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Abstract

Latent variables models have been applied to a number
of computer vision problems. However, the complexity of
the latent space is typically left as a free design choice. A
larger latent space results in a more expressive model, but
such models are prone to overfitting and are slower to per-
form inference with. The goal of this paper is to regularize
the complexity of the latent space and learn which hidden
states are really relevant for prediction. Specifically, we
propose using group-sparsity-inducing regularizers such as
�1-�2 to estimate the parameters of Structured SVMs with
unstructured latent variables. Our experiments on digit
recognition and object detection show that our approach is
indeed able to control the complexity of latent space without
any significant loss in accuracy of the learnt model.

1. Introduction
Fully supervised algorithms are a useful but perhaps an

unnatural abstraction for computer vision problems. In re-
ality, we almost never have complete supervision – there are
always some variables relevant to the problem that not an-
notated in our datasets. For example, consider the task of
training a person detector. Standard benchmarks only pro-
vide bounding box annotations indicating the presence of
people. However, people tend to be highly articulated ob-
jects and in order to detect a person, it is often essential to
reason about the pose of the person in terms of configuration
of parts: i.e. location of head, torso, limbs – all quantities
not labelled in the dataset.

Latent variable models provide an ideal abstraction for
such situations. They allow for modelling of interaction
between the observed data (e.g. image features) and latent
or hidden variables not observed in the training data (e.g.
location of body parts). These hidden variables may pro-
vide a low-dimensional embedding of the input or help set
up a mixture model where complex input-output dependen-
cies are composed of simpler ones. For example, in the
mixture of Deformable-Part Model (DPM) [14], latent vari-
ables are part locations & mixture component ids that allow
modelling of multiple plausible articulations of the object.
In handwritten digit recognition, deformations of digit im-
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ages, such as rotation, can be modelled as latent variables
to improve recognition accuracy [27, 18]. In document re-
trieval, the total ranking order of all documents related to a
query can be modeled as a latent variable to help produce a
higher number relevant documents in top k returned results.

Problem. Unfortunately, training latent variable models is
notoriously problematic since it typically involves a difficult
non-convex optimization problem. Common algorithms
for solving these problems, Expectation-Maximization
(EM) [8] and the Concave-Convex Procedure (CCCP) [29,
27, 14], are known to be highly sensitive to initialization and
prone to getting stuck in a poor local optimum. Standard
techniques for mitigating the poor behaviour of these algo-
rithms include multiple restarts with random initializations,
smoothing the objective function, and annealing. Recently,
Bengio et al. [4] and Kumar et al. [18] have presented cur-
riculum learning schemes that train latent variable models
in an easy-to-difficult manner, by initially pruning away dif-
ficult examples in the dataset.

Goal. At a high-level, our goal is to study the modelling-
optimization tradeoff in designing latent variable models for
computer vision problems. From a modelling perspective,
we would like to design models with ever more complex
latent variables, e.g. capture location of parts, their scale,
orientation, appearance, etc. However, from an optimiza-
tion perspective, complex models are more difficult to train
than simpler ones; are more prone to getting stuck in a bad
local minimum, ultimately resulting in poor generalization
(often performing worse than simpler models). In most ex-
isting models, the complexity of the latent variable space
(e.g. number of mixture components in a DPM [14]) is typ-
ically left as a free design choice that is hand-tuned. Thus,
the question we seek to answer is: Is there a principled way
to learn the complexity of the latent space?

Overview. In this paper, we address this question for a
specific model – Structured SVMs with unstructured la-
tent variables, i.e. linear models with an exponentially large
(structured) output space, but an enumerable latent variable
space. An example of such a model would be DPM [14]
where the latent space indexes the mixture component ids,
and thus the goal is to learn the number of mixtures in a
DPM from data.

