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Abstract

We present a multi-attributed dictionary learning algo-
rithm for sparse coding. Considering training samples
with multiple attributes, a new distance matrix is proposed
by jointly incorporating data and attribute similarities.
Then, an objective function is presented to learn category-
dependent dictionaries that are compact (closeness of dic-
tionary atoms based on data distance and attribute similar-
ity), reconstructive (low reconstruction error with correct
dictionary) and label-consistent (encouraging the labels of
dictionary atoms to be similar). We have demonstrated
our algorithm on action classification and face recognition
tasks on several publicly available datasets. Experimental
results with improved performance over previous dictionary
learning methods are shown to validate the effectiveness of
the proposed algorithm.

1. Introduction
Sparse coding technique attracts more and more atten-

tion because of its success in a variety of image processing

and computer vision applications. It recovers a sparse lin-

ear representation of a query datum with respect to a set of

non-parametric basis set, known as dictionary. Originally,

predefined dictionaries based on various types of wavelets

have been used. Lately, learning the dictionary instead of

using predefined bases has been shown to improve signal

reconstruction significantly.

Dictionary learning of sparse representation is aimed to

find the optimal dictionary that leads to the lowest recon-

struction error with a set of sparse coefficients. Wright et

al. [18] exploited the entire training set as the dictionary and

proposed the sparse representation classification (SRC) for

robust face recognition. Some algorithms learn category-

dependent dictionaries [12, 10, 14] since solving the sparse

coding problem with multiple sub-dictionaries has the ad-

vantages of lower computational complexity and straight-

forward implementation with parallel computing compared

to that with a single universal dictionary. Mairal et al. [12]

assumed a correct dictionary associated with one class

Figure 1. Example of utilizing multiple attributes in dictionary

learning for sparse representation with attributes of facial expres-

sions, pose variations and lighting conditions.

should provide better reconstruction than those using incor-

rect dictionaries. An additional term was introduced into

the cost function to improve the discrimination power.

The K-SVD algorithm [1] learns an over-complete dic-

tionary from a set of signals. It has achieved good perfor-

mance for the image denoising problem. Since it focuses

on the representation power of the dictionary without con-

sidering the discrimination capability, the Discriminative

K-SVD algorithm (D-KSVD) [20] achieved the represen-

tational and discriminative dictionary learning in a unified

process. Other algorithms adding the discriminative term

into the objective function can be found in [19]. Submod-

ular dictionary learning [9] models the selection of the dic-

tionary columns and the sparse representation of signals as

a joint combinatorial optimization problem. Later, a com-

pact and discriminative submodular dictionary learning was

proposed by a greedy-based approach [6].

In addition to the criteria of reconstruction and discrim-

ination, data labels have also been considered in dictionary
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(a) Attributed data points and their connectivity (b) Dictionary selection by data connectivity

(c) Dictionary selection by data attributes (d) Dictionary selection by data connectivity and attributes

Figure 2. Dictionary selection by considering data connectivity and attribute similarity.

learning. A label consistent K-SVD (LC-KSVD) algorithm

[5] associated the class labels with each dictionary atom to

enforce discrimination in sparse codes. A similar approach

can be also found in [6]. A recent work [16] learned a con-

text aware dictionary by a set of labeled training images to

predict the presence of objects in images. In the existing

methods, only single attribute or class label is considered in

the dictionary learning problem. However, in real-world ap-

plications, data samples usually contain multiple attributes.

For the face recognition problem, as depicted in Figure 1,

a test face image from a person with the smile expression

and -45◦ head pose under a specific lighting condition may

be better reconstructed using dictionary atoms from close

pose (-45◦ in the green region), similar lighting (Light 2 in

the blue region) and same expression (smile in the yellow

region). Obviously, linear combination of data from differ-

ent geometrical configurations, such as poses, expressions

or others, could never give a new correct data point but only

blurry images. It is better not to mix data points with dif-

ferent attributes. We argue that the problem of dictionary

learning can be beneficial by considering multiple attributes

of data points simultaneously with the reconstruction to en-

hance the discrimination power of dictionary, which has not

been well addressed in the previous literature or handled in

an effective way.

