
Online Motion Segmentation using Dynamic Label Propagation

Ali Elqursh Ahmed Elgammal
Rutgers University

Abstract

The vast majority of work on motion segmentation
adopts the affine camera model due to its simplicity. Under
the affine model, the motion segmentation problem becomes
that of subspace separation. Due to this assumption, such
methods are mainly offline and exhibit poor performance
when the assumption is not satisfied. This is made evident in
state-of-the-art methods that relax this assumption by using
piecewise affine spaces and spectral clustering techniques
to achieve better results. In this paper, we formulate the
problem of motion segmentation as that of manifold sep-
aration. We then show how label propagation can be used
in an online framework to achieve manifold separation. The
performance of our framework is evaluated on a benchmark
dataset and achieves competitive performance while being
online.

1. Introduction

Since the early 20th century, gestalt psychologist have

identified common fate as one of the most important cues

for dynamic scene understanding. In the field of Computer

Vision, this is reflected by the vast amount of literature

on motion segmentation, video segmentation, and tracking.

Specifically, motion segmentation deals with the problem of

segmenting feature trajectories according to different mo-

tions in the scene, and is an essential step to achieve object

segmentation and scene understanding.

Recent years have witnessed a large increase in the

proportion of videos coming from streaming sources such

as TV Broadcast, internet video streaming, and streaming

from mobile devices. Unfortunately, most motion segmen-

tation techniques are mainly offline and with a high com-

putational complexity. Thus rendering them ineffective for

processing videos from streaming sources. This highlights

the need for novel online motion segmentation techniques.

There exist a plethora of applications that would ben-

efit from online motion segmentation. For example, cur-

rently activity recognition is either restricted to videos cap-

tured from stationary cameras (where existing background

subtraction techniques can be used to segment the differ-

Figure 1. Frames 40, and 150 from the marple7 sequence and the

corresponding segmentation obtained by our online approach.

ent actors [18]), or restricted to process videos offline using

motion segmentation techniques. This is complicated even

further if, after processing, more data becomes available,

with the only solution typically being to reprocess the en-

tire video from the beginning.

Another domain that would benefit from online motion

segmentation is in that of 3D TV processing. A real-time

motion segmentation would enable performing 2D-to-3D

conversion and video re-targeting on the fly on viewers de-

vices. Other applications include online detection and seg-

mentation of moving targets, and visual surveillance from

mobile platforms to name a few.

Many approaches for motion segmentation are based on

the fact that trajectories generated from rigid motion and un-

der affine projection spans a 4-dimensional subspace. First

introduced by [16], this geometric constraint has been used

extensively especially in the case of independent motion.

Most notably in [4], the problem is reduced to sorting of a

matrix called shape interaction matrix with entries that rep-

resent the likelihood of a pair of trajectories belonging to

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.251

2008

the same object. In [11] the problem is reformulated as an

instance of subspace separation, making the connection ex-

plicit.

Most motion segmentation approaches suffer from two

problems. First, formulating the problem as that of factoriz-

ing a trajectory matrix has led many approaches to assume

that trajectories span the entire frame sequence. To han-

dle the case where parts of trajectories are missing, such

approaches borrow ideas from matrix completion. How-

ever, this is only successful up to a limit, since it assumes

that at least there exist some trajectories that span the en-

tire frame sequences. Second, the affine camera assumption

restricts the applicability of motion segmentation to those

videos where the assumption is satisfied. For example, this

is typically true when the depth of the scene is small but

not otherwise. To overcome the later problem, we assume a

general perspective camera instead of an affine camera. On

the other hand, to overcome the former problem, we mea-

sure the similarity between trajectories using a metric that

depends only on the overlapping frames.

We propose an approach that achieves online motion seg-

mentation by segmenting a set of manifolds through dy-

namic label propagation and cluster splitting. Starting from

an initialization computed over a fixed number of frames,

we maintain a graph of pairwise similarity between trajec-

tories in an online fashion. To move to the next frame we

propagate the label information from one frame to the next

using label propagation. The label propagation respects the

computed graph structure while taking into account the pre-

vious labeling. To handle cases where new evidence sug-

gests that one cluster comes from two differently moving

objects, we evaluate each cluster and measure a normalized

cut cost of splitting the cluster. This process is then repeated

for each subsequent frame. Figure 1 shows frames 40 and

150 of the sequence marple7 and the segmentation by our

approach. Miss Marple is correctly tracked throughout the

sequence even when affected by occlusion as in frame 40.

