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Abstract

Photo-sequencing is the problem of recovering the tem-
poral order of a set of still images of a dynamic event, taken
asynchronously by a set of uncalibrated cameras. Solving
this problem is a first, crucial step for analyzing (or vi-
sualizing) the dynamic content of the scene captured by a
large number of freely moving spectators. We propose a
geometric based solution, followed by rank aggregation to
the photo-sequencing problem. Our algorithm trades spa-
tial certainty for temporal certainty. Whereas the previous
solution proposed by [4] relies on two images taken from
the same static camera to eliminate uncertainty in space,
we drop the static-camera assumption and replace it with
temporal information available from images taken from the
same (moving) camera. Our method thus overcomes the
limitation of the static-camera assumption, and scales much
better with the duration of the event and the spread of cam-
eras in space. We present successful results on challenging
real data sets and large scale synthetic data (250 images).

1. Introduction
Group photography is emerging as one of the most popu-

lar means of photography today. One can often see a group

of people, armed with smartphones, huddling together to

grab pictures of some exciting dynamic event. The set of

still images taken this way can be regarded as the output

of a new type of extended camera, which we call a crowd-
based camera, or CrowdCam for short. Traditionally, such

image sets are used for analyzing or visualizing the static

regions of the scene (e.g. [17]). However, such data also

contains rich information about the dynamic content of the

scene.

We are interested in developing tools that analyze, ex-

plore and visualize the dynamic regions of the scene given

images taken by CrowdCam (e.g., see Fig.1). A preliminary

step in solving this problem is to recover the temporal order

of the still images taken asynchronously by a set of uncal-

ibrated cameras. It is of interest to develop vision based

Figure 1. Visualization of a dynamic event from a set of still im-

ages; each image was captured from a different location at a dif-

ferent time. This visualization was generated automatically.

methods to solve this problem rather than assume that an

arbitrary set of smartphones is synchronized, to frame level

precision, ahead of time.

Basha et al. [4] were the first to propose a vision based

solution to the photo-sequencing problem, and we follow

their general framework. However, we use different as-

sumptions on the data, which requires developing new tools.

First, we compute corresponding static and dynamic feature

points across images. The static features are used to deter-

mine the epipolar geometry between pairs of images. Each

set of corresponding dynamic features vote for the temporal

order of the images in which it appears. The partial orders

provided by the dynamic feature sets are aggregated into a

globally consistent temporal order of images using rank ag-

gregation.

One of the non-trivial problems that must be solved is

how a set of corresponding dynamic features can be used

to determine the partial order of the images in which it

was found. What makes this problem so challenging is

the uncertainty both in time and space. That is, each fea-

ture set contains the projections of a 3D dynamic point

onto different viewpoints at a different time instance. Basha

et al. proposed a 2D geometric based solution that requires

that two of the input images be captured by a static camera.

Under linear motion of each of the dynamic features, this

assumption allows them to compute a unique ordering by

mapping all the features to the same reference image. How-

ever, there are a number of problems. First, such a pair must

be detected automatically, which is not a trivial task. More
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disturbing is the fact that all feature points must appear and

be matched to features in the static pair. This complicates

the correspondence problem and limits the spatio-temporal

extent of the event that can be captured.

We consider a somewhat different scenario, where a

static-pair is not needed, but each camera takes more than

a single photo. This scenario increases the uncertainty in

space, because the features cannot be mapped to the same

reference image, but decreases the uncertainty in time (since

the temporal order of images taken by the same camera is

known). We show that, using both the spatial and the tem-

poral constraints, a small number of temporal orders can be

determined from each feature set. In addition, the temporal

information is also integrated as a confidence vote into the

rank aggregation,which improves the robustness to errors

and noise.

Our novel geometric analysis allows us to sidestep the

need to establish correspondence w.r.t. a specific image,

i.e., each input image can be matched to a different subset

of images. As a result, our approach scales better than [4]

when the distance between the cameras, or the time interval

within which the images are taken, grows. This demon-

strates the advantages of the tradeoff between spatial and

temporal cues.

2. Related Work
Basha et al. [4] are the only ones to address the photo-

sequencing problem. We elaborate on their work later in

the paper. Related problems include Dynamic Structure-

From-Motion (D-SFM), Non-Rigid Structure-From-Motion

(NRSFM), and Video Synchronization.