We propose the use of group-sparsity inducing norms
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Figure 1. Overview of our approach in the context of digit recognition (top) and object detection (bottom). In digit recognition, the latent
variable indicates the rotation angle that must be corrected for before extracting features. For object detection, the latent variable is the
component id in the mixture of deformable part models. The parameter vector is partitioned into groups corresponding to different latent
states. Parameters for non-informative states become zero under such regularizers allowing us to select meaningful states for prediction.

like �1-�2 to estimate the parameters of such a model,
thereby regularizing the complexity of the latent space.
Group �1-�2 norm behaves like an �1 norm at a group level
and encourages groups of variables to be sparse. Specifi-
cally, we divide the latent variable state space into differ-
ent groups, among which the group norm is induced. Since
the group norm encourages group-sparsity, this allows si-
multaneous parameter estimation as well as state selection.
Conceptually, this is an elegant solution since it gives the
designer of a latent model tremendous flexibility in includ-
ing plenty of latent variables without being concerned about
the optimization issues – the group norm will automatically
prune out latent variable states that are not helpful for pre-
diction, while still utilizing all latent variables that have
some informative states. Our approach is in a sense orthog-
onal to that of Bengio et al. [4] and Kumar et al. [18], in that
they prune out difficult training examples to make the non-
convex optimization easier, while we prune out difficult (or
irrelevant) latent states.

We perform two sets of experiments: handwritten digit
recognition on MNIST and object detection on the PASCAL
VOC 2007 dataset [12]. Our first set of experiments show
that our approach is indeed able to prune the complexity of
latent space, resulting in a model that allows significantly
faster inference at test time without drop in accuracy over
a complete (non-sparse) model. Our second set of experi-
ments show that our approach is able to learn a better model
by adapting the complexity of the latent variable space to
the category being trained.

Finally, our approach reuses almost all the existing La-
tent Structured SVM training machinery and is thus simple

to incorporate in existing systems (e.g. DPM [14]).

2. Prior Work

Latent Variable Models. Latent variable models have been
used to model observations in both generative and discrim-
inative settings. In the generative setting, the goal is to ex-
plain the data with a low-dimensional latent structure. Mix-
ture models like Gaussian Mixture Models (GMMs) and
Hidden Markov Models (HMMs) have a long history in ap-
plications such as speech recognition [24]. More recently,
a number of discriminative latent models such as Hidden
Conditional Random Field [23], Latent SVMs [14] and La-
tent Structured SVMs (LSSVMs) [27] have been proposed.
These models have demonstrated success in a number of
applications. They differ from generative models in the
sense that the ultimate goal is prediction not explanation
of the data. In both kinds of models, the parameter learn-
ing problem is non-convex and solved with techniques like
Expectation-Maximization (EM) [8] and Concave-Convex
Procedure (CCCP) [29, 27] respectively. Note that for all
the models above, the latent variables and their state space
are predefined and fixed. Our approach, on the other hand,
aims for parameter estimation as well as discovery of mean-
ingful latent variable states.

Related to this goal of discovery is the work of Chan-
drasekaran et al. [5], which attempts to identify the graphi-
cal model structure assuming that latent and observed vari-
ables are jointly Gaussian. Our work is different in that we
are interested in prediction via a sparse latent model and not
identification of such a model. Moreover, we do not make
any Gaussian assumptions.
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Group Norms and Structured Sparsity. There is a fairly
mature body of work on �1 regularization for sparse regres-
sion models [26, 6, 11]. Sparse coding with �1 regulariza-
tion has been successfully used to solve many problems in
compressed sensing [10] and signal processing [20]. In the
context of least-squares regression, group norm (e.g. �1−�2)
regularizers have been used [2, 28] to allow parameter es-
timation as well as selection of certain groups of variables.
Bengio et al. [3] applied the group norm to build a word dic-
tionary in bag-of-words document representations widely
used in text, image, and video processing. Jia et al. [16]
used the group norm to learn a latent space factorization
into shared and private information. Recently, Jia et al. [15]
used group norms for sparse representation based classifi-
cation, for face recognition. A survey by Bach et al. [1]
provides a comprehensive description of group norms and
its applications. To the best of our knowledge, this is the
first work to use structured norms in the context of latent
variable selection in Latent (Structured) SVMs.