2. Contributions

Our paper has several contributions. First we show how

trajectories belonging to a rigid object with smooth depth

variation form a manifold of dimension 3. This generalizes

the problem of affine motion segmentation from subspace

separation (linear manifold segmentation) to that of (gen-

eral) manifold segmentation. It also explains why previous

approaches using spectral clustering methods produced su-

perior results while using simpler models. Second, we show

that the problem of online manifold segmentation can be

cast in a label propagation framework using Markov Ran-

dom walks.

3. Related Work
Approaches to motion segmentation (and similarly sub-

space separation) can be roughly divided into four cate-

gories: statistical, factorization-based, algebraic, and spec-

tral clustering. Statistical methods alternate between assign-

ing points to subspaces and reestimating the subspaces. For

example, in [9] the Expectation-Maximization (EM) algo-

rithm was used to tackle the clustering problem. Robust

statistical methods, such as RANSAC [6], repeatedly fits an

affine subspace to randomly sampled trajectories and mea-

sures the consensus with the remaining trajectories. The tra-

jectories belonging to the subspace with the largest number

of inliers are then removed and the procedure is repeated.

Factorization-based methods such as [16, 11, 10] attempt

to directly factor a matrix of trajectories. These methods

work well when the motions are independent. However, it

is frequently the case that multiple rigid motions are de-

pendent, such as in articulated motion. This has motivated

the development of algorithms that handle dependent mo-

tion. Algebraic methods, such as GPCA [19] are generic

subspace separation algorithms. They do not put assump-

tions on the relative orientation and dimensionality of mo-

tion subspaces. However, their complexity grows exponen-

tially with the number of motions and the dimensionality of

the ambient space.

Spectral clustering-based methods [21, 2, 12], use local

information around the trajectories to compute a similarity

matrix. It then use spectral clustering to cluster the trajec-

tories into different subspaces. One such example is the ap-

proach by Yan et al [21], where neighbors around each tra-

jectory are used to fit a subspace. An affinity matrix is then

built by measuring the angles between subspaces. Spectral

clustering is then used to cluster the trajectories. Similarly,

sparse subspace clustering [5] builds an affinity matrix by

representing each trajectory as a sparse combination of all

other trajectories and then applies spectral clustering on the

resulting affinity matrix. Spectral clustering methods repre-

sent the state-of-the-art in motion segmentation. We believe

this can be explained because the trajectories do not exactly

form a linear subspace. Instead, such trajectories fall on a

nonlinear manifold.

With the realization of accurate trackers for dense long

term trajectories such as [13, 15] there have been great in-

terest in exploiting dense long term trajectories in motion

segmentation. In particular, Brox et al. [2] achieves mo-

tion segmentation by creating an affinity matrix capturing

similarity in translational motion across all pairs of trajecto-

ries. Spectral clustering is then used to over-segment the set

of trajectories. A final grouping step then achieves motion

segmentation. More recently, Fragkiadaki et al. [7] pro-

poses a two step process that first uses trajectory saliency

to segment foreground trajectories. This is followed by a

two-stage spectral clustering of an affinity matrix computed

2009

over figure trajectories. The success of such approaches can

be attributed in part to the large number of trajectories avail-

able. Such trajectories help capture the manifold structure

empirically in the spectral clustering framework. Our ap-

proach is also based on building an affinity matrix between

all pairs of trajectories, however we process frames online

and do not rely on spectral clustering. Deviating from the

spectral clustering, is the idea of using nonlinear dimension-

ality reduction (NLDR) techniques followed by clustering

to achieve motion segmentation [8].

Compared to previous methods, our method has several

advantages. To our knowledge our approach is the first to

achieve online motion segmentation, while spending a con-

stant computation time per frame. We explicitly model tra-

jectories as lying on a manifold, and thus are able to handle

videos where the affine camera assumption is not satisfied.

Our method also takes into account the entire history of the

trajectory in computing the similarity matrix.