In this paper, we present an algorithm for learning dis-

criminative category-dependent dictionaries from a set of

training images which are labeled with multiple attributes.

A novel objective function is proposed for the above pur-

pose. It consists of three terms. The compact term fa-

vors close dictionary atoms by utilizing both data and at-

tribute similarity into one unified distance measure. The

reconstruction term introduces the representative ability by

selecting dictionary atoms with minimal reconstruction er-

rors. Last, the label term enforces label-consistent dictio-

nary atoms from multi-attributed training samples. The

main contributions of this paper are:

• A unified distance measure is proposed by mapping the

data points and their attributes into a graph. The tran-

sition probability of the graph is utilized to measure a

new distance on how close the sample pair is and how

similar the attributes they share simultaneously.

• We present an objective function for dictionary learn-

ing that considers the data representation capability,

the discrimination power, and label consistency of

multiple attributes in a unified framework.

• We demonstrate the effectiveness of our method

through the action classification and face recognition

experiments on several publicly available datasets, in-

cluding IXMAS [17], AR Dataset [13], and CMU PIE

dataset [15]. Our algorithm achieves state-of-the-art

performance.

2. Problem Statement
Given a signal x in Rm, a sparse approximation over a

dictionary D in Rm×k is to find a linear combination of

a few atoms from D that is close to the signal x, where

the k columns selected from D are referred to as dictionary

atoms. It optimizes the following cost function:

R(x,D) = min
α∈Rk

1

2
‖x−Dα‖22 + λ ‖α‖1 (1)

where λ is a parameter that balances between reconstruc-

tion error and sparsity. The l1-constraint induces sparse so-

lutions for the coefficient vector α. In this paper, we aim to
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learn K category-dependent dictionaries. Therefore, dictio-

nary D can be represented as D = [D(1), ..., D(K)], where

K is the number of class. A set of training data is de-

fined as X(k) = [xk
1 , ..., x

k
nk
] ∈ Rm×nk , where X(k) is

the samples from class k, nk is the number of total train-

ing samples in class k. The whole training set is defined as

X = [X(1), ..., X(K)]. In this work, we consider our data

has multiple attributes. For the face recognition problem,

the attributes could be facial expression, face pose or a light-

ing condition, etc. Denote the attribute set A = [a1, ..., ar]
of r attributes. In each attribute, it may have several types.

For example, the attribute for facial expression may be the

smile, angry or screaming type. The types in attribute ai are

defined as ai = [ai1, ..., a
i
ni
].

Considering data distance and attribute similarity in dic-

tionary learning problem, we can combine these two terms

with appropriate weighting. However, it is difficult to tune

the weighting coefficients to achieve optimal performance

as the number of attribute increases. To learn the dictio-

nary automatically and deterministically, we model the dic-

tionary learning as a clustering problem. First, data samples

and their multiple attributes are mapped into a graph. A new

distance of measuring the pairwise relationship is proposed

by considering both the Euclidean distance and shared at-

tributes between a pair of data points. Then, the dictionar-

ies are learned by partitioning the graph into K clusters via

minimizing the objective function which enforces the dic-

tionary to be compact, reconstructive and label-consistent.

3. Distance Measure of Data and Attributes
To realize how dictionary can be selected by graph clus-

tering based on data connectivity (the k-nearest-neighbor

relationship) and shared attributes, a simple example is de-

picted in Figure 2. In Figure 2 (a) data points are connected

to their nearest neighbors by edges. Each data point is la-

beled by their multiple attributes. (p1, smile, 90◦, dark)

represents that the image is from person 1 with smile ex-

pression, 90◦ face pose and captured under dark lighting

condition. In Figure 2 (b), dictionary selection considers

only data connectivity. In Figure 2 (c), data points sharing

two out of three attributes are clustered. We argue that dic-

tionary selection can be better achieved based on data con-

nectivity and their multiple attributes, which is illustrated in

Figure 2 (d). In this paper, we integrate the data distance

and attribute similarity into a unified framework based on

the construction of an augmented graph.