Reducing Parameters in DPMs. A number of recent
works have looked at the broad problem of reducing the
number of parameters in DPMs, by part-sharing [21], rep-
resenting part filters as a linear combination of basis fil-
ters [22] or sparse-coding part filters [25]. We believe this is
the first work to look at learning the number mixture com-
ponents in a DPM.

The rest of this paper is organized as follows: Sec-
tion 3 revisits Latent (Structured) SVMs; Section 4 de-
scribes our proposed group-norm modification; Section 5
describes how parameter learning can be performed in this
model. Section 6 describes the two sets of experiments.

3. SVMs with Latent Variables

We begin by giving an overview of the Latent Struc-
tured SVM model and then specializing it to Latent Binary
SVMs.

Notation. For any positive integer n, let [n] be short-
hand for the set {1, 2, . . . , n}. We denote training data as
D = {(xi, yi) | i ∈ [n]}, where xi ∈ X is the input
feature vector, yi ∈ Y is the (possibly structured) output
label and hi ∈ H is the latent variable for the ith data-
point. For example, in digit recognition, xi is the orig-
inal image, yi ∈ {0, 1, . . . , 9} is the true digit label and
hi ∈ {−60◦,−45◦, . . . , 60◦} is the (deformation) rotation
angle that must be corrected for before extracting features.

Latent Structured SVMs (LSSVMs). The linear predic-
tion rule of LSSVMs is of the following form:

f(x) = max
(y,h)∈Y×H

w · φ(x, y, h), (1)

where φ(x, y, h) is the joint feature vector that encodes the
relationship between the input, hidden and output variables,
and w is the model parameter vector. In digit recogni-
tion, this joint feature vector is the vector representation of
the image x rotated by an angle corresponding to h. Let

{ŷi(w), ĥi(w)} � argmax(y,h)∈Y×Hw ·φ(xi, y, h) be the
predicted output and latent variables for data-point i, written
as a function of the parameter vector w. A user-specified
loss function Δ(yi, ŷi(w)) measures the loss incurred for
predicting ŷi(w) for the ith sample, when the ground-truth
label is yi. Note that the loss function may additionally de-
pend on the predicted latent variables, i.e. have the form

Δ(yi, ŷi(w), ĥi(w)). The parameter vector w is learned by
minimizing the (regularized) loss of the prediction on the
training dataset D. Unfortunately, this is a difficult opti-
mization problem. Yu and Joachims [27] proposed mini-
mizing an upper-bound on the loss and formulated the fol-
lowing optimization problem:

min
w,ξi≥0

Ω(w) +
C

n

n∑
i=1

ξi (2a)

s.t. max
hi∈H

w · φ(xi, yi, hi)−w · φ(xi, ȳi, h̄i) ≥
Δ(yi, ȳi, h̄i)− ξi,

∀(ȳi, h̄i) ∈ Y ×H, i ∈ [n]. (2b)

where, the regularization term is Ω(w) = 1
2‖w‖22. Intu-

itively, we can see that constraint (2b) tries to ensure that for
each training instance i, the ground-truth yi and its best la-
tent variable prediction (argmaxhi∈Hw·φ(xi, yi, hi)) have
a higher score than all other labels and latent variable as-
signment pairs (ȳi, h̄i) by a soft margin of Δ(yi, ŷi, ŷi).
Thus, high-loss configurations are forced to have a larger
margin between them and the ground-truth. It can be
shown that ξi is an upper bound on the loss, i.e. ξi ≥
Δ(yi, ŷi(w), ĥi(w)). More details can be found in [27].

Latent SVMs (LSVMs). The fairly general formulation of
LSSVMs includes a number of interesting models as special
cases. We describe one such instantiation, the deformable
parts based Latent SVM model of Felzenszwalb et al. [14],
which we use for one set of our experiments. In this model,
xi are the HOG descriptors [7] computed at a particular slid-
ing window location and scale in the image; yi ∈ {+1,−1}
indicates presence or absence of a particular category in the
window and hi indicates the mixture type of the deformable
template and location and scale of root and part filters. The
scoring function in this case can be reduced to the following
form: f(x) = maxh∈Hw · φ(x, h), where the joint feature
vector φ(x, h) now does not depends on the label y. The
loss function Δ is zero-one loss, and the learning problem
looks more like a binary SVM:

min
w,ξi≥0

Ω(w) +
C

n

n∑
i=1

ξi, (3a)

s.t. yif(xi) ≥ 1− ξi, ∀i ∈ [n]. (3b)

where Ω(w) = 1
2‖w‖22. Constraints (3b) try to ensure that

positive and negative training instances lie on different sides
of the separation hyperplane with a soft margin of 1.