4. Basic Formulation of Motion Segmentation
In this section we show how the problem of motion seg-

mentation can be cast as a manifold segmentation problem.

This is demonstrated in two steps. First, we show how

trajectories in the three-dimensional space form a three-

dimensional manifold. Next, we show how the projection

of these trajectories to 2D image coordinates also form a

three-dimensional manifold.

LetX be an open set of points in 3D comprising a single

rigid object. Together with the Euclidean metric it forms

a three-dimensional manifold. The motion of the object at

times t = 2, . . . , F can be represented by rigid transforma-

tions f2(x), . . . fF (x) respectively with x =
[
x y z

]T
is a 3D point in the camera coordinate system. The space of

trajectories can be therefore defined by the set

Γ(f) = {(x1, . . . ,xF) ∈ R
3F : xi = fi(x1) i �= 1},

with subspace topology. Let π1 : R3F → R
3 denote the

projection of a point (x1, . . . ,xF) ∈ R
3F onto the first fac-

tor. Let φ : Γ(f) → X be the restriction of π1to Γ(f).
Since f2, . . . , fF are continuous maps and φ is a restric-

tion of a continuous map, φ is also continuous. It is also a

homeomorphism because it has a continuous inverse. This

implies that the space of trajectories is a manifold of dimen-

sion three.

Furthermore, we can show that projecting the 3D tra-

jectories into the image coordinates also induces a mani-

fold. Let g(x) =
f

z
[x y]T be the camera projection func-

tion that projects a point in the camera coordinate system

to image coordinates, where f is the camera focal length.

g(x) is continuous at all points except at points with z = 0.
Let Ω(f) = Γ(f)\{x1 . . .xF : zi �= 0} be the subset

of Γ(f) where all points satisfy this constraint, it follows

(a) Spectral Clustering

(b) Label Propagation
Figure 2. Spectral Clustering vs Label propagation. Colors repre-

sent the different clusters and the black circle represent the super-

vised labels.

that G(x1, . . . ,xF) = (g(x1), . . . , g(xF)) is also a smooth

continuous map over Ω(f). It is therefore easy to show that

G(Ω) is also a manifold of dimension three.

Note that even though we know that trajectories in image

space form a manifold, we do not have an analytical man-

ifold. However, under the assumption that the manifold is

densely sampled, empirical methods can be used to model

the manifold. In addition, note that each distinct motion in

the scene will generate one manifold. In this paper we rely

on label propagation and dense trajectory tracking to solve

the manifold separation problem.

To see why label propagation is well suited for the man-

ifold separation problem, consider the simple two moons

example shown at the top Figure 2. Separating the two

moons can be cast as a manifold separation problem. How-

ever, when applying spectral clustering on this example, due

to the proximity, one cluster leaks over the other cluster.

On the other hand, with proper initialization, label propa-

gation is able to successfully segment the two moons. As

explained in the next sections, the initialization comes from

previous frames.

5. Approach

Starting from dense trajectories that are continuously ex-

tended and introduced, our approach continuously updates

a segmentation of the trajectories corresponding to differ-

ent motions. To achieve this, we start by explaining how

the similarities (affinities) between trajectories can be up-

dated in an online framework (Subsection 5.1). Next we in-

troduce the necessary background on label propagation and

show how it can be used to maintain a segmentation over

dynamically changing manifolds (Subsection 5.2). Finally,

2010

we propose two different methods to initialize our frame-

work in (Subsection 5.3).

5.1. Online Affinity Computation

As identified by the previous section, trajectories belong-

ing to a single object lie on a three-dimensional manifold.

However, such manifolds are not static as they are a func-

tion of the motion of the object, which changes over time.

To model such dynamic manifolds without resorting to re-

solving for each frame, we design a distance metric that can

be computed incrementally. Such computation has to be

done in time independent of the length of the trajectories.

In addition, the metric must capture the similarity in spatial

location and motion. The intuition is that if two trajecto-

ries are relatively close to each other and move similarly,

then they are likely to belong to the same object. In this

subsection we show how one such metric can be computed

incrementally.

