an improve-
ment of 16% and 27% in Jaccard index over the previ-
ous state-of-the-arts [17] and [21]. Our results on the full
iCoseg dataset are much better than applying a baseline
of Grab-cut or Joint-Grab-Cut, when these are initialized
with a central window of size 25% of the image. More-
over, our results on the full dataset are better than [17] and
even slightly better than [14], even though [14] relied on
knowledge transfer from an external dataset with human-
annotated segmentations of objects, whereas we do not.
This shows that there exists enough internal information for
co-segmentation within the collection of images alone.

6.2. Experiments on the PASCAL-VOC Dataset
The PASCAL dataset is a very challenging dataset for

object co-segmentation, due to the large variability in object
scale, appearance, and due to the large amount of distracting
background clutter. Since the co-objects are so different,
simple models of co-objects will not suffice here. More-
over, initializing the co-segmentation using saliency maps
will also be problematic, since the co-segments are not nec-
essarily salient in the image, as there are many other dis-
tracting objects in the image. To the best of our knowledge,
to-date, no results were reported on PASCAL for purely
unsupervised co-segmentation.

We made a first such attempt, restricting ourselves to im-
ages from PASCAL-VOC 2010, in which at least one of the
co-objects is not labeled as ‘difficult’ or ‘truncated’, and the
total size of the co-object is at least 1% of the image size.
We remain with 1037 images from the 20 PASCAL classes.
We split the classes into two subsets - the first consists of an-
imal and vehicle classes (total of 13 classes) and the second
consists of the remaining classes such as person, table and
potted plant (total of 7 classes). The second subset seems
much harder (as indeed verified in our experiments) since
there is a lot of co-occurring clutter and objects in those
classes in addition to the main co-occurring object. This
makes the co-segmentation problem much more ill-posed.
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For the PASCAL dataset, we used dense HOG descrip-
tors in order to be invariant to the large difference in appear-
ance of each class. On the first PASCAL subset, we obtain
a mean segmentation Precision of 86.8%. This seems quite
good compared to results reported on the easier MSRC and
iCoseg datsets. However, observing the Jaccard index of
our co-segmentation, we can see that there is still place for
improvement: our algorithm obtains performance of 0.53,
whereas on MSRC and iCoseg we obtained performance of
0.73. When adding the remaining 7 classes, the segmenta-
tion Precision drops to 84% and Jaccard index to 0.46. The
reason for this large gap between the Precision and Jaccard
index measures is that Precision gives equal contribution to
foreground and background, whereas the Jaccard index con-
siders only the foreground. In PASCAL, the background is
> 90% of the image size and the foreground is < 10%.

Examples of some successful co-segmentation results on
PASCAL can be found in Fig 5. Notice the large amount of
clutter and distracting objects which exist in those images -
yet our algorithm yields very good results. Moreover, even
for difficult classes like Potted-Plant or Chair, our algorithm
is sometimes able to produce very appealing results.

We further generated three baseline comparisons on this
PASCAL dataset - see Table 2. The first was generated
using the co-segmentation method of [11]. The two other
were methods which segment each image separately: (a)
Grab-Cut initialized with a central window of size 25% of
the image. (b) [8]’s best object proposal. The best results
among all baselines were obtained, perhaps surprisingly, by
Grab-Cut - mean segmentation Precision of 76% (Jaccard
index of 0.38). This can be explained by the fact that even
in a challenging dataset like PASCAL, the main object is
still located at the image center at quite many images. Our
results were superior to all the baseline methods.

Failure Cases: In our failure cases, the co-object is usu-
ally not missed, but distracting background is added to it.
This typically occurs when the background contains ob-
jects which recur in multiple images (other than the co-
object). For example, in the PASCAL ‘Chair’ class there
are lots of tables, so these are also co-segmented along
with the chairs. Examples of failure cases can be found
in our project website www.wisdom.weizmann.ac.il/

˜vision/CoSegmentationByComposition.html.

7. Conclusion

In this paper we suggest a new approach to object co-
segmentation. We define ‘good’ co-segments to be ones
which can be easily composed from large pieces of other
co-segments, yet are difficult to compose from the remain-
ing image parts. This enables co-segmentation of very chal-
lenging scenarios, including co-segmentation of individual
images containing multiple non-trivial reoccurrences of an
object, as well as challenging datasets like PASCAL.
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