
NEIL: Extracting Visual Knowledge from Web Data

Xinlei Chen Abhinav Shrivastava Abhinav Gupta
Carnegie Mellon University

www.neil-kb.com

Abstract
We propose NEIL (Never Ending Image Learner), a com-

puter program that runs 24 hours per day and 7 days per
week to automatically extract visual knowledge from In-
ternet data. NEIL uses a semi-supervised learning algo-
rithm that jointly discovers common sense relationships
(e.g., “Corolla is a kind of/looks similar to Car”,“Wheel
is a part of Car”) and labels instances of the given visual
categories. It is an attempt to develop the world’s largest
visual structured knowledge base with minimum human la-
beling effort. As of 10th October 2013, NEIL has been con-
tinuously running for 2.5 months on 200 core cluster (more
than 350K CPU hours) and has an ontology of 1152 object
categories, 1034 scene categories and 87 attributes. During
this period, NEIL has discovered more than 1700 relation-
ships and has labeled more than 400K visual instances.

1. Motivation
Recent successes in computer vision can be primarily at-

tributed to the ever increasing size of visual knowledge in

terms of labeled instances of scenes, objects, actions, at-

tributes, and the contextual relationships between them. But

as we move forward, a key question arises: how will we

gather this structured visual knowledge on a vast scale? Re-

cent efforts such as ImageNet [8] and Visipedia [30] have

tried to harness human intelligence for this task. However,

we believe that these approaches lack both the richness and

the scalability required for gathering massive amounts of

visual knowledge. For example, at the time of submission,

only 7% of the data in ImageNet had bounding boxes and

the relationships were still extracted via Wordnet.

In this paper, we consider an alternative approach of au-

tomatically extracting visual knowledge from Internet scale

data. The feasibility of extracting knowledge automatically

from images and videos will itself depend on the state-of-

the-art in computer vision. While we have witnessed signif-

icant progress on the task of detection and recognition, we

still have a long way to go for automatically extracting the

semantic content of a given image. So, is it really possible

to use existing approaches for gathering visual knowledge

directly from web data?

1.1. NEIL – Never Ending Image Learner
We propose NEIL, a computer program that runs 24

hours per day, 7 days per week, forever to: (a) semanti-

cally understand images on the web; (b) use this seman-

tic understanding to augment its knowledge base with new

labeled instances and common sense relationships; (c) use

this dataset and these relationships to build better classifiers

and detectors which in turn help improve semantic under-

standing. NEIL is a constrained semi-supervised learning

(SSL) system that exploits the big scale of visual data to

automatically extract common sense relationships and then

uses these relationships to label visual instances of existing

categories. It is an attempt to develop the world’s largest
visual structured knowledge base with minimum human ef-
fort – one that reflects the factual content of the images on

the Internet, and that would be useful to many computer vi-

sion and AI efforts. Specifically, NEIL can use web data

to extract: (a) Labeled examples of object categories with

bounding boxes; (b) Labeled examples of scenes; (c) La-

beled examples of attributes; (d) Visual subclasses for ob-

ject categories; and (e) Common sense relationships about

scenes, objects and attributes like “Corolla is a kind of/looks

similar to Car”, “Wheel is a part of Car”, etc. (See Figure 1).
We believe our approach is possible for three key reasons:

(a) Macro-vision vs. Micro-vision: We use the term

“micro-vision” to refer to the traditional paradigm where

the input is an image and the output is some information

extracted from that image. In contrast, we define “macro-

vision” as a paradigm where the input is a large collection

of images and the desired output is extracting significant or

interesting patterns in visual data (e.g., car is detected fre-
quently in raceways). These patterns help us to extract com-

mon sense relationships. Note, the key difference is that

macro-vision does not require us to understand every image

in the corpora and extract all possible patterns. Instead, it

relies on understanding a few images and statistically com-

bine evidence from these to build our visual knowledge.

