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Abstract

The first main contribution of this paper is a novel
method for representing images based on a dictionary of
shape epitomes. These shape epitomes represent the local
edge structure of the image and include hidden variables
to encode shift and rotations. They are learnt in an unsu-
pervised manner from groundtruth edges. This dictionary
is compact but is also able to capture the typical shapes
of edges in natural images. In this paper, we illustrate the
shape epitomes by applying them to the image labeling task.
In other work, described in the supplementary material, we
apply them to edge detection and image modeling.

We apply shape epitomes to image labeling by using
Conditional Random Field (CRF) Models. They are alter-
natives to the superpixel or pixel representations used in
most CRFs. In our approach, the shape of an image patch
is encoded by a shape epitome from the dictionary. Unlike
the superpixel representation, our method avoids making
early decisions which cannot be reversed. Our resulting hi-
erarchical CRFs efficiently capture both local and global
class co-occurrence properties. We demonstrate its quanti-
tative and qualitative properties of our approach with image
labeling experiments on two standard datasets: MSRC-21
and Stanford Background.

1. Introduction
In this paper, we propose a novel representation for lo-

cal edge structure based on a dictionary of shape epitomes,

which were inspired by [12]. This dictionary is learnt from

annotated edges and captures the mid-level shape structures.

By explicitly encoding shift and rotation invariance into the

epitomes, we are able to accurately capture object shapes

using a compact dictionary of only five shape epitomes. In

this paper, we explore the potential of shape epitomes by

applying them to the task of image labeling. Most modern

image labeling systems are based on Conditional Random

Fields (CRFs) [18, 20] for integrating local cues with neigh-

borhood constraints. Image segments are typically repre-

sented in the pixel domain [9, 17, 26], or in the domain

Figure 1. Proposed dictionary of Shape Epitomes in the context

of image labeling. Segmentation templates are generated from

the shape epitomes, by specifying the values of the hidden vari-

ables. Image labels are assigned to the regions within the tem-

plates, and thus the local relationship between object classes is ex-

plicitly modeled. Note the rotation and shift-invariance illustrated

in the second and third shape epitome, respectively.

of superpixels (a region of pixels with uniform statistics)

[6, 7, 10, 11, 21, 23].

One motivation for shape epitomes was the success of

segmentation templates for image labeling [27]. These tem-

plates also represent the local edge structure but differ from

pixels and superpixels because they represent typical edges

structures, such as L-junctions, and hence provide a prior

model for edge structures. Each patch in the image was en-

coded by a particular segmentation template with semantic

labels assigned to the regions specified by the template, as

illustrated in Fig. 1. Segmentation templates, like super-

pixels, have computational advantages over pixel-based ap-

proaches by constraining the search process and also allow

enforcing label consistency over large regions. Compared to

superpixels, segmentation templates do not make early de-

cisions based on unsupervised over-segmentation and, more

importantly, explicitly enumerate the possible spatial con-

figurations of labels making it easier to capture local rela-

tions between object classes. See Table 1 for a comparison
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Pixel Superpixel Template

Computation − + +
Flexibility + + +

Long-Range − + +
Explicit Configuration − − +

Table 1. General comparison between representations from the as-

pects of Computation, Flexibility (better align with object shapes),

Long-Range consistency, and ability to Explicitly model the local

configuration of objects. We improve the flexibility of template-

based representation by learning a dictionary of shape epitomes.

summary.

But those segmentation-templates [27] have limitations.

Firstly, they were hand-specified. Secondly, there were not

invariant to shift and rotation which implies that a very large

number of them would be needed to give an accurate rep-

resentation of edge structures in the images (Zhu et al [27]

used only thirty segmentation-templates which meant that

they could only represent the edges very roughly).

Each shape epitome can be thought of a set of

segmentation-templates which are indexed by hidden vari-

able corresponding to shift and rotation. More precisely,

a shape epitome consists of two square regions one inside

the other. The hidden variable allows the inner square re-

gion to shift and rotate within the the bigger square, as

shown in Fig. 1. The hidden variable specifies the shift

and rotation. In the current paper, each shape epitome

corresponds to 81 × 4 = 324 segmentation-templates.