The next section describes our proposed group norm
modification to the LSSVM and LSVM models, and Sec-
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tion 5 describes how parameter learning can be performed
in the presence of this modification.

4. Inducing Group Norm for State Learning
We focus on models with an enumerable latent space,

i.e. H = {1, · · · , P} is the set of all possible latent config-
urations. Such a set of states can be the set of all possible
rotation angles in digit recognition, or the set of mixture
components in a DPM object detection model. Recall that
our goal is to regularize the complexity of the latent space
and learn which hidden states are really relevant for the pre-
diction problem. To this end, we consider using the �1-�2
norm in the regularizer Ω(w) in problem (2) and (3) to learn
meaningful latent states.

Reformulating LSSVM Prediction Rule. We start by de-
scribing a modification to the linear prediction rule in prob-
lem (2) that makes it easier to encode the group struc-
ture of latent states. Specifically, instead of learning a
single weight vector w, we now learn P weight vectors
{wh | h ∈ [P ]}, one corresponding to each of the la-
tent states. The modified linear prediction rule is given
by f(x) = maxy∈Y, h∈[P ] wh · φ(x, y, h). We note that
with appropriate zero-padding of the features, this model
is equivalent to the original linear model. To see that, let
w = [w1, · · · ,wP ] be the concatenation of weight vectors
from each group. We can also define new features:

φ̃(x, y, h) = [0n1 ,0n2 , . . . , φ(x, y, h), . . . ,0nP ], (4)

where np is the length of wp. The above equation zeros
pads the joint feature vectors such that only the weight vec-
tors and features for the same group interact in the dot prod-

uct: w·φ̃(x, y, h) = ∑
p�=h 0np ·φ(x, y, p)+wh ·φ(x, y, h).

The key reason for working with this representation is
that parameters for each state are now represented sepa-
rately and thus group �1 regularization is possible over the
state space. For any q ∈ [1,∞), an �1-�q norm is given

by ΩG(w) =
∑P

p=1 λp ||wp||q , where λp ≥ 0 is the reg-

ularization weight for group p. Popular choices for q are
{2,∞} [1]. In our work, we only consider q = 2 and the
regularizer is thus given as follows:

Ω(w) =
P∑

p=1

λp ||wp||2 . (5)

We can see that within each group, the �2 norm is used,
which does not promote sparsity. At the group level, this
norm behaves like the �1 norm and thus induces group spar-
sity, i.e. the parameters of some groups are encouraged to
be set completely to zero. Uninformative states will thus
have sparse learned parameters. This gives us a natural way
to select the latent states most useful for prediction.

In a manner similar to Elastic Nets [30], we can also use
the group norm in combination with the �2 norm:

Ω(w) =
1

2
||w||22 +

P∑
p=1

λp‖wp‖2. (6)

Such a regularizer has the effect of both the original regu-
larizer and the group norm. When λp = 0 for all p, the reg-
ularizer is reduced to the original form (�2-norm). Group
level sparsity can be induced when λp is sufficiently large.

The next section describes the algorithm for parameter
learning in LSSVMs with group norm regularizers.