3.1. Graph Construction

We construct a directed graph by mapping the training

set X into the graph G = (V,E), where V is the set of

vertices, E is the set of edges. An edge eij ∈ E exists be-

tween vertex vi and vj if vj is the k-nearest-neighbor of vi.
Except for data vertices, we also add vertices for attributes

Figure 3. Example of adding attribute vertices into the graph.

into graph G. Assume an attribute set A = [a1, ..., ar]
containing a total number of r attributes which are asso-

ciated with vertices in V . Denote the types in attribute

ai by [ai1, ..., a
i
ni
]. Attribute vertices Va can be defined to

associate with type j, j=1,. . . ,ni, of attribute i as Va =
{{vai

j }ni
j=1}ri=1. An edge between a data vertex and an at-

tribute vertex (vi, v
ai
j ) ∈ Ea is constructed if the data ver-

tex vi has the attribute ai with the type aij . There is no

edge between two attribute vertices. Then, we can define an

augmented graph with attributes Ga = (V
⋃
Va, E

⋃
Ea).

Figure 3 depicts an example that adds a pose attribute a1
into the graph. (va1

1 , va1
2 ) represents the types (45◦, 90◦) of

the pose. For brevity, the data vertices are called D node
and the attribute vertices are called A node for the rest of

this paper.

3.2. Unified Distance Measure

In the augmented graph, if a path exists between two ver-

tices, they are connected either by edges in edge set E from

k-nearest-neighbors or by Ea which indicates they share the

same type of attribute. Therefore, if there are multiple paths

between two vertices, they are close to each other. Discon-

nected vertices or vertices with just a few paths between

them imply their distance is far. Here, we use the random

walk model [4] to measure the distance between vertices.

The transition probability matrix P for a graph is defined

as an N -by-N matrix, where N is the number of vertices.

The entry Pql indicates the probability of traveling from ver-

tex vq to vertex vl. The transition probability matrix P that

we can travel between two vertices in s steps is defined as:

P (1) = P, P (s) = P (s−1) ∗ P = P s. The neighborhood

random walk distance is defined as:

d (vq, vl) = 1−
S∑

s=1

P (s) (vq, vl) (2)

where s is step size of random walk. The transition prob-

ability measures reaching vl in 1, ..., S steps starting at vq .

The higher probability means the shorter distance between

two vertices.
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Next, we give the definition of transition probability

among D node and A node. The transition probability from

a vertex vq in D node to another vertex vl in D node is de-

fined by:

P (1)(vq, vl) =

{ 1
|Ω(vq)|+r if (vq, vl) ∈ E

0, otherwise
(3)

where |Ω(vq)| represents the number of neighbors of vertex

vq . It means vq can reach vl in one step with the probability
1

|Ω(vq)|+r if vq and vl are connected by a edge. This is intu-

itive since vq has Ω(vq) + r edges to other vertices. Here,

the distance is defined based on the number of connected

vertices. An alternative is to utilize some weights attached

to the edges, such as the likelihood of the connection. Sim-

ilarly, the transition probability from a vertex in D node to

a vertex in A node is given by:

P (1)(vq, v
ai
j ) =

{ 1
|Ω(vq)|+r if

(
vq, v

ai
j

) ∈ EA

0, otherwise
(4)

The transition probability from a vertex in A node to a ver-

tex in D node is given by:

P (1)(vai
j , vq) =

{
1

|Ω(v
ai
j )| if

(
vai
j , vq

) ∈ EA

0, otherwise
(5)

Since there is no edge between any two A node, the transi-

tion probability is zero between two vertices in A node:

P (1)(vai
j , vas

t ) = 0, ∀vai
j , vas

t ∈ VA (6)

From the transition probabilities defined by Eq. 3 to Eq. 6,

we are able to compute the transition probability matrix of

graph Ga. In Figure 3, we use only the pose attribute for

example. There are totally eleven vertices. An example

of the transition probability matrix P for nine vertices in

D node and two vertices in A node is given below:

p(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/5 .. 0 0 0 1/5
1/3 0 .. 0 0 0 1/3
: : : : : : :
0 0 .. 0 1/3 1/3 0
0 0 .. 1/3 0 1/3 0
0 0 .. 1/6 1/6 0 0
1/3 1/3 .. 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where the order of rows and columns corresponds to ver-

tices (v1, v2, ..., v8, v9, v
a1
1 , va1

2 ). By defining the transition

probability between vertices in the augmented graph, we

can note that for two vertices vq and vl with the same con-

nectivity in graph Ga, if a vertex vt shares more attributes

Figure 4. Example of closer vertices when sharing more attributes.

with vq than vl, the distance d(vt, vq) is less than d(vt, vl).
A simple example is given in Figure 4. Vertices v2 and v3
have three edges connecting to other vertices in D node.