Hence, as we will show, a small dictionary of shape epit-

omes is able to accurately represent the edge structures

(see Sec. 4.3.1). Intuitively the learned dictionary captures

generic mid-level shape-structures, hence making it trans-

ferable across datasets. By explicitly encoding shift and

rotation invariance, our learned epitomic dictionary is com-

pact and only uses five shape epitomes. We also show that

shape epitomes can be generalized to allow the inner square

to expand which allow the representation to deal with scale

(see Sec. 4.3.4).

We propose shape epitomes as a general purpose repre-

sentation for edge structures (i.e. a mid-level image descrip-

tion). In this paper we illustrate them by applying them to

the image labeling task. In the supplementary material we

show how they can be also used for edge detection and for

local appearance modeling. For image labeling, we con-

sider three increasingly more complex models, which adapt

current CRF techniques for shape epitomes. We use patches

at a single fine resolution whose shape is encoded by a seg-

mentation template (i.e. a shape epitome with hidden vari-

able specified). The patches are overlapping, thus allowing

neighbors to directly communicate with each other and find

configurations which are consistent in their area of over-

lap (Model-1). We explore two enhancements of this basic

model: Adding global nodes to enforce image-level consis-

tency (Model-2) and also further adding an auxiliary node

to encourage sparsity among active global nodes, i.e., en-

courage that only few object classes occur within an im-

age (Model-3). We conduct experiments on two standard

datasets, MSRC-21 and Stanford Background, obtaining

promising results.

Related work. Our model is based on the success of

several works. First, the ability to generate an image from

a condensed epitomic representation [12]. We leverage on

this idea to learn a dictionary of shape epitomes. Each seg-

mentation template is generated within a shape epitome.

This encodes the shift-invariance into the dictionary, since a

segmentation template is able to move within a shape epit-

ome. Besides, we encode rotation invariance by allowing

the shape epitome to rotate by 0, 90, 180, and 270 degrees.

Second, the potential of using template-based represen-

tation and overlapped patches. It has been shown that learn-

ing the generic patterns capturing statistics over large neigh-

borhoods can be beneficial for image denoising [24] and

image labeling [15]. Besides, finding the mutual consen-

sus between neighboring nodes by using overlapped patches

[28] has shown to be effective. Similar ideas have been ap-

plied to image labeling [16]. However, they did not learn a

dictionary for object shapes.

Third, the power of introducing simple global nodes for

image labeling. Ladicky et al. [19] introduced global nodes

that can take values from the predefined label set L and a

“free” label. There is no energy cost, when the global node

takes the free label. Gonfaus et al. [8] proposed a harmony
model to generalize the idea by allowing the global node to

take labels from the power set of L. However, it is com-

putationally challenging to find the most probable state for

the global node from the power set. Then, Lucchi et al.

[22] proposed the Class Independent Model (CIM) to de-

compose the global node into |L| global nodes. Our model

moves further based on the CIM by encoding the image-

level co-occurrence, and adding an auxiliary node to en-

courage the sparsity of active global nodes, similar to [4].

Structure. Sec. 2 describes our method of learning a dic-

tionary of shape epitomes, and Sec. 3 describes our model

based on CRF. Experimental results are discussed in Sec. 4.

2. Learning a dictionary of shape epitomes
In this section, we present our algorithm for learning the

dictionary of shape epitomes from annotated images.

To learn the generic dictionary, we use the BSDS500

dataset [1], which provides ground truth of object bound-

aries. Given that, we extract M × M patches around the

shape boundaries (called shape patches). We cluster these

shape patches using affinity propagation [5] to build our

shape epitomes (note that the size of shape patches is the

same as that of shape epitomes). The segmentation tem-

plates are of smaller size m ×m (m < M ) than the shape
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epitomes, and are generated as sub-windows of them. By

generating the segmentation template from a larger shape

epitome, we are able to explicitly encode shift-invariance

into the dictionary, as illustrated in Fig. 1. Therefore, one

shape epitome compactly groups many segmentation tem-

plates which are shifted versions of each other.

Clustering by affinity propagation requires a similarity

measure F (P1, P2) between two M ×M shape patches P1

and P2. We induce F (P1, P2) from another similarity mea-

sure FT (T1, T2) between two m × m segmentation tem-

plates T1 and T2 extracted from P1 and P2, respectively.