In D-SFM and NRSFM the goal is to recover a 3D model

of a dynamic world from a set of images taken at different

time instances (e.g., monocular video). This is an under-

constrained problem because we do not have the projection

of a moving 3D point on two or more images and therefore

cannot use triangulation to recover its 3D location. To over-

come this limitation one needs to add priors on the motion

of the 3D point.

D-SFM relies on trajectory priors, under the assumption

that points move along a parametric trajectory. For example,

Avidan & Shashua [2] showed how to recover the 3D coor-

dinates of a point moving along a straight line or a conic

section. This was later extended by Kaminski & Teicher

[10] to general trajectories using polynomial representation.

Wolf & Shashua [19] gave a catalog of different trajectory

types and their corresponding solution by framing the prob-

lem as one of projection from PN to P2.

NRSFM methods rely on shape priors to constrain the

problem. For example, Bregler et al. [5] extended the

factorization-based method of Tomasi & Kanade [18] to

model nonrigid 3D objects observed by a monocular cam-

era. That is, the nonrigid shape is taken to be a linear com-

Algorithm 1 Photo Sequencing Alg.

Input: A set of still images, I, taken by a set of moving cameras.

The temporal order of images taken by the same camera is known.

Output: A permutation, σ, of I.

1: Match features between all input image pairs.

2: Compute the fundamental matrices between the image pairs.

3: Classify the features into static and dynamic feature sets, Si.

4: for each set of dynamic features, Si do
5: for each image, Ij ∈ ISi do
6: Compute the order set, Γi

j , using Ij as reference (see Sec. 3.1).

7: end for
8: Compute final order set, Γi = Γi

1 ∩ · · · ∩ Γi
n .

9: end for
10: Compute the transitivity matrix, M from Γ1,Γ2, ....
11: Integrate the temporal constraints into M .

12: Find the full order, σ, from M using rank-aggregation [6]

bination of some basis shapes. This, however, assumes an

orthographic projection. Hartley & Vidal [9] proposed a

closed-form solution to nonrigid shape and motion recov-

ery from multiple perspective views, under the assumption

that the nonrigid object deforms as a linear combination

of K rigid shapes. These methods usually assume only a

single nonrigid object of interest. Instead of assuming the

nonrigid shape to be a linear combination of basis shapes,

Akhter et al. [1] took the dual approach and described each

trajectory as a linear combination of basis trajectories.

Our problem is also related to video synchronization

where the goal is to temporally align two or more video se-

quences. However, only a small number of parameters need

be estimated, typically, just shift and scale are enough. Such

methods are inapplicable for solving the photo sequencing

problem because there are many more degrees of freedom.

The video synchronization techniques most relevant to our

case are those that employ geometric constraints to align

multiple video sequences (e.g., [12, 14]) or to achieve sub

frame accuracy (e.g., [11]). In both cases the intersections

of the trajectory of dynamic features with the epipolar lines

of corresponding features in the other images were used to

define order. None of these methods consider the incon-

sistent ordering that may be caused by different choices of

features.

Other related studies are [3, 15]. Ballan et al. [3] pro-

posed a method for navigating in a collection of videos of

a dynamic scene, e.g., a music performance, but they use a

collection of casually captured videos rather than still im-

ages as we do. Schindler et al. [15] proposed a method

for constructing 4D city models from images that span

many years. Their method is based on analyzing long-term

changes in the 3D static scene. Our method deals with a dy-

namic scene captured in a short time interval and is based

on motion.
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3. Method
A group of cameras moves in space and captures a set of

still images, I, of a dynamic event. Each image is captured

from a different location at a different time step. Our goal

is to recover the photo-sequencing) of I. We assume that

the relative order of images captured by the same camera

is given, and use it to impose temporal constraints on those

images. However, we do not assume the actual time stamp

of the images is known.

Following Basha et al. [4], our method can be roughly

divided into three main steps (pseudo-code given in Alg. 1).

Preprocessing: Feature points are detected and matched

between image pairs. The fundamental matrix is computed

between image pairs for which enough inlier features are

found. In this case, feature points that obey the epipolar

constraint are labeled as static points, and those that do not

are labeled as dynamic points.

Order from a Single Feature Set: Let Si be a set of cor-

responding dynamic features, which are the projections of

a dynamic 3D point P i onto a subset of images, ISi ⊆ I.