We start by introducing some notation. A trajectory

Ta = {pia = (xi
a, y

i
a) : i ∈ A} is represented as a sequence

of points pia that spans frames in the set A. For simplicity

we reserve superscripts for frame references and subscripts

for trajectory identification. The motion of a trajectory be-

tween frames i and j in the x and y direction is denoted by

ui:j
a = xj

a − xi
a and vi:ja = yja − yia.

Given two trajectories Ta and Tb we define two distance

metrics d1:tM (Ta, Tb) and d1:tS (Ta, Tb) representing the dif-

ference in motion and spatial location up to time t respec-
tively. In a way similar to [2], the distances are defined as

the supremum of distances over pairs of frames. The max

function helps “remember” large differences in motion and

spatial location. Formally,

d1:tM (Ta, Tb) = max{i−Δ,i}⊂XdiM (Ta, Tb), (1)

d1:tS (Ta, Tb) = maxi∈XdiS(Ta, Tb), (2)

where X = {x : x < t, x ∈ A ∩ B} is the set of overlap-
ping frames up to time t and Δ is a user defined parameter,

which controls the amount of smoothing used in computing

motion difference. Distances over frames are defined as

diM (Ta, Tb) =
(ui−Δ:i

a − ui−Δ:i
b)2

(σi
Mu)

2
+
(vi−Δ:i

a − vi−Δ:i
b)2

(σi
Mv)

2
,

and

diS(TA, TB) =‖ pia − pib ‖ /σ2
S .

(σi
Mu)

2, and (σi
Mu)

2 are two parameters that control

the weighting of motion distances while σ2
S controls the

weighting of the spatial distance. We compute (σi
Mu)

2, and

(σi
Mu)

2 adaptively for each frame as the variance of ui−Δ:i
a

and vi−Δ:i
a over all trajectories. For n trajectories, we can

collect all pairwise frame distances into two n×n matrices

ΔDt
M = [dtM (Ti, Tj)], and ΔDt

S = [dtS(Ti, Tj)]. It fol-

lows that we can compute the total distance between trajec-

tories up to time t, Dt, incrementally from Dt−1 and ΔDt

by taking the maximum of the two. To convert distances to

affinitiesW we use

Wt = exp(−(Dt
M +Dt

S)). (3)

5.2. Label Propagation

Preliminaries Here we briefly explain the machine learning

machinery used in our online object segmentation approach.

For further details and an overview about label propagation

please refer to [3].

Given a graph G and a weight matrix W such that Wij

is the weight of the edge between nodes i and j, a simple

idea for semi-supervised learning is to propagate labels on

the graph. Formally, let Yl denotes the labels for the labeled

nodes. Furthermore, let Ŷ = (Ŷl, Ŷu) denotes the estimated

node labels, with Ŷl, and Ŷu corresponding to the labeled

and unlabeled nodes respectively. Yl and Ŷ are encoded us-

ing a one-hot encoding such that each row of Y is a vector

with 1 at the location corresponding to the label of the node

and zero otherwise.In order to estimate probabilities over

labellings, [22] presents an algorithm that uses Markov ran-

dom walks on the graph with transition probabilities from i
to j defined by,

pij =
Wij∑
k Wik

.

In matrix form P = D−1W , where Dii =
∑

j Wij . Given

the partition of the nodes into labeled and unlabeled nodes,

the matrix P can be written in matrix form as

P =

[
Pll Plu

Pul Puu

]
.

The algorithm then works as follows: it assigns to a node xi

the probability of arriving to a positively labeled example,

when performing a random walk starting from node i and
until a label is found. This probability can be written as

P (yend = 1|i) = ∑n
j=1 P (yend = 1|j)pij . In matrix form

this can be written as

Yu = (Pul|Puu)

(
Yl

Yu

)
.

It can be shown that the fixed point solution is

Yu = (I − Puu)
−1PulYl.

The label for a node i, zi can be then obtained by

zi = argmaxj yij .

Manifold Separation via Dynamic Label Propagation

Given the segmentation of trajectories at frame t − 1 the

goal is to obtain an updated labeling at frame t. To accom-

plish this we have two address several scenarios. First, new

2011

trajectories may be introduced into the distance matrix, and

second, motion information from existing trajectories may

necessitate splitting or merging existing clusters. In addi-

tion, in the former case, new trajectories may belong to ex-

isting objects or they may belong to new objects. In this

section, we describe how these two cases are handled in our

framework.