(b) Structure of the Visual World: Our approach exploits
the structure of the visual world and builds constraints for

detection and classification. These global constraints are

represented in terms of common sense relationships be-
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Figure 1. NEIL is a computer program that runs 24 hours a day and 7 days a week to gather visual knowledge from the Internet. Specifically,

it simultaneously labels the data and extracts common sense relationships between categories.

tween categories. Most prior work uses manually defined

relationships or learns relationships in a supervised setting.

Our key insight is that at a large scale one can simultane-

ously label the visual instances and extract common sense

relationships in a joint semi-supervised learning framework.

(c) Semantically driven knowledge acquisition: We use
a semantic representation for visual knowledge; that is, we

group visual data based on semantic categories and develop

relationships between semantic categories. This allows us

to leverage text-based indexing tools such as Google Image

Search to initialize our visual knowledge base learning.

Contributions: Our main contributions are: (a) We pro-
pose a never ending learning algorithm for gathering visual

knowledge from the Internet via macro-vision. NEIL has

been continuously running for 2.5 months on a 200 core

cluster; (b) We are automatically building a large visual

structured knowledge base which not only consists of la-

beled instances of scenes, objects, and attributes but also

the relationships between them. While NEIL’s core SSL al-

gorithm works with a fixed vocabulary, we also use noun

phrases from NELL’s ontology [5] to grow our vocabulary.

Currently, our growing knowledge base has an ontology of

1152 object categories, 1034 scene categories, and 87 at-

tributes. NEIL has discovered more than 1700 relation-
ships and labeled more than 400K visual instances of these
categories. (c) We demonstrate how joint discovery of re-

lationships and labeling of instances at a gigantic scale can

provide constraints for improving semi-supervised learning.

2. Related Work
Recent work has only focused on extracting knowledge

in the form of large datasets for recognition and classifi-

cation [8, 23, 30]. One of the most commonly used ap-

proaches to build datasets is using manual annotations by

motivated teams of people [30] or the power of crowds [8,

40]. To minimize human effort, recent works have also fo-

cused on active learning [37, 39] which selects label re-

quests that are most informative. However, both of these

directions have a major limitation: annotations are expen-

sive, prone to errors, biased and do not scale.

An alternative approach is to use visual recognition

for extracting these datasets automatically from the Inter-

net [23, 34, 36]. A common way of automatically creating

a dataset is to use image search results and rerank them via

visual classifiers [14] or some form of joint-clustering in

text and visual space [2, 34]. Another approach is to use

a semi-supervised framework [42]. Here, a small amount

of labeled data is used in conjunction with a large amount

of unlabeled data to learn reliable and robust visual mod-

els. These seed images can be manually labeled [36] or

the top retrievals of a text-based search [23]. The biggest

problem with most of these automatic approaches is that the

small number of labeled examples or image search results

do not provide enough constraints for learning robust visual

classifiers. Hence, these approaches suffer from semantic

drift [6]. One way to avoid semantic drift is to exploit

additional constraints based on the structure of our visual

data. Researchers have exploited a variety of constraints

such as those based on visual similarity [11, 15], seman-

tic similarity [17] or multiple feature spaces [3]. However,

most of these constraints are weak in nature: for example,

visual similarity only models the constraint that visually-

similar images should receive the same labels. On the other

hand, our visual world is highly structured: object cate-
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gories share parts and attributes, objects and scenes have

strong contextual relationships, etc. Therefore, we need a
way to capture the rich structure of our visual world and

exploit this structure during semi-supervised learning.

In recent years, there have been huge advances in mod-

eling the rich structure of our visual world via contextual

relationships. Some of these relationships include: Scene-

Object [38], Object-Object [31], Object-Attribute [12, 22,

28], Scene-Attribute [29]. All these relationships can

provide a rich set of constraints which can help us im-

prove SSL [4]. For example, scene-attribute relationships

such as amphitheaters are circular can help improve semi-

supervised learning of scene classifiers [36] and Wordnet

hierarchical relationships can help in propagating segmen-

tations [21]. But the big question is: how do we obtain these

relationships? One way to obtain such relationships is via

text analysis [5, 18]. However, as [40] points out that the

visual knowledge we need to obtain is so obvious that no

one would take the time to write it down and put it on web.