The set Si is used to compute a set of possible temporal or-

ders (permutations), Γi, of its set of images, ISi . To do so,

we make use of all available spatial-temporal information,

and perform a 2D-based analysis. This is the key that allows

us to consider a wider spread of images in space and time.

We elaborate on this step in Sec. 3.1.

Rank Aggregate: Rank Aggregation is used to compute

a unique global order that is as consistent as possible with

the computed partial temporal orders from all sets,
⋃
Γi, as

well as with all available ordering constraints. See Sec. 3.2.

3.1. Temporal Order from a Single Feature Set

The question we are facing is how to compute the or-

der set Γ of the images IS given the feature set S (the su-

perscript i is dropped for simplicity). Possible solutions to

this problem include recovering the trajectory of P in 3D or

in 2D. However, these solutions make several limiting as-

sumptions on the data, which we would like to avoid. We

next briefly review these approaches and then describe in

detail our solution.

3.1.1 Previous Solutions – Trajectory Recovery
Assume we can recover the 3D trajectory of P and sample

it at the time the images were captured. Then, the temporal

order of the image set, IS , is determined (up to time-flip) by

the spatial order of the 3D locations of P along its 3D tra-

jectory. Under the assumption of linear motion, the 3D tra-

jectory of P can be recovered using [2]. However, their so-

lution requires 5 or more fully calibrated images (|S| ≥ 5),

which is hard to obtain in reality and prone to errors due to

deviation from the linear motion assumption and sensitivity

to noise, as demonstrated in our experiments. Therefore, we

avoid 3D reconstruction and propose a 2D-based solution.

a b
Figure 2. Critical points: (a), a point p1 and two epipolar lines

(green and purple); each black dashed line, �, is in a different sec-

tor and induces different orders; the 3 sectors are define by 3 crit-

ical points that are marked on the unit circle centered in p1. (b), a

point and 3 epipolar lines; here not all critical points are marked;

see proof in Sec. 3.1.2.

Basha et al. [4] suggested recovering the 2D linear tra-

jectory of the point P in one reference image. Then, the 2D

projections of P at time {t(Ii)| Ii ∈ IS} could be easily

computed, and their 2D spatial order along the 2D trajectory

induce a unique temporal order of IS . The main drawback

of their solution is that it relies on a static camera, which

requires establishing reliable correspondence between fea-

tures in each of the input images and the reference one. This

assumption limits the spatial and temporal configurations of

cameras that can be considered by their method. Moreover,

they do not exploit all the available spatio-temporal infor-

mation. That is, only feature sets that involve the reference

image are used to induce the temporal order, and valuable

temporal information, such as known temporal orders of im-

ages taken by the same camera, is ignored. We suggest a 2D

geometric-based solution that extends the solution of Basha

et al. [4], but overcomes its main limitations.

3.1.2 Order Without Trajectory Recovery
We drop the static camera assumption, which means that

a unique order of IS , based on the recovered 2D trajec-

tory cannot be obtained as in [4]. Instead, we treat each

image Ij ∈ IS as a reference, and use it to compute a

set of ordering Γj = {σ1, σ2 · · · }. As a result, we obtain

n = |S| sets of temporal orders, Γ1 · · ·Γn. The intersection

Γ = Γ1∩· · ·∩Γn is the final set of ordering consistent with

the set S.

The main challenge is how to efficiently compute the set

Γj and we show that geometric and temporal constraints can

drastically reduce the size of Γj , compared to pure combi-

natorial considerations. For example, from a combinatorial

point of view there are ∼1043 possible ways to order a set

obtained by 10 cameras that take 5 images each. This is re-

duced by geometric constraints to only 103. In practice, it

can be further reduced to ∼4 using temporal constraints.

A Single Reference Analysis: W.l.o.g. let S = {pj}nj=1

such that pj ∈ Ij , and let I1 serve as a reference image.

Given that the fundamental matrix between image I1 and Ij
can be computed (i.e., enough inlier features were found),
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the corresponding epipolar line �(pj) ∈ I1 can be deter-

mined. Therefore, the available information in I1 is a fea-

ture point, p1, and a set of epipolar lines, {�(pj)}nj=1.