First we address how new information can be integrated

to update our cluster labels while assuming that no new ob-

jects has entered the scene. At each frame, we assume ex-

tended trajectories have a probability distribution over dif-

ferent segment labels. The inferered label is defined as the

label with the maximum probability. One way to proceed

is to use these as supervised labels and attempt to label

new trajectories based on a classifier learned over the la-

beled samples. There are several problems with this solu-

tion. First, existing labels are not revised and thus errors

cannot be recovered from. Second, classifier do not take

into account the graph structure we have available in hand.

To solve these problems, we use labels for existing tra-

jectories as prior knowledge and attempt to label both tra-

jectories extended from previous frames and new trajecto-

ries while taking the graph structure into account. We attach

to each node (trajectory) in the current frame a dongle node

corresponding to the trajectory label in the previous frame.

Let Puu be the transition probabilities obtained from the

affinity matrix W t , the new transition matrix for the aug-

mented graph is

P =

[
Pll Plu

Pul P ′uu

]
=

[
0 ηI
I (1− η)Puu

]
.

Applying Markov random walks on this graph gives

Yu = (I − (1 − η)Puu)
−1Yl. Since the labeled nodes are

actually the previous frame labels, this equation becomes

Y t = (I − (1− η)Puu)
−1Y t−1. (4)

The parameter 0 ≤ η ≤ 1 controls how strongly previous

labels affect future labels. In the extreme case, when η =
0, the graph structure is the dominant term. Using label

propagation in this manner effectively takes into account the

uncertainty in previous labels. Applying the above iteration

we get a new probability distribution for each node and the

segment labels are obtained by

zl = argmaxj yij

Although, it may seem like an overkill to re-apply label

propagation for each incoming frame, there are two reasons

why this is not the case. First, by using the previous la-

bels as anchoring points we avoid leaking the labels across

clusters such as in spectral clustering (Figure 2). Second, in

practice equation (4) is solved iteratively [3] and by using

the previous frame labels as an initial solution we are able

to converge in a few iteration.

Once the new labels are obtained, we need to evaluate

if a new object has entered the scene, or if an object that

was previously not moving started moving. Note, that label

propagation only propagates existing labels and does not

introduce new ones. If a new object enters the scene, there

must be an associated set of new trajectories. These new

trajectories would inevitably receive some label by the la-

bel propagation, and introduce high intra-cluster variation

within that associated cluster. Similarly, if an stationary ob-

ject starts moving this will lower the affinities between the

object trajectories and the rest of the trajectories in the same

cluster. The task is therefore to go over the clusters one at

a time and see if any of them requires splitting. This can

be accomplished by computing an optimal binary cut using

normalized cut and then evaluate the normalized cut cost. If

the cost is above a threshold then we keep the cluster intact.

To perform the cut we use the method of [14]. First, we

extract the sub-matrixWc corresponding to the cluster to be

evaluated. We then solve the generalized eigen-value prob-

lem Dc −Wc = λDcy. Next, we extract the eigen-vector
corresponding to the second smallest eigen-value, and eval-

uate the normalized cut cost for different thresholds. The

normalized cut cost is expressed as
yT (Dc −Wc)y

yTDcy
, where

y is the thresholded eigen-vector. The vector y that mini-

mizes the normalized cut cost is then selected as the best

cut. The normalized cut cost is a value between 0 and 1. In

our approach, if the cut cost is bellow a threshold τ we split

the cluster.

5.3. Initialization

Our framework assumes that for a frame at time t we
know the labels of the trajectories at time t − 1. There are
two ways to boot strap the system. First, we could use an of-

fline motion segmentation method, which does not depend

on the affine camera assumption to generate the initial la-

bels. Another approach is to assign all the trajectories a

single label initially and allow our cluster splitting process

to discover the number classes over time. In our experi-

ments we take the later approach and show that even with-

out initialization, our approach is able to detect the moving

objects in the scene. In Figure3 we show how starting from

an initial assignment of a single cluster, the cluster splitting

process is able to segment the two persons in the scene.