Specifically, let T (i, j) denote the segmentation template

extracted from P and centered at (i, j), with (0, 0) being

the center of P . We define the similarity between the two

shape patches P1 and P2 to be

F (P1, P2) = max
m−M

2 ≤i,j≤M−m
2

1

2
[FT (T1(i, j), T2(0, 0))

+ FT (T1(0, 0), T2(−i,−j))] , (1)

as illustrated in Fig. 2. We employ the covering of the tem-

plate T1 by the template T2 [1] as the similarity measure

FT (T1, T2) between them:

FT (T1, T2) =
1

|T2|
∑

r2∈T2

|r2| max
r1∈T1

|r1 ∩ r2|
|r1 ∪ r2| ,

where r1 and r2 are the regions in templates T1 and T2,

respectively, and |r| is the area of region r. Note that

FT (T1, T2) and consequently F (P1, P2) range from 0 (no

similarity) to 1 (full similarity).

Directly applying affinity propagation results in many

similar shape epitomes because simple horizontal or ver-

tical boundaries are over-represented in the training set. We

follow [13] and grow the dictionary incrementally, ensur-

ing that each newly added shape epitome is separated from

previous ones by at least distance t, as follows:

1. Clustering. Apply affinity propagation to find one

shape epitome that contains the most members (i.e.,

the largest cluster) in current training set.

2. Assigning. For each shape patch in training set, assign

it to the shape epitome found in step 1, if their distance,

defined as 1− F (P1, P2), is smaller than t.

3. Update. Remove the shape patches that are assigned

to the shape epitome from the current training set.

4. Repeat until no shape patch is left in the training set.

3. Adapting CRFs for segmentation templates
Having learned the dictionary of shape epitomes, we now

proceed to show how we can build models for image la-

beling on top of it. We propose three models by adapting

current CRF models to the template-based representation.

Figure 2. The similarity measure between two shape patches. The

optimal value of shift variables (i, j) is shown for this example.

The problem of image labeling in this context can be for-

mulated as follows. Given an image I , we represent it by a

set of overlappedm×m patches. The goal is to encode each

patch by a segmentation template, and by assigning labels

(from a categorical set L) to each region in the segmen-

tation template. Specifically, the labeling assignment x is

represented by both segmentation template and labels. That

is, x = {xi}i∈V with xi = {si, li}, where V is the set of

patches, si and li denote the type of segmentation template

and object labeling, respectively. Note that li is a vector,

whose length is the number of regions within the segmenta-

tion template. For example, li = (cow, grass) means that

label cow and label grass are assigned to the first region and

second region within segmentation template si. We call our

models SeCRF, short for Shape epitome CRF.

3.1. Model 1: One-level SeCRF

We first introduce a flat model, which is represented by

a graph with a single layer G = {Vl, El}, as shown in

Fig. 3(a). Each node corresponds to a patch region, and

it is encoded by both the type of segmentation template and

the labels assigned to it. The image region represented by

node i (i.e., i-th patch) is denoted by R(i).

The energy of x given image I is given by:

E(x|I) = E1(x;α1) + E2(x;α2) + E3(s;α3)

+ E4(l;α4) + E5(x;α5) (2)

where α is the model parameters. Note we suppress the

dependency on the image I in subsequent equations. Each

energy term is defined below.

The first term E1(x;α1) is the data term which accumu-

lates the pixel features with respect to certain type of seg-

mentation template and labels assigned to the correspond-
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Figure 3. Adapting CRFs for segmentation templates. (a) Model

1 uses only a single layer of local nodes. (b) Model 2 adds global

nodes to encode global consistency, similar to [22] (but the energy

value is soft in our model). (c) Model 3 encodes the pairwise co-

occurrence between global nodes, and adds an auxiliary node to

encourage the sparsity of active global nodes.

ing regions. We set E1(x;α1) = −α1

∑
i∈Vl

ψ1(xi), and

ψ1(xi) =
1

|R(i)|
∑

p∈R(i)

logPr(xpi |I)

where we define xpi as the labeling of pixel p in the region

of segmentation template si. The value Pr(xpi |I) is com-

puted by a strong classifier with features (e.g., filter bank

responses) extracted within a region centered at position p.

The second term is used to encourage the consistency be-

tween neighboring nodes in their area of overlap. For a pixel

that is covered by both node i and j, we encourage node i
to assign the same label to it as node j. The consistency is

defined by using the Hamming distance:

E2(x;α2) = −α2

∑
(i,j)∈El

ψ2(xi, xj)

where

ψ2(xi, xj) =
1

|O(i, j)|
∑

p∈O(i,j)

δ(xpi = xpj )

where O(i, j) is the overlapped region between nodes i and

j, and δ(xpi = xpj ) = 1 if xpi = xpj , and zero, otherwise. In

our experiments, we use 4-neighborhood.