In this work, we argue that, at a large-scale, one can

jointly discover relationships and constrain the SSL prob-

lem for extracting visual knowledge and learning visual

classifiers and detectors. Motivated by a never ending learn-

ing algorithm for text [5], we propose a never ending visual

learning algorithm that cycles between extracting global re-

lationships, labeling data and learning classifiers/detectors

for building visual knowledge from the Internet. Our work

is also related to attribute discovery [33, 35] since these ap-

proaches jointly discover the attributes and relationships be-

tween objects and attributes simultaneously. However, in

our case, we only focus on semantic attributes and therefore

our goal is to discover semantic relationships and semanti-

cally label visual instances.

3. Technical Approach
Our goal is to extract visual knowledge from the pool of

visual data on the web. We define visual knowledge as any

information that can be useful for improving vision tasks

such as image understanding and object/scene recognition.

One form of visual knowledge would be labeled examples

of different categories or labeled segments/boundaries. La-

beled examples helps us learn classifiers or detectors and

improve image understanding. Another example of vi-

sual knowledge would be relationships. For example, spa-

tial contextual relationships can be used to improve object

recognition. In this paper, we represent visual knowledge

in terms of labeled examples of semantic categories and

the relationships between those categories. Our knowledge

base consists of labeled examples of: (1) Objects (e.g., Car,
Corolla); (2) Scenes (e.g., Alley, Church); (3) Attributes
(e.g., Blue, Modern). Note that for objects we learn de-
tectors and for scenes we build classifiers; however for the

rest of the paper we will use the term detector and classifier

interchangeably. Our knowledge base also contains rela-

tionships of four types: (1) Object-Object (e.g., Wheel is a
part of Car);(2) Object-Attribute (e.g., Sheep is/has White);
(3) Scene-Object (e.g., Car is found in Raceway); (4) Scene-
Attribute (e.g., Alley is/has Narrow).
The outline of our approach is shown in Figure 2. We use

Google Image Search to download thousands of images for

each object, scene and attribute category. Our method then

uses an iterative approach to clean the labels and train de-

tectors/classifiers in a semi-supervised manner. For a given

concept (e.g., car), we first discover the latent visual sub-
categories and bounding boxes for these sub-categories us-

ing an exemplar-based clustering approach (Section 3.1).

We then train multiple detectors for a concept (one for each

sub-category) using the clustering and localization results.

These detectors and classifiers are then used for detections

on millions of images to learn relationships based on co-

occurrence statistics (Section 3.2). Here, we exploit the

fact the we are interested in macro-vision and therefore

build co-occurrence statistics using only confident detec-

tions/classifications. Once we have relationships, we use

them in conjunction with our classifiers and detectors to la-

bel the large set of noisy images (Section 3.3). The most

confidently labeled images are added to the pool of labeled

data and used to retrain the models, and the process repeats

itself. At every iteration, we learn better classifiers and de-

tectors, which in turn help us learn more relationships and

further constrain the semi-supervised learning problem. We

now describe each step in detail below.

3.1. Seeding Classifiers via Google Image Search
The first step in our semi-supervised algorithm is to build

classifiers for visual categories. One way to build initial

classifiers is via a few manually labeled seed images. Here,

we take an alternative approach and use text-based image

retrieval systems to provide seed images for training initial

detectors. For scene and attribute classifiers we directly use

these retrieved images as positive data. However, such an

approach fails for training object and attribute detectors be-

cause of four reasons (Figure 3(a)) – (1) Outliers: Due to

the imperfectness of text-based image retrieval, the down-

loaded images usually have irrelevant images/outliers; (2)

Polysemy: In many cases, semantic categories might be

overloaded and a single semantic category might have mul-

tiple senses (e.g., apple can mean both the company and the
fruit); (3) Visual Diversity: Retrieved images might have

high intra-class variation due to different viewpoint, illumi-

nation etc.; (4) Localization: In many cases the retrieved
image might be a scene without a bounding-box and hence

one needs to localize the concept before training a detector.