5. LSSVM Training via Coordinate Descent
From an optimization perspective, both problems (2) and

(3) can be viewed as minimizing a sum of convex and con-
cave functions. Such problems are studied in the context of
difference of convex programming and lend themselves to
the concave-convex procedure (CCCP) [29, 27] and a simi-
lar coordinate descent approach of Felzenszwalb et al. [14].
We begin by rewriting problem (2) as minimization of dif-
ference of two convex functions:

min
w

L(w)

.
=

[
Ω(w) +

C

n

n∑
i=1

max {0, fi(w)− gi(w)}
]
, (7)

where fi(w) = max(ȳi,h̄i)∈Y×H[wh̄i
· φ(xi, ȳi, h̄i) +

Δ(yi, ȳi, h̄i)] and gi(w) = maxhi∈H whi · φ(xi, yi, hi).
We can see that fi(w) and gi(w) are both point-wise maxi-
mums of linear functions and thus convex. In order to mini-
mize (7), we follow the approach of Felzenszwalb et al. [14]
and minimize an upper bound on L(w) ≤ L(w, {hi}),
which is the objective function with latent variables spec-
ified for the training data. Thus:

min
w,{hi}

L(w, {hi})

.
=

[
Ω(w) +

C

n

n∑
i=1

max {0, fi(w)− gi(w, hi)}
]
, (8)

where gi(w, hi) = whi
· φ(xi, yi, hi). Intuitively, replac-

ing gi(w) by gi(w, hi) implies that we enforce the mar-
gin not with respect to the best latent assignment for the
ground-truth yi, rather only the current latent assignment of
hi. Since gi(w, hi) is now simply a linear function in w,
L(w, {hi}) is the difference of a convex and a linear func-
tion, thus convex. In a manner similar to Felzenszwalb et
al. [14], we follow a coordinate descent scheme. At iter-
ation t, we first fix w(t) and optimize L(w(t), {hi}) w.r.t.
{hi}. This is equivalent to computing:

h
(t)
i = argmax

hi∈H
w

(t)
hi
· φ(xi, yi, hi) ∀i ∈ [n]. (9)

This step is fairly straightforward and involves assigning
the latent variables to their optimal states given the cur-

rent setting of w(t). Next, we fix {h(t)
i } and optimize w.r.t.

w. This is done via subgradient descent. The subgradient

∇L(w, {h(t)
i }) is given by:

∇L(w, {h(t)
i }) = ∇Ω(w) +

C

n

n∑
i=1

mi(w, h
(t)
i ), (10)
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where ∇Ω(w) is the subgradient of the regularizer:[
λ1w1

||w1||2︸ ︷︷ ︸
Group 1

, · · · , λPwP

||wP ||2︸ ︷︷ ︸
Group P

]
, (11)

and mi(w, h
(t)
i ) is subgradient of the structured hinge loss:{

0 if fi(w)− gi(w, h
(t)
i ) ≤ 0

φ(xi, ȳ
∗
i , h̄

∗
i )− φ(xi, yi, h

(t)
i ) otherwise

(12)

where (ȳ∗i , h̄
∗
i ) is tuple that maximizes the loss-augmented

score, i.e. argmax(ȳi,h̄i)∈Y×H[wh̄i
· φ(xi, ȳi, h̄i) +

Δ(yi, ȳi, h̄i)]. These two steps, i.e. fixing w(t) and op-

timizing L(w(t), {hi}) w.r.t. {hi}, and fixing {h(t)
i }

to optimize w.r.t. w, are repeated until the objective
L(w, {hi}) converges. It can be shown that the algorithm
always converges to a local minimum or a saddle point [29].
Algorithm 1 summarizes the entire algorithm.

The learning rate αt is of important practical considera-
tion. Following [17], we chose the learning rate at iteration
t to be αt =

1
ηt+1 , where ηt is the number of times the ob-

jective value L(w, {h(t)
i }) has increased from one iteration

of subgradient descent to the next. We found this learning
rate to perform well in our experiments.

6. Experiment
We performed two sets of experiments: handwritten digit

recognition on MNIST and object detection on the PASCAL
VOC 2007 dataset [12]. Our results on the first set of exper-
iments show that we are able to learn a sparse model that
allows faster evaluation at test time, without drop in accu-
racy. The second set of experiments show that that we are
able to learn a better model by adapting the complexity of
the latent space to the category being trained.