Vertex v1 shares the same attributes (90◦, angry) with v3
and shares only one attribute 90◦ with v2. Intuitively, there

are only two paths from v1 to v2 whereas three paths exist

between v1 and v3. In other words, the transition proba-

bility from v1 to v3 is higher than that between v1 and v2.

Therefore, d(v1, v3) is less than d(v1, v2).

4. Multi-Attributed Dictionary Learning
Base on the unified distance measure of data and at-

tributes, we propose a novel Multi-Attributed Dictionary

Learning (MADL) scheme. Instead of learning a dictionary

for the entire dataset, we learn K category-dependent sub-

dictionary D(1), ..., D(K). Denote D = [D(1), ..., D(K)].
Dictionary learning aims to be compact (closeness of dic-

tionary atoms based on data distance and attribute similar-

ity), reconstructive (low reconstruction error with correct

dictionary), and label-consistent (encouraging labels of dic-

tionary atoms to be similar). In the following, we formu-

late the multi-attributed dictionary learning problem and de-

scribe the novel objective function for the optimization.

4.1. Compact Term

We use the compact term to constrain the dictionary

atoms to be selected under closer data distance or with more

shared attributes to the centroid. The pair-wise distance ma-

trix computed from Eq. 2 is utilized. Denote v̄(k) the cen-

troid of atoms in dictionary D(k). To minimize the intra-

class distance over the data and attributes, the compact term

is defined as:

C(D) =
K∑

k=1

∑
∀vq∈D(k)

d(vq, v̄
(k)) (8)

In the dictionary selection process, an atom vq is assigned

to dictionary D(k) if it satisfies:

k∗ = argmin
k

d(vq, v̄
(k)) (9)

4.2. Reconstruction Term

It is critical to learn a dictionary which is representative,

i.e. with low reconstruction error, since the discrimination
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power relies on low reconstruction error for representing

a data sample using the correct dictionary. A reconstruc-

tion term is introduced to encourage dictionary selection

with minimal reconstruction error during training process.

Therefore, the reconstruction term can be defined as:

R(D) =
K∑

k=1

∑
∀vq∈D(k)

‖vq −D(k)α(k)
q ‖2 (10)

An atom vq is assigned to dictionary D(k∗) if it satisfies:

k∗ = argmin
k
‖vq −D(k)α(k)

q ‖2 (11)

In Eq.10, the sparse coefficients can be solved by a set of

initial dictionaries. Then, dictionaries are updated itera-

tively. Each time we solve Eq.10 by using the learned dic-

tionaries from the previous iteration. The details are given

in Section 5.

4.3. Label Term

In the dictionary learning based on multiple data at-

tributes, the attribute labels within a sub-dictionary are en-

couraged to be consistent, as suggested by [5, 6]. Denote

Nk
i,j to be the number of labels with type j of attribute

ai in dictionary k. The label consistency can be evaluated

by counting the maximal number of types in each attribute

across all classes. The label term is given as:

L (D)=
K∑

k=1

⎛
⎜⎜⎝1

r

r∑
i=1

Nk
i,j∗

ni∑
j=1

Nk
i,j

⎞
⎟⎟⎠,where j∗ = argmax

j
Nk

i,j

(12)

where j∗ is the label type for attribute i, in dictionary k with

the maximal number. The summation is normalized by the

total attribute number r.

