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Abstract

We propose a fundamentally novel approach to real-time
visual odometry for a monocular camera. It allows to ben-
efit from the simplicity and accuracy of dense tracking –
which does not depend on visual features – while running
in real-time on a CPU. The key idea is to continuously esti-
mate a semi-dense inverse depth map for the current frame,
which in turn is used to track the motion of the camera using
dense image alignment. More specifically, we estimate the
depth of all pixels which have a non-negligible image gradi-
ent. Each estimate is represented as a Gaussian probability
distribution over the inverse depth. We propagate this in-
formation over time, and update it with new measurements
as new images arrive. In terms of tracking accuracy and
computational speed, the proposed method compares favor-
ably to both state-of-the-art dense and feature-based visual
odometry and SLAM algorithms. As our method runs in
real-time on a CPU, it is of large practical value for robotics
and augmented reality applications.

1. Towards Dense Monocular Visual Odometry
Tracking a hand-held camera and recovering the three-

dimensional structure of the environment in real-time is

among the most prominent challenges in computer vision.

In the last years, dense approaches to these challenges have

become increasingly popular: Instead of operating solely

on visual feature positions, they reconstruct and track on

the whole image using a surface-based map and thereby

are fundamentally different from feature-based approaches.

Yet, these methods are to date either not real-time capable

on standard CPUs [11, 15, 17] or require direct depth mea-

surements from the sensor [7], making them unsuitable for

many practical applications.

In this paper, we propose a novel semi-dense visual

odometry approach for a monocular camera, which com-

bines the accuracy and robustness of dense approaches

with the efficiency of feature-based methods. Further, it

computes highly accurate semi-dense depth maps from the

monocular images, providing rich information about the 3D
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Figure 1. Semi-Dense Monocular Visual Odometry: Our ap-

proach works on a semi-dense inverse depth map and combines the

accuracy and robustness of dense visual SLAM methods with the

efficiency of feature-based techniques. Left: video frame, Right:

color-coded semi-dense depth map, which consists of depth esti-

mates in all image regions with sufficient structure.

structure of the environment. We use the term visual odom-

etry as supposed to SLAM, as – for simplicity – we deliber-

ately maintain only information about the currently visible

scene, instead of building a global world-model.

1.1. Related Work

Feature-based monocular SLAM. In all feature-based

methods (such as [4, 8]), tracking and mapping consists of

two separate steps: First, discrete feature observations (i.e.,

their locations in the image) are extracted and matched to

each other. Second, the camera and the full feature poses

are calculated from a set of such observations – disregard-

ing the images themselves. While this preliminary abstrac-

tion step greatly reduces the complexity of the overall prob-

lem and allows it to be tackled in real time, it inherently

comes with two significant drawbacks: First, only image

information conforming to the respective feature type and

parametrization – typically image corners and blobs [6] or

line segments [9] – is utilized. Second, features have to

be matched to each other, which often requires the costly

computation of scale- and rotation-invariant descriptors and

robust outlier estimation methods like RANSAC.

Dense monocular SLAM. To overcome these limitations

and to better exploit the available image information, dense

monocular SLAM methods [11, 17] have recently been pro-

posed. The fundamental difference to keypoint-based ap-

proaches is that these methods directly work on the images
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instead of a set of extracted features, for both mapping and

tracking: The world is modeled as dense surface while in

turn new frames are tracked using whole-image alignment.

This concept removes the need for discrete features, and

allows to exploit all information present in the image, in-

creasing tracking accuracy and robustness. To date how-

ever, doing this in real-time is only possible using modern,

powerful GPU processors.

Similar methods are broadly used in combination with

RGB-D cameras [7], which directly measure the depth of

each pixel, or stereo camera rigs [3] – greatly reducing the

complexity of the problem.

Dense multi-view stereo. Significant prior work exists on

multi-view dense reconstruction, both in a real-time setting

[13, 11, 15], as well as off-line [5, 14]. In particular for off-

line reconstruction, there is a long history of using different

baselines to steer the stereo-inherent trade-off between ac-

curacy and precision [12]. Most similar to our approach is

the early work of Matthies et al., who proposed probabilis-

tic depth map fusion and propagation for image sequences

[10], however only for structure from motion, i.e., not cou-

pled with subsequent dense tracking.