6. Experiments
In this section we evaluate our algorithm on the Berkley

motion segmentation dataset introduced in [2]. The dataset

consists of 26 sequences that include rigid and articulated

motion. The ground truth for the dataset is provided as

frame annotations for 189 frames and the dataset comes

2012

Figure 3. Initialization on the marple6 sequence. From top to bot-

tom frames, 100, 160, 260 and their corresponding segmentations.

At frame 1, all trajectories are given the same label and there is

hardly any motion in the scene. After frame 100, the man leaning

on the wall starts to move and is automatically segmented from the

background cluster. Similarly, after frame 160 the person coming

closer to the camera is also detected and popped out from the back-

ground.

with an evaluation tool. However, it is important to note

that the evaluation tool was designed for offline algorithms.

For instance, it assumes that each trajectory is assigned a

single label throughout the sequence and will thus penalize

a trajectory which is assigned an incorrect label at the be-

ginning of a video sequence even if the label is corrected

at a latter frame. Similarly, if an object is stationary and

then moves, the approach is penalized for not segmenting

the object while it is stationary. This puts our algorithm at a

disadvantage, since it is impossible to detect motion before

it occurs. In real applications this can be easily mitigated via

a look ahead process, where the decision is delayed by let-

ting the algorithm run several frames ahead. For the sake of

consistency we report error measures using the same eval-

uation tool. More results are available in the supplemental

materials.

Trajectory tracking is done using LDOF [15] but the ap-

proach is not limited to it. As demonstrated by the Mid-

dlebury benchmark [1], there now exists several real-time

implementations of accurate optical flow that runs on the

GPU. For example, [20].

The evaluation tool of [2] yields 5 measures for each se-

quence, which are then averaged across all sequences. The

5 measures are density, overall error, average error, over-

segmentation error and the number of segments with less

than 10% error which we abbreviate as lt10. The density

measures the percentage of labeled trajectories to the total

number of pixels. A higher number indicates better cov-

erage of the image. Algorithms that require full trajectories

over a sliding window reduces the density. The overall error

is the total number of correctly labeled trajectories over the

number of labeled trajectories. The tool automatically com-

putes an assignment of clusters to ground truth regions and

may assign several clusters to the same region. The average

clustering error is the average of the ratio of mislabeled tra-

jectories to the number of trajectories for each region. Since

the tool may assign multiple segments to the same ground

truth region, the tool also reports an over-segmentation error

defined as the number of segments merged to fit the ground

truth regions. Additionally the tool reports the number of

regions covered with less than 10% error with one region

subtracted per sequence to account for the background.

In our experiments we set the parameters to the following

values;Δ = 3, σS = 300, η = 0.1, and τ = 1× 10−3. The

value for σS was set high enough to capture similarity be-

tween different parts of the background when a foreground

object splits it into two disjoint regions. The remaining pa-

rameters were set empirically.

We compare our algorithm to the offline algorithms of

[2], RANSAC, GPCA [19], and LSA [21]. The code for

RANSAC, GPCA, and LSA was obtained from the Hopkins

dataset [17]. It is important to note that [2] is used as a rep-

resentative of offline spectral clustering algorithms. For the

case where we run over more than 10 frames we compare

with a baseline online algorithm that uses RANSAC over a

sliding window. As noted in [2], other motion segmentation

algorithms do not scale efficiently with number of trajecto-

ries. For example, over only 10 frames from the people1

sequence, GPCA takes 2963 seconds, and LSA [21] 38614

seconds. It is therefore infeasible to run these algorithms on

a sliding window.

The RANSAC baseline is always given the total num-

ber of ground truth regions in the sequence. Even though

increasing the window size may have improved the results,

this would have been achieved by reducing the density dras-

tically as it becomes harder to find trajectories that span the

entire window. Figure 4 shows the effect of increasing the

window size on the density and segmentation.

Table 1 presents the quantitative results of running our

approach on the dataset introduced in [2]. We perform three

sets of experiments. In the first, we compare our approach

to [2], RANSAC, GPCA, and LSA over the first 10 frames

while excluding the first frame. This experiment is designed

to quantify the performance of the algorithm with respect

to traditional motion segmentation algorithms that require

the set of trajectories to span the entire sequence. In the

second, we evaluate the approach over the first 200 frames.