The third term encodes the generic prior of segmentation

templates. Specifically, we binarize the type of si to be ei-

ther 1, meaning that it contains some type of shapes, or 0,

meaning that it contains no shape.

E3(s;α3) = −α3

∑
i∈Vl

logPr(si)

The fourth term E4(x;α4) is used to model the co-

occurrence of two object classes within a segmentation tem-

plate. Note that parameter α4 is a 2-D matrix, indexed by u
and v, ranging over the label set L.

E4(l;α4) = −
∑
i∈Vl

∑
u,v=1,...,|L|

α4(u, v)ψ4(u, v, li)

where |L| is the total number of object classes, and

ψ4(u, v, li) is an indicator function which equals one when

both object classes u and v belong to li.
The fifth term E5(x;α5) models the spatial relationship

between two classes within a segmentation template. We

model only the ”above” relationship. For example, we en-

courage sky to appear above road, but not vice versa.

E5(x;α5) = −
∑
i∈Vl

∑
u,v=1,...,|L|

α5(u, v)ψ5(u, v, xi)

where ψ5(u, v, xi) is an indicator function which equals one

when object class m is above class n within a certain seg-

mentation template. Note that for some segmentation tem-

plate that does not have the ”above” relationship (e.g., a

template with vertical boundary), this term is not used.

3.2. Model 2: Two-level SeCRF

Motivated by the Class Independent Model (CIM) in

[22], we add |L| independent global nodes {Vg} to enforce

image-level consistency, as shown in Fig. 3(b). A global

node encodes the absence or presence of a object class in

the image (i.e., yi ∈ {0, 1}, ∀i ∈ Vg), and it is densely

connected to every local node. We denote the set of edges

connecting global nodes and local nodes as {Elg}, and then

labeling assignment x = {{xi}i∈Vl
∪ {yi}i∈Vg}. An extra

global-local energy term is added to Equation 2 with each

global node yj having a 2-D matrix parameter αj
6:

E6(x;α6) = −
∑

(i,j)∈Elg

|L|∑
u=1

1∑
v=0

αj
6(u, v)ψ6(u, v, xi, yj)

where

ψ6(u, v, xi, yj) =

⎧⎪⎨
⎪⎩

1

|R(i)|
∑

p∈R(i)

δ(xpi = u), if yj = v

0, otherwise

Note that our Model 2 differs from CIM in two parts. First,

the value of function ψ6 is proportional to the number of

pixels whose labels are u in the node xi. This formula-

tion is different from the energy cost used in the original

CIM, which is either zero or one (i.e., a hard value). On

the contrary, we formulate this energy cost as a soft value

between zero and one. Second, our local nodes are based

on overlapped segmentation templates (not superpixels) so

that neighbors can directly communicate with each other.

Furthermore, unlike the robust Pn model [14], our penalty

depends on the region area within a segmentation template,

and thus it is a function of the segmentation template type.

3.3. Model 3: Three-level SeCRF

We further refine Model 2 by adding image-level classifi-

cation scores to the unary term of global nodes [25]. Specif-

ically, we train |L| SVM classifiers to predict the presence
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or absence of object classes, following the pipeline of [2].

The unary energy for global nodes is then defined as fol-

lows.

E7(y;α7) = −α7

∑
i∈Vg

C(yi|I)

where C(yi|I) is the output of i-th classifier.

The independency among global nodes in Model 2 ig-

nores the co-occurrence between object classes in the image

level. Hence, we add edges {Eg} to connect every pair of

global nodes, and define an energy term on them:

E8(y;α8) = −
∑

(i,j)=e∈Eg

1∑
u,v=0

αe
8(u, v)δ(yi = u, yj = v)

where αe
8 depends on the specific edge e = {i, j} that con-

nects two different global nodes, yi and yj .

As shown in Fig. 3(c), we also add an auxiliary node Va
(then, x = {{xi}i∈Vl

∪ {yi}i∈Vg ∪ {zi}i=Va}). This node

favors sparsity among global nodes (similar to [4]) by intro-

ducing a set of edges {Ega} from {Vg} to Va. Specifically,

Va is a dummy node, which can take only one meaningless

state. We define an energy term on {Ega} to encourage only

few global nodes to be active as follows.