We calculate the increment of label number when adding

a sample into the sub-dictionary. Let N̂k
i,j be the number of

labels with type j of attribute ai in dictionary k after adding

one sample vq into this dictionary. A training sample vq is

assigned to dictionary k if it satisfies:

k∗ = argmax
k

1

r

r∑
i=1

((N̂k
i,j∗ −Nk

i,j∗)

−
ni∑

j=1,j �=j∗
(N̂k

i,j −N)ki,j) where j∗ = argmax
j

N̂k
i,j

(13)

The above formulation includes two parts. The first part

calculates the difference of the current maximal number of

type after adding one sample into this dictionary. The sec-

ond part accumulates the difference in the other types. Since

any sample contains one label type in each attribute, if the

label falls in the first part, the function is incremented by

1. Otherwise, it is −1. One can expect if all attributes of a

sample fall in the categories with the maximal number, the

function returns the value 1 (after normalization by r). For

other cases, smaller values or negative values are given.

5. Optimization of MADL
The objective function of multi-attributed dictionary

learning combines the compact term, reconstruction term

and label term. The solution is obtained by minimizing the

objective function given as follows:

min
D

C(D) +R(D)− L(D) (14)

Directly minimizing the object function is a non-convex

problem. A K-Medoids clustering method [7] is exploited to

find the solution iteratively: the most centrally located data

sample in a cluster is selected as a centroid according to the

learned distance matrix. Then, assign the rest of the sam-

ples to their closest centroids. In each iteration, centroids

and clusters are updated according to the above objective

function. The process is repeated until convergence. De-

tails for each step are given as follows:

Initialization: We use the class configuration of the train-

ing set and adopt the number K to initialize the number of

centroids. This avoids the major obstacle of K-Means based

methods to predict the number of clusters k in prior. In our

method, X(k), k = 1, . . . ,K are used as initial dictionaries.

Distance between a pair of samples: We can note that

both compact term and label term range from 0 to 1 whereas

the reconstruction term does not. Here, a reconstruction er-

ror vector is defined to make its range from 0 to 1 as well

so that these three terms can be combined easily. Define

a reconstruction error vector associated with a data sample

vi as e(vi) = [e1(vi), . . . , ek(vi)], where ek(vi) is the re-

construction error of sparse coding using dictionary D(k).

Denote drecon(vq, vl) the distance of reconstruction error

of two samples. It can be constructed by the cosine distance

of a pair between e(vq) and e(vl).
Find a new centroid: The centroid is supposed to have

the minimal distance to all members within this cluster. The

unified distance matrix learned in Section 3.2 is used to find

centroids of clusters.

Cluster update: After new centroids are decided for all

clusters, data points are assigned to new clusters according

to their nearest centroids based on the summed-up distance

of three terms.

Termination: The iteration is repeated to update the cen-

troids and cluster. The process terminates when there is no

change for clusters. The algorithm is given in Algorithm 1.
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Algorithm 1 The MADL algorithm.

1: Initialization: Calculate the unified distance matrix.

Set initial dictionary D(k) by X(k). Calculate centroid

of v̄(k) of D(k), k = 1, . . . ,K.

2: repeat
3: for each data point vq
4: Calculate compact and label term by Eq.9 & Eq.13,

5: Solve sparse coefficients for vq using D(1), . . . , D(k),

6: Calculate drecon(vq, v̄
(k)) using e(vq),

7: Compute the distance of vq to each centroid v̄(k),
8: Switch vq to a new cluster if the distance decreases,

9: end

10: Update centroid v̄(k) of D(k), k = 1, . . . ,K.

11: until no new assignment occurs

12: Output: D(1), . . . , D(k).

Figure 5. Sample images in the IXMAS Action Database.

It is proven that the convergence of the K-medoid algorithm

is fast [8]. It occurs usually within six iterations.

Classification: After the iteration terminates, the

category-dependent dictionaries are learned. For classifi-

cation, a test sample is sparse coded by each sub-dictionary.

The class label of the test sample is decided by counting

the label with maximal number from non-zero coefficients

using the dictionary with minimal reconstruction error.

6. Experimental Results
We apply the proposed Multi-Attributed Dictionary

Learning (MADL) to the task of action recognition and face

recognition in our experiments. Our method was evaluated

in the following datasets: IXMAS Human Action Dataset

[17], AR Face Database [13], and CMU PIE database [15].