Assuming that P moves along a straight line L, the

projection of L onto I1 is a line � that intersects the set

{�(pj)}nj=1. The spatial order of the intersection points

along � induce the temporal order of the images, up to order

reversing. Unfortunately, the line � is unknown since we

dropped the static-pair assumption of [4]. In our case, any

line passing through p1 is a valid solution to �. Thus, a line

� is defined by its orientation. Since different lines may in-

duce different temporal orders (see example in Fig. 2(a)), a

unique order cannot be recovered in the general case. How-

ever, thanks to geometric and temporal constraints, we can

recover a small bounded number of valid orders.

Geometric Analysis: The key observation is that there

are ranges of orientations for which the temporal order in-

duced by � is fixed (up to order reversing). This is shown in

Fig. 2(a) for a particular configuration of one point and two

epipolar lines; the order defined by all lines in sector R1 will

be the same, and p1 will be between the pink and the green

lines, while in sector R2 the green line will be in the center.

With this observation in mind, we divide the image plane

into sectors, such that all lines within a sector give rise to

the same (up to reversing) temporal order.

We define the image sectors by critical points, which are

points on the unit circle centered at p1. Critical points are

formed by the intersection of two types of lines that inci-

dence at p1 with the unit circle. The first type are lines con-

necting the point p1 and the intersection of a pair of epipolar

lines �̂(pi, pj) = p1× (�(pi)× �(pj)). Each such line inter-

sects the unit circle at a critical point, ci,j . The second type

are lines passing through p1 and parallel to an epipolar line;

we denote these lines by �̂(pi). Each such line intersects

the unit circle at a critical point, ci. This is shown again in

Fig. 2(a), where there are three critical points, defining three

sectors, R1, R2 and R3.

The number of possible temporal orderings, |Γj |, is

bounded by the number of sectors (or critical points). In

fact, it can be further reduced by eliminating sectors that do

not fulfill the known temporal orders of images taken from

the same camera. We next use a toy example to illustrate

these bounds.

Two Ordered Image Pairs: Consider the case of two

cameras that move and capture two images each. That

is, S = {pi}4i=1, such that the temporal order of each

of the pairs {I1, I2} and {I3, I4} is known. In this case

there are 6 critical points given by {ci| 2 ≤ i ≤ 4}, and

{ci,j | i �= j, 2 ≤ i, j ≤ 4}.
Fig. 2(b) shows an example of four of these points and

the resulting sectors (R1-R4), while ignoring for the sake of

clarity the critical points c2,3 and c2,4. We make the follow-

ing claim:

Claim 1: There are at most 4 possible orders that are both
temporally and geometrically consistent.

Before we prove this case, let’s have a look at several

general observations that can be verified geometrically.

1. Time-Direction: All lines in the same sector induce the

same order, up to time-direction ambiguity. The known

temporal order between two images, w.l.o.g. I1 and I2, is

used to resolve this ambiguity. Hence, a single order is

induced in each sector.

2. Temporal Consistency: The order induced in each sec-

tor may be either consistent or inconsistent with all the

known temporal orders. In our example, if we are given

that t(I1) < t(I2) and t(I3) < t(I4) (the green before the

pink), then the sectors R2 and R4 are consistent, while

R1 and R3 are not.

3. Adjacent sectors: The orders induced in adjacent sectors

are different. In particular, when crossing a critical point,

ci,j , the order of �(pi) and �(pj) alternates. When cross-

ing a critical point, ci, the rank of �(pi) in the induced

order is changed from the first to the last or vice versa.

A special case is the critical point c2, since �(p2) is used

to define the time-direction. When crossing c2, the time-

direction flips to preserve the order of I1 and I2, and the

rank of �(p2) in the induced order does not change, while

the order of all others is reversed.

Proof Claim 1: We prove that at most 4 sectors are con-

sistent with the known temporal orders. We assume that

the time-direction is determined by the order of I1 and I2.

Hence, the question is how many sectors are consistent with

the temporal order of I3 and I4?

Let’s consider only the critical points that affect the order

of I3 and I4: c2, c3, c3,4 and c4. These points define 4 sectors

(see Fig.2). From observation (3), the order of �(p3) and

�(p4) alternates in these sectors. Hence, only two of them

are consistent with the known order of I3 and I4.

Now consider the additional critical points, c2,3 and c2,4,

that add two sectors. Each of them can split either an in-

consistent sector or a consistent one. In the first case, the

number of consistent sectors remains 2. In the second case,

a consistent sector is replaced by two consistent ones. Thus,

it follows that the maximum number of consistent sectors is

4 and is obtained if each of c2,3 and c2,4 splits a consistent

sector. In this case, we end up with 4 valid permutations of

the 4 images. QED.