2013

Figure 4. Effect on increasing the windows size on the sliding window RANSAC Results. Left most image: frame 40 of the cars4 sequence.

Right three images: the segmentation with sliding window values of 10, 20, and 30 respectively. As the sliding window size increase, less

trajectories span the entire window. (Best seen in color).

Density Overall

Error

Average

Error

Overseg lt10

First 10 frames (26 sequences)

Ours 3.43% 9.69% 29.93% 0.31 21

[2] 3.43% 7.49% 25.92% 0.46 20

RANSAC 3.37% 14.4% 29.87% 0.73 13

GPCA 3.37% 17.86% 28.64% 0.85 7

LSA 3.37% 19.69% 39.76% 0.92 6

Frames 50 - 200 frames (7 sequences)

Ours 3.26% 6.77% 33.44% 2.57 6

[2] 3.43% 8.32% 37.29% 3.14 6

RANSAC 2.43% 28.3% 45.46% 1.42 0

All frames (26 sequences)

Ours 3.22% 9% 32.89% 2.30 16

[2] 3.31% 6.82% 27.34% 1.77 27

RANSAC 2.28% 16.04% 42.6% 1.15 9

Table 1. Evaluation results on the Berkley Dataset

To avoid bias in the result due to initialization, we evaluate

on ground truth frames starting on or after the 50th frame.

This experiment is designed to quantify the performance of

the algorithm on long sequences. Such sequences, represent

the typical use case of an online algorithm. Finally, in the

third set of experiments we evaluate over the entire set of

sequences and ground truth annotation images.

Over 10 frames we out-perform GPCA, RANSAC, and

LSA while achieving comparable results to results [2]. In

fact, if we restrict ourselves to longer sequences we out-

perform [2] as can be seen in the second experiment. This

indicates that our online approach outperforms traditional

approaches while maintaining competitive accuracy. Com-

paring with RANSAC over longer sequences exposes the

main problem with any online approach that is based on a

sliding window. Information outside the sliding window is

not remembered and it is therefore common to merge ob-

jects that were known to move differently.

Finally, over the entire dataset, we achieve online perfor-

mance at the cost of slightly worser performance than [2].

These errors can possibly be further reduced if we employ

a look-ahead process where the decision for a trajectory is

delayed for several frames.

Algorithm Tracks Time (seconds)

Our method 4625 29

Brox et al. [2] 4699 19

GPCA 4625 1345

LSA 1012 1996

Table 2. Computation Time over 10 frames frommarple1 sequence

track dist aff lblprop Total

34 1521 1169 403 3027
Table 3. Computation time over different stages on a single frame

from marple1. The stages are: tracking (track) , distance matrix

update (dist), affinity matrix (aff) and label propagation (lblprop).
Times are in msec. The number of trajectories is 4427. Optical

flow computation used in tracking is not included.

Figure 5 shows the result of applying our method to the

marple2 sequence. At frame 50, the method had already re-

covered from the bad initialization and is segmenting Miss

Marple correctly. Finally as Miss Marple reappears from

behind the column, our method re-detects the segment.

Table 2. compares the running time of different algo-

rithms over the first 10 frames of the marple1 sequence.

Although the method of [2] uses 19 seconds for the first

10 frames, applying it on a sliding window would require

19 sec. per frame. On the other hand, our un-optimized

Matlab implementation takes around 3 seconds per frame.

Table 6 further shows that the computational time is domi-

nated by updating the n×n distance matrix and computing

the affinity matrix. We believe that real-time performance

can be easily achieved since such operations can be easily

parallelized on the GPU.

7. Conclusion

We showed how motion segmentation can be cast as a

manifold separation problem. Based on this, we presented

an approach that achieves online motion segmentation with-

out sacrificing the accuracy of state of the art methods. By

using label propagation on a dynamically changing graph,

our approach is able to maintain labels and recover from

errors as more information becomes available. Compared

to offline approaches, we showed competitive results on a

2014

Figure 5. Result of our approach on the marple2 sequence. First row: frames 50, 110, 135, 170, 200 of the sequence. Second Row:

segmentation results. The third row shows ground truth frames associated with the frames. Starting from a incorrect initialization, our

approach is able to automatically detect the person in the scene. Clusters maintain their labels under partial occlusion as can be seen with

the background segment between frames 110 , 135. However, when a segment is totally occluded its label is lost and is assigned a new

label once it is dis-occluded. (Best seen in color.)

benchmark dataset.