Since our method is nearly parameter-free except for the

sparsity factor when solving the sparse coefficients, there is

no complicated parameter setting. Following the work [5],

the sparsity factor was set to 30 in our experiments. We

used the tool package cvx [3] for solving the optimization

problem with sparse coding.

We compared our results with K-Means, SRC [18] and

other dictionary learning algorithms: SPAMS [11], FDDL

Figure 6. Angles of actions in the IXMAS Action Database.

Table 1. Recognition accuracy (%) on the IXMAS Human Action

Database.

#Tr / #Te 495 / 1485 990 / 990 1485 / 495
SRC [18] 61.41 66.87 69.29

SPAMS [11] 59.53 67.27 68.08

FDDL [19] 42.97 47.98 45.25

K-SVD [1] 54.93 59.37 58.44

LCSVD1 [6] 38.04 61.36 63.60

LCSVD2 [6] 51.92 60.67 63.69

Proposed 64.27 68.34 70.86

[19], K-SVD [1] and LCSVD [6]. K-Means is a traditional

clutering method, which is used as a baseline method in our

comparison. SRC achieved good performance for classifi-

cation. Among the dictionary learning methods, SPAMS

learns the dictionary by matrix factorization in an online

learning manner. FDDL adopts the Fisher discrimination

criterion into the dictionary learning, which also learns

class-specified dictionaries. We also compare our method

with LCSVD which uses class labels (single attribute only)

in their formulation to learn dictionaries. We ran the codes

of the previous works and our own program for the pro-

posed algorithm on our training/testing datasets to compare

the experimental results.

6.1. Evaluation on IXMAS Action Database

IXMAS Human Action Database [17] contains eleven

actions (check watch, cross arms, scratch head, sit down,

get up, turn around, walk, wave, punch, kick, pick up). Each

is performed three times by twelve actors. Each action is

captured from five cameras observing the subjects with very

different angles. Thus, it is also a multi-view dataset. Fig-

ure 5 shows some sample images of actions from IXMAS

multi-view human action dataset. In this dataset, each actor

performs actions at varying orientations and positions.

It is a challenging task to recognize human actions in

this dataset because the same action recorded from the same
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Figure 7. Sample images of AR Face Database

camera in different time exhibits large variations in ap-

pearance. Images are cropped with the height of human

was scaled to M (M = 120). The motion-history image

(MHI) [2] is extracted from the image sequences for spatio-

temporal representation.

Two attributes are exploited in this dataset: action and

angle. In the attribute of action, there are eleven types of

actions. For the angle attribute, the angles were quantized

into eight sections. Since the camera of top view (Cam4)

is very different from the others. Eight angle sections are

separated from those from Cam0 to Cam4, making it totally

16 angle sections, as depicted in Figure 6. We manually

labeled the angle of each image and eliminated angles with

no image. There are totally eleven angles as our second

attribute. We extracted 1980 MHI images from the dataset

for eleven actions. In this experiment, we used three data

splits (SP): 495, 990 and 1485 MHI images were randomly

selected for training while the rest of the images were used

for testing. PCA was applied to reduce the data dimension

to 400. The quantitative comparison of the experimental

results is shown in Table 1. We can note that SRC shows

good recognition results. By adopting multiple attributes,

the proposed MADL outperforms LCSVD which uses only

single attributes. In the meanwhile, MADL also provides

the highest recognition accuracy in three different train and

testing configurations.

6.2. Evaluation on AR Face Database

The AR database consists of over 4000 frontal images

from 126 individuals. For each individual, 26 images were

taken in two separate sessions. Since there are many kinds

of variations in this dataset, we exploited five attributes: 1.

identity, 2. facial expression, 3. lighting, 4. sun glasses and

5. scarf, as shown in Figure 7. A subset that contains 50

males and 50 females was chosen from the AR dataset. So,

there are 100 types in the attribute of identity. The database

contains four types of facial expressions: neutral, smile,

anger and scream. In the lighting conditions, there are left

light on, right light on and all side lights on. For sun glasses

and scarf, some wear them and some do not. In the case

that we only have 26 images for each person, we cannot

have very fine types in each attribute. Otherwise, the image

Table 2. Recognition accuracy (%) on the AR Face Database.