Note that the proof is independent of the specific order

of the critical points shown in Fig 2.

The General Case: Consider a set S such that IS consists

of images taken from k cameras, nj images from camera j.

The number of temporal permutations of IS from a combi-

natorial point of view is given by:

π = n!/
k∏

j=1

(nj !).
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a b c d
Figure 3. Synthetic Experiment: (a), 3D visualization of the camera setup; the camera color encode the same camera at different locations;

(b), the computed mean error and its variance when adding Gaussian noise with increasing variance; (c-d), the mean error and its variance

when increasing the number of cameras, or increasing the maximum images taken by each camera, respectively; the number of images is

shown with each bullet.

Note that π is smaller than n! but still can be very large.

For example, if we have 10 cameras taking 5 images each,

then π = 50!/(5!)10 = 4.9 ·1043. Using the geometric con-

straint, the number of critical points is an upper bound of

the number of orders: πCP ≤
(
n−1
2

)
+ n− 1. For the exam-

ple above, πCP ≤ 1225.

As in the two ordered pairs case, we can further reduce the

number of valid orders by determining the sectors that are

temporally consistent. However, obtaining a complete char-

acterization of the general case remains open.

Computing Γ in Practice: Given a feature set S we com-

pute the set of n(n − 1)/2 critical points. For each sec-

tor, Rj , a single representative line � ∈ Rj is selected,

and the temporal order induced by this sector is computed.

In case all available temporal constraints for S are satis-

fied, the computed order is added to the order list, Γ. This

process is repeated for all images in IS . The intersection

Γ = Γ1 ∩ · · · ∩ Γn is the final list of valid ordering consis-

tent with the set S.

3.2. Rank Aggregation

We follow [4] and adopt the Markov Chain based solu-

tion of [6] to the rank-aggregation problem. Due to space

limitation, we describe only the modifications with respect

to [4]. In our case, each feature generally votes for more

than a single order, and we set the weight of the vote to

be inverse proportional to the number of orders it votes for

(|Γi|). These votes are accumulated in the auxiliary matrix,

which is used to compute the transitivity matrix, M . In ad-

dition, the global order should be consistent with the known

temporal orders (of images taken by the same camera) in

addition to the computed partial orders
⋃
Γi. Thus, we set

the entries of M that correspond to the pairwise known tem-

poral orders to have probability of 1 (maximum) and then

normalize the rows of M again to sum to 1.

4. Results
We tested our method on both synthetic and real data.

To quantitatively evaluate the results, we measured the per-

centage of incorrect pairwise orders out of the total num-

ber of image pairs, known as the Kendall distance. That

is, the error ranges from 0% (the order is perfectly cor-

rect) to 100% (all pairwise orders are incorrect). For all the

real datasets, the fundamental matrices between the image

pairs were computed using the BEEM algorithm [7]. Fea-

ture points were detected and matched across images as in

[4], using corners and NRDC matching [8].

4.1. Synthetic Data
We evaluated in a controlled manner two important prop-

erties of our method: robustness to noise and scalability. To

this end, we generated synthetic data by simulating a 3D

scene that is captured by freely moving cameras. The cam-

eras were placed in a half circle, facing the center. The 3D

scene consisted of multiple 3D lines that were chosen in-

side a bounding box located in the center of the circle (see

Fig. 3).

The number of cameras as well as the number of 3D lines

were manually set, whereas several other parameters were

randomly generated, including the locations of the cameras,

the 3D lines, and the number of images captured by each

camera. Each 3D line was associated with a random subset

of the cameras (in the range of 2% - 40% of the total num-

ber of cameras). For each chosen camera, the 3D line was

projected to a random subset of its images.