Most of the current approaches handle these problems

via clustering. Clustering helps in handling visual diver-

sity [9] and discovering multiple senses of retrieval (poly-

semy) [25]. It can also help us to reject outliers based on

distances from cluster centers. One simple way to cluster
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Figure 2. Outline of Iterative Approach

would be to use K-means on the set of all possible bound-

ing boxes and then use the representative clusters as visual

sub-categories. However, clustering using K-means has two

issues: (1) High Dimensionality: We use the Color HOG

(CHOG) [20] representation and standard distance metrics

do not work well in such high-dimensions [10]; (2) Scal-

ability: Most clustering approaches tend to partition the

complete feature space. In our case, since we do not have

bounding boxes provided, every image creates millions of

data points and the majority of the datapoints are outliers.

Recent work has suggested that K-means is not scalable and

has bad performance in this scenario since it assigns mem-

bership to every data point [10].

Instead, we propose to use a two-step approach for clus-

tering. In the first step, we mine the set of downloaded im-

ages from Google Image Search to create candidate object

windows. Specifically, every image is used to train a de-

tector using recently proposed exemplar-LDA [19]. These

detectors are then used for dense detections on the same set

of downloaded images. We select the topK windows which

have high scores frommultiple detectors. Note that this step

helps us prune out outliers as the candidate windows are se-

lected via representativeness (how many detectors fire on

them). For example, in Figure 3, none of the tricycle de-

tectors fire on the outliers such as circular dots and people

eating, and hence these images are rejected at this candi-

date widow step. Once we have candidate windows, we

cluster them in the next step. However, instead of using the

high-dimensional CHOG representation for clustering, we

use the detection signature of each window (represented as

a vector of seed detector ELDA scores on the window) to

create aK × K affinity matrix. The (i, j) entry in the affin-
ity matrix is the dot product of this vector for windows i and
j. Intuitively, this step connects candidate windows if the
same set of detectors fire on both windows. Once we have

the affinity matrix, we cluster the candidate windows using

the standard affinity propagation algorithm [16]. Affinity

propagation also allows us to extract a representative win-

dow (prototype) for each cluster which acts as an iconic im-

age for the object [32] (Figure 3). After clustering, we train

a detector for each cluster/sub-category using three-quarters

of the images in the cluster. The remaining quarter is used

as a validation set for calibration.

3.2. Extracting Relationships
Once we have initialized object detectors, attribute de-

tectors, attribute classifiers and scene classifiers, we can use

them to extract relationships automatically from the data.

The key idea is that we do not need to understand each and

every image downloaded from the Internet but instead un-

derstand the statistical pattern of detections and classifica-

tions at a large scale. These patterns can be used to select

the top-N relationships at every iteration. Specifically, we

extract four different kinds of relationships:

Object-Object Relationships: The first kind of relation-
ship we extract are object-object relationships which in-

clude: (1) Partonomy relationships such as “Eye is a part

of Baby”; (2) Taxonomy relationships such as “BMW 320

is a kind of Car”; and (3) Similarity relationships such as
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(a) Google Image Search for “tricycle” 

(b) Sub-category Discovery 
Figure 3. An example of how clustering handles polysemy, intra-

class variation and outlier removal (a). The bottom row shows our

discovered clusters.

“Swan looks similar to Goose”. To extract these relation-

ships, we first build a co-detection matrix O0 whose ele-

ments represent the probability of simultaneous detection

of object categories i and j. Intuitively, the co-detection
matrix has high values when object detector i detects ob-
jects inside the bounding box of object j with high detection
scores. To account for detectors that fire everywhere and

images which have lots of detections, we normalize the ma-

trix O0. The normalized co-detection matrix can be written

as: N
− 1

2
1 O0N

− 1
2

2 , where N1 and N2 are out-degree and in-

degree matrix and (i, j) element of O0 represents the aver-

age score of top-detections of detector i on images of object
category j. Once we have selected a relationship between
pair of categories, we learn its characteristics in terms of

mean and variance of relative locations, relative aspect ra-

tio, relative scores and relative size of the detections. For

example, the nose-face relationship is characterized by low

relative window size (nose is less than 20% of face area)

and the relative location that nose occurs in center of the

face. This is used to define a compatibility function ψi,j(·)
which evaluates if the detections from category i and j are
compatible or not. We also classify the relationships into

the two semantic categories (part-of, taxonomy/similar) us-

ing relative features to have a human-communicable view

of visual knowledge base.