We are motivated in our approach by several applications

that require online processing. For example, real-time mo-

tion segmentation can be used to perform video re-targeting

on-the-fly on viewers devices. Even when the videos are

available offline, processing movie-long videos would take

in the order of weeks using existing offline approaches.

Acknowledgements This work was partly supported by the
National Science Foundation award number 0923658.

References
[1] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A Database and Evaluation Methodology for Optical

Flow. IJCV, 92(1):1–31, Nov. 2010. 6
[2] T. Brox and J. Malik. Object Segmentation by Long Term Analysis

of Point Trajectories. In ECCV, pages 282–295, 2010. 2, 4, 5, 6, 7
[3] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning.

MIT Press, Cambridge, MA, 2006. 4, 5

[4] J. Costeira and T. Kanade. A multi-body factorization method for

motion analysis. In ICCV, pages 1071–1076. IEEE Comput. Soc.

Press, 1995. 1

[5] E. Elhamifar and R. Vidal. Sparse subspace clustering. CVPR, pages
2790–2797, June 2009. 2

[6] M. A. Fischler and R. C. Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM, 24(6):381–395, June 1981.

2

[7] K. Fragkiadaki and J. Shi. Detection free tracking: Exploiting mo-

tion and topology for segmenting and tracking under entanglement.

CVPR, pages 2073–2080, June 2011. 2
[8] A. Goh and R. Vidal. Segmenting Motions of Different Types by

Unsupervised Manifold Clustering. CVPR, pages 1–6, June 2007. 3

[9] A. Gruber and Y. Weiss. Multibody factorization with uncertainty

and missing data using the EM algorithm. CVPR, 1:707–714, 2004.
2

[10] N. Ichimura. Motion Segmentation Based on Factorization Method

and Discriminant Criterion. In ICCV, volume 00, 1999. 2

[11] K. Kanatani. Motion segmentation by subspace separation and model

selection. In ICCV, volume 2, pages 586–591. IEEE, 2001. 2

[12] P. Ochs and T. Brox. Higher order motion models and spectral clus-

tering. In CVPR, pages 614–621. Ieee, June 2012. 2
[13] P. Sand and S. Teller. Particle Video: Long-RangeMotion Estimation

Using Point Trajectories. IJCV, 80(1):72–91, May 2008. 2

[14] J. Shi and J. Malik. Normalized Cuts and Image Segmentation.

PAMI, 22(8):888–905, 2000. 5
[15] N. Sundaram, T. Brox, and K. Keutzer. Dense Point Trajectories

by GPU-Accelerated Large Displacement Optical Flow. In ECCV,
pages 438–451, 2010. 2, 6

[16] C. Tomasi and T. Kanade. Shape and motion from image streams un-

der orthography: a factorization method. IJCV, 9(2):137–154, Nov.
1992. 1, 2

[17] R. Tron and R. Vidal. A Benchmark for the Comparison of 3-D

Motion Segmentation Algorithms. In CVPR, 2007. 6
[18] P. Turaga, R. Chellappa, and V. S. Subrahmanian. Machine recogni-

tion of human activities: A survey. Circuits and Systems for Video
Technology, 18(11):1473–1488, 2008. 1

[19] R. Vidal and R. Hartley. Motion segmentation with missing data us-

ing powerfactorization and GPCA. In CVPR, volume 2, pages 310–

316, 2004. 2, 6

[20] A. Wedel, T. Pock, and C. Zach. An improved algorithm for TV-L 1

optical flow. Statistical and Geometrical . . . , 1(x):23–45, 2009. 6
[21] J. Yan and M. Pollefeys. A General Framework for Motion Segmen-

tation : Independent , Articulated , Rigid , Non-rigid , Degenerate

and Non-degenerate. In ECCV, 2006. 2, 6
[22] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-Supervised Learning

Using Gaussian Fields and Harmonic Functions. In ICML, 2003. 4

2015