1.2. Contributions

In this paper, we propose a novel semi-dense approach to

monocular visual odometry, which does not require feature

points. The key concepts are

• a probabilistic depth map representation,

• tracking based on whole-image alignment,

• the reduction on image-regions which carry informa-

tion (semi-dense), and

• the full incorporation of stereo measurement uncer-

tainty.

To the best of our knowledge, this is the first featureless,

real-time monocular visual odometry approach, which runs

in real-time on a CPU.

1.3. Method Outline

Our approach is partially motivated by the basic princi-

ple that for most real-time applications, video information

is abundant and cheap to come by. Therefore, the computa-

tional budget should be spent such that the expected infor-

mation gain is maximized. Instead of reducing the images

to a sparse set of feature observations however, our method

continuously estimates a semi-dense inverse depth map for

the current frame, i.e., a dense depth map covering all image

regions with non-negligible gradient (see Fig. 2). It is com-

prised of one inverse depth hypothesis per pixel modeled

by a Gaussian probability distribution. This representation

still allows to use whole-image alignment [7] to track new

far

close
original image semi-dense depth map (ours)

keypoint depth map [8] dense depth map [11] RGB-D camera [16]

Figure 2. Semi-Dense Approach: Our approach reconstructs and

tracks on a semi-dense inverse depth map, which is dense in all

image regions carrying information (top-right). For comparison,

the bottom row shows the respective result from a keypoint-based

approach, a fully dense approach and the ground truth from an

RGB-D camera.

frames, while at the same time greatly reducing computa-

tional complexity compared to volumetric methods. The

estimated depth map is propagated from frame to frame,

and updated with variable-baseline stereo comparisons. We

explicitly use prior knowledge about a pixel’s depth to se-

lect a suitable reference frame on a per-pixel basis, and to

limit the disparity search range.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the semi-dense mapping part of the pro-

posed method, including the derivation of the observation

accuracy as well as the probabilistic data fusion, propaga-

tion and regularization steps. Section 3 describes how new

frames are tracked using whole-image alignment, and Sec. 4

summarizes the complete visual odometry method. A qual-

itative as well as a quantitative evaluation is presented in

Sec. 5. We then give a brief conclusion in Sec. 6.

2. Semi-Dense Depth Map Estimation
One of the key ideas proposed in this paper is to esti-

mate a semi-dense inverse depth map for the current cam-

era image, which in turn can be used for estimating the

camera pose of the next frame. This depth map is continu-

ously propagated from frame to frame, and refined with new

stereo depth measurements, which are obtained by perform-

ing per-pixel, adaptive-baseline stereo comparisons. This

allows us to accurately estimate the depth both of close-by

and far-away image regions. In contrast to previous work

that accumulates the photometric cost over a sequence of

several frames [11, 15], we keep exactly one inverse depth

hypothesis per pixel that we represent as Gaussian proba-

bility distribution.

This section is comprised of three main parts: Sec-
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Figure 3. Variable Baseline Stereo: Reference image (left), three

stereo images at different baselines (right), and the respective

matching cost functions. While a small baseline (black) gives a

unique, but imprecise minimum, a large baseline (red) allows for

a very precise estimate, but has many false minima.

tion 2.1 describes the stereo method used to extract new

depth measurements from previous frames, and how they

are incorporated into the prior depth map. In Sec. 2.2, we

describe how the depth map is propagated from frame to

frame. In Sec. 2.3, we detail how we partially regularize

the obtained depth map in each iteration, and how outliers

are handled. Throughout this section, d denotes the inverse
depth of a pixel.

2.1. Stereo-Based Depth Map Update

It is well known [12] that for stereo, there is a trade-off

between precision and accuracy (see Fig. 3). While many

multiple-baseline stereo approaches resolve this by accu-

mulating the respective cost functions over many frames

[5, 13], we propose a probabilistic approach which ex-

plicitly takes advantage of the fact that in a video, small-

baseline frames are available before large-baseline frames.