#Tr / #Te 8 / 18 13 / 13 21 / 5
K-Means 23.83 19.38 23.40

SPAMS [11] 76.72 86.85 94.80

FDDL [19] 87.28 94.38 98.40

LCSVD1 [6] 92.67 96.54 98.00

LCSVD2 [6] 92.72 96.46 98.40

Proposed 90.92 97.15 100.00

samples will not be enough to split the training and testing

set. In such case, we defined binary types for each attribute:

with/without expressions, light on, sun glasses and scarf.

The images were converted to grayscale in our imple-

mentation. In this experiment, we used three data splits:

8, 13 and 21 images from each person were selected for

training and the rest of the images were used for testing.

The numbers of training images randomly chosen for SP1

to SP3 from (expression, lighting, sun glasses, scarf) are (2,

2, 2, 2), (4, 3, 3, 3) and (6, 5, 5, 5), respectively. PCA was

applied to reduce the data dimension to 1039. The quan-

titative comparison of the experimental results is shown in

Table 3. We can note that the pure clustering for dictionary

learning based only on data distance gave the worst results

than all the other methods. Our MADL method achieved

100% accuracy using 21 training samples from one class.

Compared to the results of LCSVD reported in [6], there

is only slight difference by using our training/testing con-

figuration (93.7% using 5 training samples and 97.8 using

20 training samples). The proposed MADL algorithm only

achieved 90.92% accuracy in SP1. This is mainly caused

by the problem of very few training samples. Initially, each

class has eight dictionary atoms. After the termination of

our optimization process, we found that some classes might

have only 2 to 3 samples as their dictionary atoms. This

limits the representation capability of those classes. Since

we did not constrain the number of dictionary atoms, we

will address this issue in our future work.

6.3. Evaluation on CMU PIE Face Database

The CMU PIE dataset is a relatively large face dataset. It

contains over 40,000 facial images of 68 people. The face

images were taken from 13 fixed cameras of different poses,

under 24 illumination conditions and with 3 expressions for

each person in separate sets, as shown in Figure 8. For the

illumination category, there are 24 images of different illu-

mination conditions under 13 different poses for each per-

son. Therefore, there are totally 312 images for one per-

son. For facial expression, three expressions, namely blink,

smile and neutral expression, were obtained under 13 dif-

ferent poses. Therefore, we adopted two attributes in this

dataset: identity and pose. The total number of types for
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Figure 8. Sample images of CMU PIE Face Database

Table 3. Recognition accuracy (%) on the CMU PIE Human Ac-

tion Database.

Split # SP1 SP2 SP3
SRC [18] 84.85 86.76 86.63

SPAMS [11] 34.68 49.72 60.83

LCSVD1 [6] 60.88 59.73 60.29

LCSVD2 [6] 60.14 60.35 60.77

Proposed 88.36 90.21 91.58

identity and pose attributes are 68 and 13, respectively.

There are totally 39 images for one person. We set the

training set by the following configurations: 7, 13, 21 im-

ages randomly chosen from one pose of one person for (ex-

pression, illumination) were (1, 6), (1, 12) and (2, 18), re-

spectively. In total, 91, 169, 260 images were used for train-

ing for one person. The remaining images were used for

testing. The face region of all training and testing images

were cropped to 75 by 90. We processed all face images

with PCA to reduce the dimension to 942. The recogni-

tion accuracies of the proposed MADL and other dictio-

nary learning methods are listed in Table 4. We can see

that the accuracies for different methods vary largely in the

table. The SPAMS method produced quite low accuracies

for all splits and the LCSVD method renders similar accura-

cies even though more training images were provided. The

proposed MADL algorithm consistently provided the best

recognition accuracies in all the experiments with three dif-

ferent splits.

7. Conclusion

We presented a novel multi-attributed dictionary learn-

ing algorithm for sparse coding in this paper. In order to

take both data and the associated multiple attributes into

consideration, we first proposed a joint distance matrix. An

objective function is presented to learn compact, representa-

tive and attribute-consistent dictionaries. Experimental re-

sults have shown improved performance by using the pro-

posed algorithm over the previous dictionary learning meth-

ods through the action classification and face recognition

experiments.
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