Object-Attribute Relationships: The second type of rela-
tionship we extract is object-attribute relationships such as

“Pizza has Round Shape”, ”Sunflower is Yellow” etc. To
extract these relationships we use the same methodology

where the attributes are detected in the labeled examples

of object categories. These detections and their scores are

then used to build a normalized co-detection matrix which

is used to find the top object-attribute relationships.

Scene-Object Relationships: The third type of relation-
ship extracted by our algorithm includes scene-object rela-

tionships such as “Bus is found in Bus depot” and “Moni-

tor is found in Control room”. For extracting scene-object

relationships, we use the object detectors on randomly sam-

pled images of different scene classes. The detections are

then used to create the normalized co-presence matrix (sim-

ilar to object-object relationships) where the (i, j) element
represents the likelihood of detection of instance of object

category i and the scene category class j.
Scene-Attribute Relationships: The fourth and final type
of relationship extracted by our algorithm includes scene-

attribute relationships such as “Ocean is Blue”, “Alleys

are Narrow”, etc. Here, we follow a simple methodology
for extracting scene-attribute relationships where we com-

pute co-classification matrix such that the element (i, j) of
the matrix represents average classification scores of at-

tribute i on images of scene j. The top entries in this co-
classification matrix are used to extract scene-attribute rela-

tionships.

3.3. Retraining via Labeling New Instances
Once we have the initial set of classifiers/detectors and

the set of relationships, we can use them to find new in-

stances of different objects and scene categories. These new

instances are then added to the set of labeled data and we

retrain new classifiers/detectors using the updated set of la-

beled data. These new classifiers are then used to extract

more relationships which in turn are used to label more data

and so on. One way to find new instances is directly using

the detector itself. For instance, using the car detector to

find more cars. However, this approach leads to semantic

drift. To avoid semantic drift, we use the rich set of rela-

tionships we extracted in the previous section and ensure

that the new labeled instances of car satisfy the extracted

relationships (e.g., has wheels, found in raceways etc.)
Mathematically, let RO, RA and RS represent the set

of object-object, object-attribute and scene-object relation-

ships at iteration t. If φi(·) represents the potential from
object detector i, ωk(·) represents the scene potential, and
ψi,j(·) represent the compatibility function between two ob-
ject categories i, j, then we can find the new instances of ob-
ject category i using the contextual scoring function given
below:

φi(x) +
∑

i,j∈RO
⋃RA

φj(xl)ψi,j(x, xl) +
∑

i,k∈RS
ωk(x)

where x is the window being evaluated and xl is the top-
detected window of related object/attribute category. The

above equation has three terms: the first term is appearance

term for the object category itself and is measured by the
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Nilgai Yamaha Violin 

F-18 Bass 
Figure 4. Qualitative Examples of Bounding Box Labeling Done by NEIL

score of the SVM detector on the window x. The second
term measures the compatibility between object category i
and the object/attribute category j if the relationship (i, j)
is part of the catalogue. For example, if “Wheel is a part

of Car” exists in the catalogue then this term will be the

product of the score of wheel detector and the compatibility

function between the wheel window (xl) and the car win-
dow (x). The final term measures the scene-object compat-
ibility. Therefore, if the knowledge base contains the re-

lationship “Car is found in Raceway”, this term boosts the

“Car” detection scores in the “Raceway” scenes.