The full depth map update (performed once for each new

frame) consists of the following steps: First, a subset of pix-

els is selected for which the accuracy of a disparity search

is sufficiently large. For this we use three intuitive and

very efficiently computable criteria, which will be derived

in Sec. 2.1.3. For each selected pixel, we then individu-

ally select a suitable reference frame, and perform a one-

dimensional disparity search. Propagated prior knowledge

is used to reduce the disparity search range when possible,

decreasing computational cost and eliminating false min-

ima. The obtained inverse depth estimate is then fused into

the depth map.

2.1.1 Reference Frame Selection

Ideally, the reference frame is chosen such that it max-

imizes the stereo accuracy, while keeping the disparity

search range as well as the observation angle sufficiently

current frame pixel’s “age”

-4.8 s -3.9 s -3.1 s -2.2 s

-1.2 s -0.8 s -0.5 s -0.4 s

Figure 4. Adaptive Baseline Selection: For each pixel in the

new frame (top left), a different stereo-reference frame is selected,

based on how long the pixel was visible (top right: the more yel-

low, the older the pixel.). Some of the reference frames are dis-

played below, the red regions were used for stereo comparisons.

small. As the stereo accuracy depends on many factors and

because this selection is done for each pixel independently,

we employ the following heuristic: We use the oldest frame

the pixel was observed in, where the disparity search range

and the observation angle do not exceed a certain threshold

(see Fig. 4). If a disparity search is unsuccessful (i.e., no

good match is found), the pixel’s “age” is increased, such

that subsequent disparity searches use newer frames where

the pixel is likely to be still visible.

2.1.2 Stereo Matching Method

We perform an exhaustive search for the pixel’s intensity

along the epipolar line in the selected reference frame, and

then perform a sub-pixel accurate localization of the match-

ing disparity. If a prior inverse depth hypothesis is avail-

able, the search interval is limited by d± 2σd, where d and

σd denote the mean and standard deviation of the prior hy-

pothesis. Otherwise, the full disparity range is searched.

In our implementation, we use the SSD error over five

equidistant points on the epipolar line: While this signifi-

cantly increases robustness in high-frequent image regions,

it does not change the purely one-dimensional nature of this

search. Furthermore, it is computationally efficient, as 4 out

of 5 interpolated image values can be re-used for each SSD

evaluation.

2.1.3 Uncertainty Estimation

In this section, we use uncertainty propagation to derive an

expression for the error variance σ2
d on the inverse depth d.
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In general this can be done by expressing the optimal in-

verse depth d∗ as a function of the noisy inputs – here we

consider the images I0, I1 themselves, their relative orien-

tation ξ and the camera calibration in terms of a projection

function π1

d∗ = d(I0, I1, ξ, π). (1)

The error-variance of d∗ is then given by

σ2
d = JdΣJ

T
d , (2)

where Jd is the Jacobian of d, and Σ the covariance of the

input-error. For more details on covariance propagation, in-

cluding the derivation of this formula, we refer to [2]. For

simplicity, the following analysis is performed for patch-

free stereo, i.e., we consider only a point-wise search for a

single intensity value along the epipolar line.

For this analysis, we split the computation into three

steps: First, the epipolar line in the reference frame is com-

puted. Second, the best matching position λ∗ ∈ R along it

(i.e., the disparity) is determined. Third, the inverse depth

d∗ is computed from the disparity λ∗. The first two steps

involve two independent error sources: the geometric error,

which originates from noise on ξ and π and affects the first

step, and the photometric error, which originates from noise

in the images I0, I1 and affects the second step. The third

step scales these errors by a factor, which depends on the

baseline.

Geometric disparity error. The geometric error is the er-

ror ελ on the disparity λ∗ caused by noise on ξ and π. While

it would be possible to model, propagate, and estimate the

complete covariance on ξ and π, we found that the gain

in accuracy does not justify the increase in computational

complexity. We therefore use an intuitive approximation:

Let the considered epipolar line segment L ⊂ R
2 be de-

fined by

L :=
{
l0 + λ

(
lx
ly

)
|λ ∈ S

}
, (3)

where λ is the disparity with search interval S, (lx, ly)
T the

normalized epipolar line direction and l0 the point corre-

sponding to infinite depth. We now assume that only the

absolute position of this line segment, i.e., l0 is subject to

isotropic Gaussian noise εl. As in practice we keep the

searched epipolar line segments short, the influence of rota-

tional error is small, making this a good approximation.