E9(y, zj ;α9) = −α9

∑
(i,j)∈Ega

δ(yi = 0)

where δ(yi = 0) equals one when the global node yi is off.

This energy term has the effect of biasing the global nodes.

4. Experiments
In this section, we first show the results of learning a dic-

tionary of shape epitomes following the methods described

in Sec. 2. We then use this dictionary for image labeling

using the SeCRF models of Sec. 3.

4.1. Learned dictionary of shape epitomes

We learn the dictionary of shape epitomes from shape

patches extracted from the BSDS500 dataset [1]. In the ex-

periment, we fix the size of a shape patch to be 25×25, and

the size of segmentation template 17× 17, namely M = 25
and m = 17. After applying affinity propagation incremen-

tally with distance t = 0.05, the first 10 shape epitomes are

shown at the top of Fig. 4.

For computational and modeling purposes it is desirable

to have a compact dictionary consisting of only few shape

epitomes. We have found that the first 5 shape epitomes

contain most of the shape patches in the training set of

BSDS500, and the cluster size decreases very quickly.

In our setting, a segmentation template is allowed to

move within a shape epitome for each horizontal and ver-

tical displacement up to ±4 pixels. We define stride as

Figure 4. Top row: first 10 shape epitomes learned by our method.

Bottom: a flat segmentation template (i.e., no shape) and some

others generated from the first 5 shape epitomes. Note that some

of them are generated from the rotated shape epitomes.

the step-size for horizontal/vertical displacement. For ex-

ample, if stride = 4, we can generate 9 templates from

each shape epitome, only considering the nine templates

T (i, j) ∀i, j ∈ {−4, 0, 4} at all four possible orientations

(0, 90, 180 and 270 degrees), ending up with 45 = 9 × 5
templates per epitome. In total, there are 181(5 × 45 + 1)
segmentation templates, including the flat one that con-

tains no shape. On the other hand, if stride = 1, we use

every template within a shape epitome, resulting in 1621

(81× 5× 4 + 1) segmentation templates.

Using this compact dictionary of 5 shape epitomes suf-

fices to accurately encode the ground truth segmentations in

our datasets, as demonstrated in Sec. 4.3.1. As one can ob-

serve in Fig. 4, our generated segmentation templates cover

the common boundary shapes, such as vertical/horizontal

edges, L-junctions, and U-shapes. The learned dictionary

thus captures generic mid-level shape-structures and can be

used across datasets. We emphasize that we learn it on the

BSDS500 dataset and use it unadapted for image labeling

on MSRC-21 and Stanford Background datasets.

4.2. Implementation details for image labeling

MAP Inference. We use loopy belief propagation (LBP)

to minimize the energy function in Equation 2. We prune

the unpromising states by rejecting the unlikely proposals

whose E1 data terms are too high, similar to [27]. We fix

the number of states per node to be 100, since in our exper-

iments adding more states only improve the performance

marginally at the sacrifice of computation time.

Learning the parameters. We use the same structure-

perceptron algorithm [3] as HIM [27], because we would

like to have a direct comparison with it by emphasizing on

the representation part of our model, not learning.

Fusion of predicted labels. The traditional Conditional

Random Field models directly assign an object class label

to each pixel in the image. On the contrary, our model uses

overlapped patches, and each patch is encoded by a seg-

mentation template and by labels assigned to the regions

in the template. The number of patches that will cover the

same pixel depends on the size of overlap between patches.

We set the overlap size to be (m − 1)/2 pixels in all ex-
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periments. To find the labels for every pixel, we fuse the

predicted labels for each pixel by letting the patch having

the minimal unary energy (E1 +E3 +E4 +E5) determine

the final result of the covered pixel, since the pairwise term

E2 already encourages consistency.

4.3. Results

For image labeling, we experiment on two datasets: (1)

The MSRC-21 with 591 images and |L| = 21 classes, using

the original splitting (45% for training, 10% for validation,

and 45% for testing) from [26]. (2) The Stanford Back-

ground dataset [10] consisting of 715 images and |L| = 8
classes, which we randomly partition into training set (572

images) and test set (143 images). Note in all the experi-

ments, we fix M = 25, and m = 17 except in Sec. 4.3.4.