At each iteration, we also add new instances of different

scene categories. We find new instances of scene category

k using the contextual scoring function given below:

ωk(x) +
∑

m,k∈RA′

ωm(x) +
∑

i,k∈RS
φi(xl)

where RA′ represents the catalogue of scene-attribute re-

lationships. The above equation has three terms: the first

term is the appearance term for the scene category itself and

is estimated using the scene classifier. The second term is

the appearance term for the attribute category and is esti-

mated using the attribute classifier. This term ensures that if

a scene-attribute relationship exists then the attribute clas-

sifier score should be high. The third and the final term is

the appearance term of an object category and is estimated

using the corresponding object detector. This term ensures

that if a scene-object relationship exists then the object de-

tector should detect objects in the scene.

Implementation Details: To train scene & attribute classi-
fiers, we first extract a 3912 dimensional feature vector from

each image. The feature vector includes 512D GIST [27]

features, concatenated with bag of words representations for

SIFT [24], HOG [7], Lab color space, and Texton [26]. The

dictionary sizes are 1000, 1000, 400, 1000, respectively.

Features of randomly sampled windows from other cate-

gories are used as negative examples for SVM training and

hard mining. For the object and attribute section, we use

CHOG [20] features with a bin size of 8. We train the de-

tectors using latent SVM model (without parts) [13].

4. Experimental Results
We demonstrate the quality of visual knowledge by qual-

itative results, verification via human subjects and quanti-

tative results on tasks such as object detection and scene

recognition.

4.1. NEIL Statistics
While NEIL’s core algorithm uses a fixed vocabulary, we

use noun phrases from NELL [5] to grow NEIL’s vocabu-

lary. As of 10th October 2013, NEIL has an ontology of

1152 object categories, 1034 scene categories and 87 at-

tributes. It has downloaded more than 2 million images

for extracting the current structured visual knowledge. For

bootstrapping our system, we use a few seed images from

ImageNet [8], SUN [41] or the top-images from Google

Image Search. For the purposes of extensive experimen-

tal evaluation in this paper, we ran NEIL on steroids (200

cores as opposed to 30 cores used generally) for the last 2.5

months. NEIL has completed 16 iterations and it has la-

beled more than 400K visual instances (including 300,000

objects with their bounding boxes). It has also extracted

1703 common sense relationships. Readers can browse the

current visual knowledge base and download the detectors

from: www.neil-kb.com

4.2. Qualitative Results
We first show some qualitative results in terms of ex-

tracted visual knowledge by NEIL. Figure 4 shows the ex-

tracted visual sub-categories along with a few labeled in-

stances belonging to each sub-category. It can be seen from

the figure that NEIL effectively handles the intra-class vari-

ation and polysemy via the clustering process. The purity

and diversity of the clusters for different concepts indicate

that contextual relationships help make our system robust to

semantic drift and ensure diversity. Figure 5 shows some of

the qualitative examples of scene-object and object-object

relationships extracted by NEIL. It is effective in using a

few confident detections to extract interesting relationships.

Figure 6 shows some of the interesting scene-attribute and

object-attribute relationships extracted by NEIL.
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Zebra is found in Savanna Ferris wheel is found in Amusement park 

Camry is found in Pub outdoor Opera house is found in Sydney  Bus is found in Bus depot outdoor 

Helicopter is found in Airfield 

Leaning tower is found in Pisa 

Throne is found in Throne room 

Van is a kind of/looks similar to Ambulance Eye is a part of Baby Duck is a kind of/looks similar to Goose Gypsy moth is a kind of/looks similar to Butterfly 

Monitor is a kind of/looks similar to Desktop computer Sparrow is a kind of/looks similar to bird Basketball net is a part of Backboard Airplane nose is a part of Airbus 330 

Figure 5. Qualitative Examples of Scene-Object (rows 1-2) and Object-Object (rows 3-4) Relationships Extracted by NEIL