Intuitively, a positioning error εl on the epipolar line

causes a small disparity error ελ if the epipolar line is par-

allel to the image gradient, and a large one otherwise (see

Fig. 5). This can be mathematically derived as follows: The

image constrains the optimal disparity λ∗ to lie on a certain

isocurve, i.e. a curve of equal intensity. We approximate

1In the linear case, this is the camera matrix K – in practice however,

nonlinear distortion and other (unmodeled) effects also play a role.

L ελ
εl

g, l

L ελ
εl

lg

Figure 5. Geometric Disparity Error: Influence of a small posi-

tioning error εl of the epipolar line on the disparity error ελ. The

dashed line represents the isocurve on which the matching point

has to lie. ελ is small if the epipolar line is parallel to the image

gradient (left), and a large otherwise (right).

this isocurve to be locally linear, i.e. the gradient direction

to be locally constant. This gives

l0 + λ∗
(
lx
ly

)
!
= g0 + γ

(
−gy
gx

)
, γ ∈ R (4)

where g := (gx, gy) is the image gradient and g0 a point on

the isoline. The influence of noise on the image values will

be derived in the next paragraph, hence at this point g and

g0 are assumed noise-free. Solving for λ gives the optimal

disparity λ∗ in terms of the noisy input l0:

λ∗(l0) =
〈g, g0 − l0〉
〈g, l〉 (5)

Analogously to (2), the variance of the geometric disparity

error can then be expressed as

σ2
λ(ξ,π) = Jλ∗(l0)

(
σ2
l 0
0 σ2

l

)
JT
λ∗(l0) =

σ2
l

〈g, l〉2 , (6)

where g is the normalized image gradient, l the normalized
epipolar line direction and σ2

l the variance of εl. Note that

this error term solely originates from noise on the relative

camera orientation ξ and the camera calibration π, i.e., it is

independent of image intensity noise.

Photometric disparity error. Intuitively, this error en-

codes that small image intensity errors have a large effect

on the estimated disparity if the image gradient is small, and

a small effect otherwise (see Fig. 6). Mathematically, this

relation can be derived as follows. We seek the disparity λ∗

that minimizes the difference in intensities, i.e.,

λ∗ = min
λ

(iref − Ip(λ))
2, (7)

where iref is the reference intensity, and Ip(λ) the image in-

tensity on the epipolar line at disparity λ. We assume a good

initialization λ0 to be available from the exhaustive search.

Using a first-order Taylor approximation for Ip gives

λ∗(I) = λ0 + (iref − Ip(λ0)) g
−1
p , (8)

where gp is the gradient of Ip, that is image gradient along

the epipolar line. For clarity we only consider noise on iref

and Ip(λ0); equivalent results are obtained in the general

case when taking into account noise on the image values

involved in the computation of gp. The variance of the pho-
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Figure 6. Photometric Disparity Error: Noise εi on the image

intensity values causes a small disparity error ελ if the image gra-

dient along the epipolar line is large (left). If the gradient is small,

the disparity error is magnified (right).

tometric disparity error is given by

σ2
λ(I) = Jλ∗(I)

(
σ2
i 0
0 σ2

i

)
Jλ∗(I) =

2σ2
i

g2p
, (9)

where σ2
i is the variance of the image intensity noise. The

respective error originates solely from noisy image intensity

values, and hence is independent of the geometric disparity

error.

Pixel to inverse depth conversion. Using that, for small

camera rotation, the inverse depth d is approximately pro-

portional to the disparity λ, the observation variance of the

inverse depth σ2
d,obs can be calculated using

σ2
d,obs = α2

(
σ2
λ(ξ,π) + σ2

λ(I)

)
, (10)

where the proportionality constant α – in the general, non-

rectified case – is different for each pixel, and can be calcu-

lated from

α :=
δd
δλ

, (11)

where δd is the length of the searched inverse depth inter-

val, and δλ the length of the searched epipolar line segment.