Theoretically, there is no limitation to the scalability of

our method as long as the motion of 3D points is not pe-

riodic, and provided that dynamic features are correctly

matched in as many images as needed. Clearly, these con-

ditions are not likely to hold in practice. To simulate a real-

istic scenario, we computed the fundamental matrices only

for relatively proximate image pairs (i.e., the angle between

their centers of projection and the center of the circle is be-

low 60◦). We repeat each test five times, and report the

mean error and standard deviation. The following experi-

ments were conducted:

Robustness to Noise: To assess robustness to noise, we

added Gaussian noise with zero mean and increasing vari-

981981
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a b c d
Figure 4. RockClimbing, HandWave and Carnival: (a-c), the detected dynamic features are marked in green over the images, and (d),
the same feature set as seen in two different reference images; in each image, an arrow marks the feature point; the epipolar lines are

marked in different colors according to their index (see legend); the available temporal constraints are shown on the bottom.

ance (measured in pixels) to the 2D features, while fixing

the rest of the parameters. In particular, we used 54 images

taken by 10 freely moving cameras (each camera provided

a maximum of 10 images). The 3D scene consisted of 100

3D lines, where each line was projected to only 3 images on

average; the fundamental matrices were computed between

58% of the image pairs. Fig. 3(b) shows the computed mean

error and standard deviation. As expected, the mean error

increases with the noise level. Yet, the maximum mean er-

ror is below 6% incorrect pairwise orders out of a total of

1431 image pairs.

Scalability: In this experiment, we evaluated the scalability

of our method in the total number of images and considered

two cases: increasing the number of cameras, or increasing

the number of images captured by each camera. In both

cases, we again used 100 lines, and added a fixed level of

Gaussian noise with variance equal to one. The average

set size (i.e., the number of images in which each dynamic

feature appears) in all experiments was in the range of 3 to

7, and the fundamental matrices were computed for 60% of

the image pairs.

Increasing the Number of Cameras: In each experiment

we increased the number of cameras (and therefore the total

number of images). The maximum number of images pro-

vided by each camera was fixed to 5 in all trials. As can be

seen in Fig. 3(c), our method scales up with the number of

images; the computed mean error increases at first but then

stabilizes.

Increasing the Number of Images per Camera: Increas-

ing the number of images per camera increases the number

of ordering constraints, which should lead to a better solu-

tion. However, since there are more images to order, the

number of possible permutations of all images is always in-

creasing, making the problem more challenging. In each

trial, we increased the maximum number of images pro-

vided by each camera (the actual number of images was

randomly chosen for each camera in the range of 1 to a pre-

defined maximum value). As can be seen in Fig. 3(d), the

error indeed increases with the number of images, but the

errors are lower than in the previous case.

4.2. Real Data – RockClimbing & HandWave
We tested our method on the real datasets, RockClimbing

and HandWave, provided by [13]. In each of the datasets,

the scene consists of one dominant non-rigidly moving ob-

ject, captured by multiple, freely moving, photographers.
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a b c d
Figure 5. Stroboscopic images: the results of aligning the static regions of the images and overlaying them with proper masking (see

Sec.4.5). (a),(b), stroboscopic images that consist of 3 and 4 images, respectively; the images are nicely distributed in time; (c),(d),
stroboscopic images that consist of 6 and 7 images, respectively; the dynamic objects intersect.

Since our method assumes that the motion is not periodic,

we extracted the relevant images for each of the datasets.

For example, in the original RockClimbing dataset, the man

climbs up and down the wall, but we extracted only the im-

ages up to the time he reaches the top.

The correspondences of dynamic features across the in-

put images and the ground truth order were given by [13].

It is important to note that due to major differences in the

viewpoints, the fundamental matrices could not be com-

puted between all image pairs. 54% of the fundamental ma-

trices were computed for RockClimbing and 70% for Hand-
Wave. Thus, although the dynamic features were manually

extracted and matched across all images by [13], the actual

size of the feature sets was much smaller.

Our method successfully recovered the correct temporal

order of 19 images of RockClimbing taken by five cameras,

and 14 images of HandWave taken by four cameras. The

details of these experiments are summarized in the first two

columns of Table 1. Fig.4(a)-(c) shows three of the input

images for each dataset, each taken by a different camera.

The dynamic features are marked in green over the images.

In addition, Fig.4(d) shows the information available from a

single feature set in two different reference images. For the

RockClimbing, the feature set consists of 10 images, taken

by 3 cameras, whereas the HandWave feature set consists of

7 images taken by 4 cameras.