4.3.1. Encoding the ground truth
The ground truth provided by the datasets contains the

true labeling for each pixel, not the true states of segmen-

tation template type with regions labeled. This experiment

is designed to see if our learned dictionary of shape epit-

omes can accurately encode the ground truth. We esti-

mate the true states of the local nodes by selecting the pairs

of segmentation template type and labeling (i.e., find true

xi = (si, li) ) that have maximum overlap with the true

pixel labels. For MSRC-21 dataset, our result shows that

this encoding of ground truth results in 0.27% error in label-

ing image pixels, while HIM [27] reported 2% error. This

shows that our learned dictionary of shape epitomes is flex-

ible enough to more accurately encode the MSRC ground

truth than the hand-crafted dictionary of [27].

Here, we show the advantage of using our learned dictio-

nary of shape epitomes over directly learning a dictionary of

segmentation templates (in the latter case, the training shape

patches have size m ×m instead of M ×M ) by conduct-

ing experiments on the Stanford Background dataset, which

provides more detailed object boundaries. We propose to

compare those two dictionaries in terms of the error of en-

coding the ground truth, when given the same covered areas,

which is equivalent to learning the same number of param-

eters. Suppose the size of the dictionary of shape epitomes

is KE , and the size of the dictionary of segmentation tem-

plates is KT . Given KE , to cover the same areas, we select

KT = 252/172KE . As shown in Fig. 5, our learned dictio-

nary of shape epitomes attains better performance than the

dictionary of segmentation templates when given the same

number of parameters.

4.3.2. Image labeling: MSRC-21 dataset
We generate 9 segmentation templates from each of the

5 shape epitomes in the labeling experiments (i.e., 181 tem-

plates totally). In a first set of experiments we directly com-

pare our models with HIM [27]. We use the same boosting-

based data term as HIM, provided by the authors, the main

difference between HIM and our model lying in the repre-

sentation part. As shown in Fig.7, our learned dictionary

encodes the object shapes better than the hand-crafted dic-

tionary used by HIM. Furthermore, both our Model 2 and

Model 3 attain better performance than HIM (see Table 3).

We also compare our model with the recent method of

[9] which incorporates powerful non-local patch similarity.

We have used the same boosting-based data term as [9], as

implemented in the Darwin software library1. As shown

in Table 3, our Model 3 attains similar performance to [9],

although we do not use non-local cues at the patch level.

4.3.3. Image labeling: Stanford background dataset
In this experiment, we use the data term provided by the

Darwin software library. The results for the Stanford Back-

ground dataset are shown in Fig. 8. We achieve compara-

ble results with other state-of-the-art models. Specifically,

our segmentation template-based Model 3 performs better

than the more complicated model of [10], which builds on

a dynamic superpixel representation and incorporates both

semantic and geometric constraints in a slow iterative infer-

ence procedure. We also perform better than the hierarchi-

cal semantic region labeling method of [23]. Our models

perform somewhat worse than the long-range model of [9]

(unlike the MSRC case), and the segmentation tree model

of [21], which however employs different image features.

4.3.4. Scaling the segmentation templates
Here, we show that our learned dictionary can gener-

ate different sizes of segmentation templates, while attain-

ing good performance on the Stanford Background dataset.

Specifically, we explore the effect of varying the size of gen-

erated segmentation templates as the dictionary of shape

epitomes is fixed. First, we explore the effect by en-

coding the ground truth. The size varies from m =
{13, 17, 21, 25}. The stride variable is also changed to gen-

erate different number of segmentation templates from the

dictionary. As shown in Fig. 6, the error is consistently de-

creased when m or stride is smaller. Second, we extract

spatially equally 9 segmentation templates from the dictio-

nary for different m (all resulting in 181 templates), and

apply our Model 1 based on these templates to label the

test images, as shown in Table 2. These results show that

our proposed representation: shape epitomes is also able to

handle scale effects without relearning the dictionary.

5. Conclusion
In this paper, we introduced shape epitomes and showed

that they could efficiently encode the edge structures in the

MSRC and Stanford Background datasets. This efficient

encoding is due to their ability to represent local shifts and

1http://drwn.anu.edu.au, version 1.2
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Figure 5. Error (%) of encoding ground truth of Stanford Back-

ground dataset, when using a dictionary of KE shape epitomes or

a dictionary of KT segmentation templates.

Figure 6. Error (%) of encoding ground truth of Stanford Back-

ground dataset. The dictionary of shape epitomes is fixed. The

size of generated templates is different, and so is the stride.