While α is inversely linear in the length of the camera trans-

lation, it also depends on the translation direction and the

pixel’s location in the image.

When using an SSD error over multiple points along the

epipolar line – as our implementation does – a good upper

bound for the matching uncertainty is then given by

σ2
d,obs-SSD ≤ α2

(
min{σ2

λ(ξ,π)}+min{σ2
λ(I)}

)
, (12)

where the min goes over all points included in the SSD er-

ror.

2.1.4 Depth Observation Fusion

After a depth observation for a pixel in the current image

has been obtained, we integrate it into the depth map as fol-

lows: If no prior hypothesis for a pixel exists, we initialize

it directly with the observation. Otherwise, the new obser-

vation is incorporated into the prior, i.e., the two distribu-

tions are multiplied (corresponding to the update step in a

Kalman filter): Given a prior distribution N (dp, σ
2
p) and a

noisy observation N (do, σ
2
o), the posterior is given by

N
(
σ2
pdo + σ2

odp

σ2
p + σ2

o

,
σ2
pσ

2
o

σ2
p + σ2

o

)
. (13)

2.1.5 Summary of Uncertainty-Aware Stereo

New stereo observations are obtained on a per-pixel ba-

sis, adaptively selecting for each pixel a suitable reference

frame and performing a one-dimensional search along the

epipolar line. We identified the three major factors which

determine the accuracy of such a stereo observation, i.e.,

• the photometric disparity error σ2
λ(ξ,π), depending

on the magnitude of the image gradient along the

epipolar line,

• the geometric disparity error σ2
λ(I), depending on the

angle between the image gradient and the epipolar line

(independent of the gradient magnitude), and

• the pixel to inverse depth ratio α, depending on the

camera translation, the focal length and the pixel’s po-

sition.

These three simple-to-compute and purely local criteria are

used to determine for which pixel a stereo update is worth

the computational cost. Further, the computed observation

variance is then used to integrate the new measurements into

the existing depth map.

2.2. Depth Map Propagation

We continuously propagate the estimated inverse depth

map from frame to frame, once the camera position of the

next frame has been estimated. Based on the inverse depth

estimate d0 for a pixel, the corresponding 3D point is calcu-

lated and projected into the new frame, providing an inverse

depth estimate d1 in the new frame. The hypothesis is then

assigned to the closest integer pixel position – to eliminate

discretization errors, the sub-pixel accurate image location

of the projected point is kept, and re-used for the next prop-

agation step.

For propagating the inverse depth variance, we assume

the camera rotation to be small. The new inverse depth d1
can then be approximated by

d1(d0) = (d−1
0 − tz)

−1, (14)

where tz is the camera translation along the optical axis.

The variance of d1 is hence given by

σ2
d1

= Jd1σ
2
d0
JT
d1

+ σ2
p =

(
d1
d0

)4

σ2
d0

+ σ2
p, (15)

where σ2
p is the prediction uncertainty, which directly cor-

responds to the prediction step in an extended Kalman fil-

ter. It can also be interpreted as keeping the variance on
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initialization after 8 iterations after 3 iterations after 3 iterations
on lvl 3 on lvl 3 on lvl 2 on lvl 1

(80× 60) (80× 60) (160× 120) (320× 240)

Figure 7. Dense Tracking: Reference image I1(x) (top left) with associated semi-dense inverse depth map (bottom left). The image

in the top right shows the new frame I2(x) without depth information. Middle: Intermediate steps while minimizing E(ξ) on different

pyramid levels. The top row shows the back-warped new frame I2(w(x, d, ξ)), the bottom row shows the respective residual image

I2(w(x, di, ξ))− I1(x). The bottom right image shows the final pixel-weights (black = small weight). Small weights mainly correspond

to newly occluded or disoccluded pixel.

the z-coordinate of a point fixed, i.e., setting σ2
z0 = σ2

z1 .

We found that using small values for σ2
p decreases drift, as

it causes the estimated geometry to gradually ”lock” into

place.