6.1. Handwritten Digit Recognition
We closely follow the experimental setup of Kumar et

al. [18], who proposed an LSSVM approach for this prob-
lem. Each digit is represented as a vector x of pixel
grayscale values. The goal is to predict the digit label
y ∈ Y = {0, 1, · · · , 9}. Kumar et al. [18] showed that ac-
curacy can be greatly improved by explicitly modeling (and
correcting for) the rotational deformations present in each
image. Specifically, they consider rotation as a hidden vari-
able taking values in a set of 11 angles uniformly distributed
from −60◦ to 60◦, i.e. hi ∈ H = {−60◦,−48◦, . . . , 60◦}.
The joint feature vector is φ(x, y, h) = pca(xh), where xh

is the image rotated by the angle corresponding to h and
pca(xh) is the 10-dimensional PCA projection of this ro-
tated image. Examples of these rotated images are shown
in Figure 1. We show that by inducing a group-norm over
the parameters corresponding to each hidden state, only a
few rotations are needed to achieve the recognition accu-
racy with the full set of angles.

Algorithm 1 Group-Norm LSSVM Training

Input: D = {(x1, y1), . . . , (xn, yn)}, convergence criteria
ε, initialization w(0).

1: t← 0
2: repeat
3: for i = 1 to n do
4: {#Find best latent assignment hi.}
5: gi ← maxhi∈H w

(t)
hi
· φ(xi, yi, hi)

6: h
(t)
i ← argmaxhi∈H w

(t)
hi
· φ(xi, yi, hi)

7: end for
8: repeat
9: {#Optimize Over w with Subgradient Descent}

10: for i = 1 to n do {#Can pick a random element
here if Stochastic Subgradient}

11: fi ← max(ȳi,h̄i)∈Y×H
[
w(t) · φ(xi, ȳi, h̄i) +

Δ(yi, ȳi, h̄i)
]
, and obtain maximizer (ȳ∗i , h̄

∗
i )

12: mi ← 0
13: if fi − gi > 0 then
14: mi ← φ(xi, ȳ

∗
i , h̄

∗
i )− φ(xi, yi, h

(t)
i )

15: end if
16: end for
17: ∇L← ∇Ω(w(t)) + C

n

∑n
i=1 mi

18: w(t) ← w(t) − αt∇L
19: until Convergence of Subgradient Descent
20: t← t+ 1

21: until
∣∣∣∣L(w(t+1),{h(t+1)

i })−L(w(t),{h(t)
i })

L(w(t),{h(t)
i })

∣∣∣∣ ≤ ε

We work with the MNIST dataset [19], and perform bi-
nary classification on four difficult digit pairs (1-vs-7, 2-vs-
7, 3-vs-8, 8-vs-9). The training data for each digit contains
about 6000 images and the testing data contains approxi-
mately 1000 images. We use λp = 1 for each group in our
experiment. We tried different values of C, and the predic-
tion accuracies were fairly similar. We set C = 1.

Figure 2 shows the �2-norms of the parameter vectors for
different angles in the 4 digit-pair experiments. We can see
that the �2-norms for many angles are completely zero, and
only a subset of angles actually remain to contribute to the
final prediction. Our sparse model essentially selects 5, 8,
7, and 9 angles in total for digit pairs 1-7, 2-7, 3-8, and 8-9
respectively. This is a significant reduction from the hidden
space of 22 angles per digit pair in the original model.

Table 1 shows prediction accuracy vs the number of an-
gles used. For this table, we selected angles in descending
order of the �2-norms. As a baseline, we compare to uni-
form angle selection based on the original approach by Ku-
mar et al. [18]. We can see that our approach achieves good
performance very quickly. In fact, using only 8 angles for
each digit pair, we can achieve prediction accuracies similar
to those using the entire set of angles.
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Figure 2. �2 norm of the parameter vectors for different angles over the 4 digit pairs.