Voting by 3D Reconstruction: Here, we tested the 3D ap-

proach to photo-sequencing (see Sec. 3.1) on RockClimbing
and HandWave by replacing our 2D based voting scheme

with a 3D reconstruction of lines. In particular, we used the

method of Avidan & Shashua [16] to reconstruct the 3D lin-

ear trajectory of each 3D dynamic feature and the 3D loca-

tions along it. The temporal order is then given by the spa-

tial order of the 3D locations along the line. Except for the

voting, the rest of the framework remained the same. The

calibration was obtained from [13] using structure from mo-

tion. For the HandWave dataset, 28% of the 91 pairwise or-

ders were incorrect, and for the RockClimbing dataset 43%

out of the 171 pairwise orders were incorrect. This demon-

strates that 3D reconstruction is indeed highly sensitive to

noise and deviations from the linear motion assumption, and

is far more error-prone than our 2D voting approach.

4.3. Real Data – Carnival

This dataset consists of ten images taken by three hand-

held mobile phones: iPhone 5 & two Galaxy SII. Two of the

mobile phones provided four images each, while the third

one provided two images. This dataset is very challenging

because the scene consists of many transient objects (people

in a crowd) that move inconsistently. In addition, the view-

points are significantly different, making the preprocessing

stage even more challenging and noisy. As can be seen in

the last row of Fig. 4, some of the detected dynamic features

are incorrect and belong to the background. The change in

viewpoints can be seen by the varying background in each

of the input images in the last row of Fig. 4.

For this dataset, 53% of the fundamental matrix pairs

were computed. Note that [4] could not be applied here

since each image was taken from a different viewpoint.

More importantly, none of the images could be reliably

matched to all other input images. We successfully obtained

the correct order of all ten images.

4.4. Real Data – Boats

We tested our method on the Boats dataset provided by

[4]. The original dataset consists of 15 images, taken by

two hand-held mobile phones (iPhone 4), where ten of the

images were taken by the first camera, and five by the other

one. In [4], two reference images were manually selected,

i.e., the image pair taken by the static camera. Our method

was not provided with any prior information except for the

known temporal constraints. We successfully recovered the

correct temporal order with no error. We then added 9 more

images to the original data (24 images in total) and still

managed to have zero error.

The main challenge in this dataset was matching the dy-

namic features due to the change in appearance of the boats

(avg. feature size was only 3.4). Since the viewpoints are

983983



R.C. H.W. Carnival Boats

# Cameras 5 4 3 2

# Images 19 14 10 24

# Dyn. Features 45 65 147 514

Avg. Set Size 12.7 11 3.7 3.4

Avg. # Orders per Ref. 5.6 6.4 3.5 2.3

Avg. # Orders All Ref. 3.9 3.7 1.8 1.5

Table 1. For each of the datasets the table shows: number of cam-

eras, number of images, average feature set size (|S|), average size

of the order set per reference (|Γi
j |), and average size of the order

set after intersection from all references, (|Γi|).

relatively close, the fundamental matrices were obtained for

all image pairs. The details of this test are shown in the last

column of Table 1.

4.5. Visualization & Alignment

We visualize our results by aligning the static regions

of the images and overlaying them according to their com-

puted order. Then the warped images can be played, in

the computed order, as a single video sequence, or can be

chained into one image (see Fig. 1). To do so, we com-

pute the optimal similarity transformation of all images to

the first image in the sequence. For images that were suc-

cessfully matched to the first image, the transformation is

directly computed. Otherwise, we find the shortest path in

a graph in which each image is a node, and an edge exists

between node i and j, if a matching was found between im-

ages Ii and Ij . If there is only one dynamic object in the

scene, the aligned images can be integrated into a single

“stroboscopic-like” image (See Fig. 5(a-b)). The temporal

order can, in some cases, be determined by the spatial order

of the features in the stroboscopic image but this will not

work in the general case as, Fig. 5(c-d) shows.

5. Limitations & Conclusions
Our method relies on point matching to work properly.

Since all we care about is the order of images, we can toler-

ate inaccuracy and partial information in both the computed

geometry and the matching of dynamic features. However,

we may fail when such errors lead to wrong voting, or in

the degenerate case where the motion of an object is par-

allel to some of the epipolar lines. For example, when we

added 6 images that caused wrong voting to the RockClimb-
ing dataset, and two more to HandWave, the error increased

to 4%, and 2.5%, respectively.

To conclude, we extended photo-sequencing to handle

more general space-time camera configurations by dealing

with space-time tradeoffs. In particular, we dropped the

static camera assumption of [4] and compensate for the un-

certainty in space by adding temporal certainty that stems

from our knowing the order of images taken by each cam-

era. Experiments on synthetic and real data demonstrate the

advantages of our method.
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