Collision handling. At all times, we allow at most one

inverse depth hypothesis per pixel: If two inverse depth hy-

pothesis are propagated to the same pixel in the new frame,

we distinguish between two cases:

1. if they are statistically similar, i.e., lie within 2σ
bounds, they are treated as two independent observa-

tions of the pixel’s depth and fused according to (13).

2. otherwise, the point that is further away from the cam-

era is assumed to be occluded, and is removed.

2.3. Depth Map Regularization

For each frame – after all observations have been incor-

porated – we perform one regularization iteration by assign-

ing each inverse depth value the average of the surrounding

inverse depths, weighted by their respective inverse vari-

ance. To preserve sharp edges, if two adjacent inverse depth

values are statistically different, i.e., are further away than

2σ, they do not contribute to one another. Note that the re-

spective variances are not changed during regularization to

account for the high correlation between neighboring hy-

potheses. Instead we use the minimal variance of all neigh-

boring pixel when defining the stereo search range, and as a

weighting factor for tracking (see Sec. 3).

Outlier removal. To handle outliers, we continuously

keep track of the validity of each inverse depth hypothesis

in terms of the probability that it is an outlier, or has become

invalid (e.g., due to occlusion or a moving object). For each

successful stereo observation, this probability is decreased.

It is increased for each failed stereo search, if the respective

intensity changes significantly on propagation, or when the

absolute image gradient falls below a given threshold.

If, during regularization, the probability that all con-

tributing neighbors are outliers – i.e., the product of their

individual outlier-probabilities – rises above a given thresh-

old, the hypothesis is removed. Equally, if for an “empty”

pixel this product drops below a given threshold, a new

hypothesis is created from the neighbors. This fills holes

arising from the forward-warping nature of the propagation

step, and dilates the semi-dense depth map to a small neigh-

borhood around sharp image intensity edges, which signifi-

cantly increases tracking and mapping robustness.

3. Dense Tracking
Based on the inverse depth map of the previous frame,

we estimate the camera pose of the current frame using

dense image alignment. Such methods have previously

been applied successfully (in real-time on a CPU) for track-

ing RGB-D cameras [7], which directly provide dense depth

measurements along with the color image. It is based on the

direct minimization of the photometric error

ri(ξ) := (I2(w(xi, di, ξ))− I1(xi))
2
, (16)

where the warp function w : Ω1×R×R
6 → Ω2 maps each

point xi ∈ Ω1 in the reference image I1 to the respective

point w(xi, di, ξ) ∈ Ω2 in the new image I2. As input it

requires the 3D pose of the camera ξ ∈ R
6 and uses the

estimated inverse depth di ∈ R for the pixel in I1. Note that

no depth information with respect to I2 is required.

To increase robustness to self-occlusion and moving ob-

jects, we apply a weighting scheme as proposed in [7]. Fur-

ther, we add the variance of the inverse depth σ2
di

as an ad-

ditional weighting term, making the tracking resistant to re-

cently initialized and still inaccurate depth estimates from
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Figure 8. Examples: Top: Camera images overlaid with the respective estimated semi-dense inverse depth map. Bottom: 3D view of

tracked scene. Note the versatility of our approach: It accurately reconstructs and tracks through (outside) scenes with a large depth-

variance, including far-away objects like clouds , as well as (indoor) scenes with little structure and close to no image corners / keypoints.

More examples are shown in the attached video.

the mapping process. The final energy that is minimized is

hence given by

E(ξ) :=
∑
i

α(ri(ξ))

σ2
di

ri(ξ), (17)

where α : R → R defines the weight for a given residual.

Minimizing this error can be interpreted as computing the

maximum likelihood estimator for ξ, assuming independent

noise on the image intensity values. The resulting weighted

least-squares problem is solved efficiently using an itera-

tively reweighted Gauss-Newton algorithm coupled with a

coarse-to-fine approach, using four pyramid levels. Figure

7 shows an example of the tracking process. For further

details on the minimization we refer to [1].