4.3. Evaluating Quality via Human Subjects
Next, we want to evaluate the quality of extracted visual

knowledge by NEIL. It should be noted that an extensive

and comprehensive evaluation for the whole NEIL system

is an extremely difficult task. It is impractical to evaluate

each and every labeled instance and each and every rela-

tionship for correctness. Therefore, we randomly sample

the 500 visual instances and 500 relationships, and verify

them using human experts. At the end of iteration 6, 79%

of the relationships extracted by NEIL are correct, and 98%

of the visual data labeled by NEIL has been labeled cor-

rectly. We also evaluate the per iteration correctness of re-

lationships: At iteration 1, more than 96% relationships are

correct and by iteration 3, the system stabilizes and 80% of

extracted relationships are correct. While currently the sys-

tem does not demonstrate any major semantic drift, we do

plan to continue evaluation and extensive analysis of knowl-

edge base as NEIL grows older. We also evaluate the qual-

ity of bounding-boxes generated by NEIL. For this we sam-

ple 100 images randomly and label the ground-truth bound-

ing boxes. On the standard intersection-over-union metric,

NEIL generates bounding boxes with 0.78 overlap on av-

erage with ground-truth. To give context to the difficulty

of the task, the standard Objectness algorithm [1] produces

bounding boxes with 0.59 overlap on average.

4.4. Using Knowledge for Vision Tasks
Finally, we want to demonstrate the usefulness of the vi-

sual knowledge learned by NEIL on standard vision tasks

such as object detection and scene classification. Here,

we will also compare several aspects of our approach: (a)

We first compare the quality of our automatically labeled

dataset. As baselines, we train classifiers/detectors directly

on the seed images downloaded from Google Image Search.

(b) We compare NEIL against a standard bootstrapping ap-

proach which does not extract/use relationships. (c) Finally,

we will demonstrate the usefulness of relationships by de-

tecting and classifying new test data with and without the

learned relationships.

Scene Classification: First we evaluate our visual knowl-
edge for the task of scene classification. We build a dataset

of 600 images (12 scene categories) using Flickr images.

We compare the performance of our scene classifiers against

the scene classifiers trained from top 15 images of Google

Image Search (our seed classifier). We also compare the

performance with standard bootstrapping approach without

using any relationship extraction. Table 1 shows the results.

We use mean average precision (mAP) as the evaluation

metric. As the results show, automatic relationship extrac-

tion helps us to constrain the learning problem, and so the

learned classifiers give much better performance. Finally, if

we also use the contextual information from NEIL relation-

ships we get a significant boost in performance.

Table 1. mAP performance for scene classification on 12 categories.

mAP

Seed Classifier (15 Google Images) 0.52

Bootstrapping (without relationships) 0.54

NEIL Scene Classifiers 0.57

NEIL (Classifiers + Relationships) 0.62

Object Detection: We also evaluate our extracted visual
knowledge for the task of object detection. We build a

dataset of 1000 images (15 object categories) using Flickr

data for testing. We compare the performance against object

detectors trained directly using (top-50 and top-450) images

from Google Image Search. We also compare the perfor-

mance of detectors trained after aspect-ratio, HOG cluster-

ing and our proposed clustering procedure. Table 2 shows

the detection results. Using 450 images from Google image

search decreases the performance due to noisy retrievals.

While other clustering methods help, the gain by our clus-

tering procedure is much larger. Finally, detectors trained

using NEIL work better than standard bootstrapping.

1415



Monitor is found in Control room�
Washing machine is found in Utility room�
Siberian tiger is found in Zoo�
Baseball is found in Butters box�
Bullet train is found in Train station platform�
Cougar looks similar to Cat�
Urn looks similar to Goblet�
Samsung galaxy is a kind of Cellphone�
Computer room is/has Modern�
Hallway is/has Narrow�
Building facade is/has Check texture�
Trading floor is/has Crowded�
�

Umbrella looks similar to Ferris wheel�
Bonfire is found in Volcano�

Monitor is found in Control room

Figure 6. Examples of extracted common sense relationships.

Table 2. mAP performance for object detection on 15 categories.

mAP

Latent SVM (50 Google Images) 0.34

Latent SVM (450 Google Images) 0.28

Latent SVM (450, Aspect Ratio Clustering) 0.30

Latent SVM (450, HOG-based Clustering) 0.33

Seed Detector (NEIL Clustering) 0.44

Bootstrapping (without relationships) 0.45

NEIL Detector 0.49

NEIL Detector + Relationships 0.51
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