Template size 13 × 13 17 × 17 21 × 21

Global 76.9 76.7 76.3

Table 2. Reuse the dictionary of shape epitomes with different size

of generated templates on Stanford Background dataset.

rotations explicitly. The dictionary of shape epitomes were

learnt from BSDS500 dataset. Next we explored the use

of shape epitomes for CRF models of image labeling. The

proposed SeCRF model can attain comparable results with

other state-of-the-art models. Our supplementary material

shows other applications of shape epitomes to edge detec-

tion and local appearance modeling.
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Exp1 Pxl-Cls 59.4 95.8 85.2 73.8 74.4 91.6 80.3 66.3 82.9 63.3 84.5 59.3 49.7 40.4 82.4 65.3 73.8 61.3 37.8 65.5 17.6 67.2 75.9

use same data Model 1 62.7 96.2 87.9 78.7 78.6 92.6 83.7 66.8 85.5 69.2 87.1 63.9 53.6 45.3 85.7 71.8 75.4 66.5 41.9 68.4 17.5 70.4 78.1

term as HIM Model 2 66.2 97.7 88.9 88.0 85.7 91.9 82.8 72.6 85.7 80.1 89.8 66.6 64.0 54.1 90.4 74.1 78.9 60.3 53.8 71.3 15.3 74.2 81.4

Model 3 69.1 97.7 88.5 86.5 84.0 91.6 82.7 70.7 85.6 80.4 90.3 68.5 62.5 67.6 90.7 73.0 79.0 73.3 50.9 69.8 13.1 75.0 81.7

HIM [27] 66.5 96.2 87.9 82.3 83.3 91.4 80.7 65.7 89.0 79.0 91.9 78.5 69.9 44.5 92.6 80.3 78.2 77.6 41.2 71.9 13.1 74.1 81.2

Exp2 Pxl-Cls 55.9 95.9 82.0 77.1 71.1 90.3 72.4 69.1 79.7 54.3 78.7 62.2 42.5 38.8 64.3 58.0 84.4 59.4 39.8 64.4 27.8 65.2 74.5

use data term Model 1 63.9 96.9 86.6 81.9 75.2 91.9 76.1 72.8 81.3 59.9 84.4 65.8 45.5 41.7 66.1 61.9 87.7 64.0 43.4 67.5 29.4 68.7 77.6

from Darwin Model 2 71.6 98.3 91.9 90.1 76.1 94.5 68.3 78.3 82.2 57.3 84.7 74.0 44.7 35.8 73.6 55.4 88.7 67.0 44.9 61.8 23.6 69.7 80.4

software library Model 3 73.0 98.1 92.3 91.4 78.4 94.4 70.6 77.2 82.5 60.2 86.2 73.4 48.4 35.3 76.8 60.3 89.0 68.0 44.6 63.1 22.2 70.7 81.1

[9] - - - - - - - - - - - - - - - - - - - - - 71.1 81.0

some [19] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9 75 86

state-of-the-art [23] 63 93 88 84 65 89 69 78 74 81 84 80 51 55 84 80 69 47 59 71 24 71 78

models [8] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 75 77

DPG [22] 65 87 87 84 75 93 94 78 83 72 93 86 70 50 93 80 86 78 28 58 27 76 80

[17] - - - - - - - - - - - - - - - - - - - - - 78.3 86.0

Table 3. MSRC labeling results. Pixel-wise classification rates are provided for each category. Global accuracy refers to the pixel-wise

classification rate averaged over the whole dataset, and Average accuracy refers to the mean of all object class classification rates. The

Pxl-Cls model is the pixel-wise classifier, whose output is integrated in our models.

Figure 7. Qualitative results for the MSRC dataset. (a) Original image. (b) Ground truth. (c) Model 1. (d) Model 2. (e) Model 3. (f) HIM

(excerpted from [27]). Note that our models capture object shapes more accurately than the HIM.

Method Global
Pxl-Cls 73.9

Model 1 76.7

Model 2 77.2

Model 3 77.4

[10] 76.4

[23] 76.9

[9] 79.6

[21] 81.9

(a) (top) Original image. (middle) Ground truth. (bottom) Model 3. Note that our model is

able to capture object shapes, especially the cow shape in the fourth column.

(b) Global accuracy is the pixel-wise

classification rate averaged over dataset.
Figure 8. Qualitative and quantitative results on the Stanford Background dataset.
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