4. System Overview

Tracking and depth estimation is split into two sepa-

rate threads: One continuously propagates the inverse depth

map to the most recent tracked frame, updates it with stereo-

comparisons and partially regularizes it. The other simul-

taneously tracks each incoming frame on the most recent

available depth map. While tracking is performed in real-

time at 30Hz, one complete mapping iteration takes longer

and is hence done at roughly 15Hz – if the map is heav-

ily populated, we adaptively reduce the number of stereo

comparisons to maintain a constant frame-rate. For stereo

observations, a buffer of up to 100 past frames is kept, au-

tomatically removing those that are used least.

We use a standard, keypoint-based method to obtain the

relative camera pose between two initial frames, which are

then used to initialize the inverse depth map needed for

tracking successive frames. From this point onward, our

method is entirely self-contained. In preliminary experi-

ments, we found that in most cases our approach is even

able to recover from random or extremely inaccurate initial

depth maps, indicating that the keypoint-based initialization

might become superfluous in the future.

Table 1. Results on RGB-D Benchmark

position drift (cm/s) rotation drift (deg/s)

ours [7] [8] ours [7] [8]

fr2/xyz 0.6 0.6 8.2 0.33 0.34 3.27

fr2/desk 2.1 2.0 - 0.65 0.70 -

5. Results

We have tested our approach on both publicly available

benchmark sequences, as well as live, using a hand-held

camera. Some examples are shown in Fig. 8. Note that our

method does not attempt to build a global map, i.e., once

a point leaves the field of view of the camera or becomes

occluded, the respective depth value is deleted. All exper-

iments are performed on a standard consumer laptop with

Intel i7 quad-core CPU. In a preprocessing step, we rectify

all images such that a pinhole camera-model can be applied.

5.1. RGB-D Benchmark Sequences

As basis for a quantitative evaluation and to facilitate re-

producibility and easy comparison with other methods, we

use the TUM RGB-D benchmark [16]. For tracking and

mapping we only use the gray-scale images; for the very

first frame however the provided depth image is used as ini-

tialization.

Our method (like any monocular visual odometry

method) fails in case of pure camera rotation, as the depth

of new regions cannot be determined. The achieved track-

ing accuracy for two feasible sequences – that is, sequences

which do not contain strong camera rotation without simul-

taneous translation – is given in Table 1. For comparison

we also list the accuracy from (1) a state-of-the-art, dense

RGB-D odometry [7], and (2) a state-of-the-art, keypoint-

based monocular SLAM system (PTAM, [8]). We initialize

PTAM using the built-in stereo initializer, and perform a

7DoF (rigid body plus scale) alignment to the ground truth

trajectory. Figure 9 shows the tracked camera trajectory for

fr2/desk. We found that our method achieves similar accu-
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Figure 9. RGB-D Benchmark Sequence fr2/desk: Tracked cam-

era trajectory (black), the depth map of the first frame (blue), and

the estimated depth map (gray-scale) after a complete loop around

the table. Note how well certain details such as the keyboard and

the monitor align.

racy as [7] which uses the same dense tracking algorithm

but relies on the Kinect depth images. The keypoint-based

approach [8] proves to be significantly less accurate and ro-

bust; it consistently failed after a few seconds for the second

sequence.

5.2. Additional Test Sequences
To analyze our approach in more detail, we recorded

additional challenging sequences with the corresponding

ground truth trajectory in a motion capture studio. Figure 10

shows an extract from the video, as well as the tracked and

the ground-truth camera position over time. As can be seen

from the figure, our approach is able to maintain a reason-

ably dense depth map at all times and the estimated camera

trajectory matches closely the ground truth.

6. Conclusion
In this paper we proposed a novel visual odometry

method for a monocular camera, which does not require

discrete features. In contrast to previous work on dense

tracking and mapping, our approach is based on probabilis-

tic depth map estimation and fusion over time. Depth mea-

surements are obtained from patch-free stereo matching in

different reference frames at a suitable baseline, which are

selected on a per-pixel basis. To our knowledge, this is the

first featureless monocular visual odometry method which

runs in real-time on a CPU. In our experiments, we showed

that the tracking performance of our approach is compara-

ble to that of fully dense methods without requiring a depth

sensor.
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