Number of angles 2 4 6 8 10 12 14 16 18 20 22

Digit pair Our approach 0.863 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988
1 vs 7 Kumar et al. [18] 0.961 0.962 0.959 0.959 0.962 0.964 0.963 0.962 0.961 0.964 0.945

Digit pair Our approach 0.852 0.957 0.953 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956
2 vs 7 Kumar et al. [18] 0.953 0.942 0.938 0.943 0.942 0.947 0.943 0.948 0.943 0.945 0.941

Digit pair Our approach 0.499 0.719 0.923 0.923 0.923 0.923 0.923 0.923 0.923 0.923 0.923
3 vs 8 Kumar et al. [18] 0.882 0.876 0.901 0.890 0.905 0.901 0.901 0.903 0.899 0.904 0.916

Digit pair Our approach 0.797 0.617 0.875 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954
8 vs 9 Kumar et al. [18] 0.937 0.933 0.936 0.934 0.936 0.942 0.941 0.943 0.940 0.942 0.933

Table 1. Accuracy vs #angles for our approach and uniform selection based on the original approach by Kumar et al. [18]. We can see that
our approach outperforms uniform selection and is able to quickly achieve accuracy comparable to the complete model (using all angles).

Digit Pair 1 vs 7 2 vs 7 3 vs 8 8 vs 9

Our approach 8 angles 6.5 7.0 5.4 6.0

Kumar et al. [18] 22 angles 22.3 24.1 23.7 23.1

Table 2. Running time (seconds) comparison of our approach and
Kumar et al. [18]. Time reported is cputime on 64-bit 8-Core Intel
i7 machine with 12GB RAM.

Running time for feature computation increases linearly
with the number of angles chosen because the time to ro-
tate an image and to perform PCA for each angle is about
the same. Thus, as shown in Table 2, evaluation at test-time
with our sparse method using 8 angles per digit-pair is 2.5-3
times faster than the non-sparse model without any or sig-
nificant loss in accuracy.

6.2. Object Detection with Deformable Part Models

Next, we applied our approach to train a mixture of De-
formable Part Models [14] for object detection. Each com-
ponent in the mixture is a star-structured part model con-
sisting of a root filter, part filters, and part displacements
vectors. The score of a component at a particular location
and scale in the image is defined as the sum of scores for
root and part filters minus the deformation cost of plac-
ing part filters in the image. Each component is bilater-
ally symmetric and thus an n-component mixture really has
2n-members. To detect the object instances, this model is
scanned across different locations and scales in the image,
followed by standard post-processing steps such as bound-
ing box prediction, non-maximal suppression, and context
rescoring. Details can be found in [14].

The goal of our experiments is to select and learn a
sparse mixture model with only a subset of components.
The motivation for doing this is our observation that as
the number of components increases (from n=1 to n=6),

the model generally overfits to the training data. For in-
stance, Figure 3 shows the train and test accuracies vs num-
ber of components for the ‘cat’ category. Trends on other
categories are provided in the supplemental materials. We
can see that test accuracy increase at first then decreases
while trainval accuracy increases monotonically, which
is the classical sign of overfitting. Thus, We would like to
learn the appropriate number components for each category.
The naı̈ve way of doing this would be cross-validation on n
for each category. However, this is computationally pro-
hibitive and requires tuning 20 parameters. We show that
using our approach we can learn the appropriate sparsity
level for all classes via a single parameter λp(= λ, ∀p).

We worked with release4 of the DPM system [13], and
report results on the PASCAL VOC 2007 dataset [12]. VOC
2007 is smaller than the latest VOC 2012 dataset. How-
ever, ground-truth annotations for 2007 are available while
evaluating results on 2012 requires submission to the eval-
uation server. Our experiments involve evaluating the ef-
fect of a large number of parameters and VOC discourages
multiple submissions. Thus, following the ‘best practices’
guidelines, we report results on VOC 2007. We believe our
approach should only work better with more data available.

From an implementation perspective [13], the parameter
learning proceeds in three stages. Stage 1 learns the param-
eters of root filter for each component separately. Stage 2
concatenates the parameters of all components and learns
a mixture model of root filters. Stage 3 adds the part and
displacement parameters for each component and learns the
final mixture model. Stages 2 and 3 use the coordinate de-
scent approach described in Section 5. We applied the group
norm to stage 2 of the learning process so that we can se-
lect a subset of components to do learning in stage 3. We
initialized the mixture model with 6 components.
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Figure 3. Accuracy of the Felzenszwalb et al. detector [14] vs
the number of components for the ‘cat’ category, trained on VOC
2007 trainval and tested on test. Only root+part accura-
cies are shown (no bounding box prediction or context rescor-
ing is performed). We can see that test accuracies increase at
first then decrease while trainval accuracies increase mono-
tonically, which is a classical sign of overfitting.

λp 0.08 0.10 0.12 0.14 0.16

Mean AP 25.1 25.2 25.8 23.9 23.3

Avg. #components 4.8 3.9 3.1 2.4 2.0

Table 3. Results on VOC2007 val using models trained on
train. The results are based on root+part model only (no bound-
ing box prediction or context rescoring is performed). We can see
that λp = 0.12 achieves the highest mean average precision and
with 3.1 non-sparse components on average (out of 6).

Effect of λp. Table 3 shows the mean average precision and
the average number of non-sparse components as a function
of λp for 2007 val set, using a model trained on train.
We can see that λp = 0.12 gives the highest mean average
precision and produces a reasonable level of sparsity on av-
erage (across categories). Results for individual categories
are in the supplement. We use this optimal setting of λp for
our experiments on test.

Qualitative Example. Figure 4 shows a qualitative exam-
ple of the model before and after Stage 2 training with the
group norm. Some components that are very similar to oth-
ers are removed by the group norm.

Quantitative Results. Table 4 summarizes the results on
VOC 2007 test, with models trained on trainval. We
can see that as n increases, (standard) DPM accuracies for
some categories like bottle monotonically decrease, while
those for cat and horse reach their peak somewhere in the
middle. However, the mean accuracies initially increase
from n = 1 to n = 2, but then stagnate. This behavior em-
pirically verifies our hypothesis that a single setting of num-
ber of components is a suboptimal choice. Our approach is
able to pick out a fairly non-uniform sparsity pattern across
the categories, performing the best in 7 out of 20 categories
with a mean average precision of 32.5. This is better than
all other settings in which n is fixed. On average, 3.6 out
of 6 components remains in the final models. This is signif-
icantly lower than the original 6 components for each cat-

Figure 4. The mixture of root model before and after the training
by �1-�2 norm for the car category. Each row corresponds to a
component. First column shows a positive example from the com-
ponent. Second column shows the average image for the compo-
nent. Third and fourth columns show the root filter of the compo-
nent before and after training respectively. A complete gray image
indicates the filter is sparse. We can see that the components 4,5
were very similar components 2,3 and thus were removed.

egory, resulting in 40% faster detection at test time. The
training time of our approach for each object category is
similar to that by the original approach with the same num-
ber of components because Stage 3 dominates the training
process. We also ran the bounding box prediction and con-
text rescoring steps the sake of completeness, and observe
similar trends.

7. Summary
We address the problem of estimating the parameters of

latent variable models as well as discovering meaningful
states for the latent variables. This allows us to control the
model complexity and speed up inference time. We address
this problem in the context of SVMs with structured out-
put variables and unstructured (enumerable) latent variables
via an �1-�2 group norm regularization. Our experiments on
handwritten digit recognition show that our approach is able
to effectively reduce the size of latent variable state space
and thus reduce the inference time with no loss of accuracy
compared to using the full latent state space. Our experi-
ment on object detection shows that we are able to adapt
the number of components to the category being learnt and
achieve higher detection performance.

In this work, we build on the standard DPM frame-
work [14], which typically uses n = 3 mixture components.
Recent work on visual subcategories [9] has argued that a
larger number of mixture components can lead to improved
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root+part aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mean

n=1 24.3 49.5 8.2 6.5 27.8 45.2 51.5 17.0 19.2 22.9 22.2 5.1 49.8 37.9 33.6 6.5 13.6 30.4 34.2 42.7 27.4

n=2 31.7 56.0 10.3 11.2 27.5 52.0 53.8 24.2 21.1 26.6 22.9 10.6 59.6 44.1 39.5 13.6 18.1 29.1 44.0 42.0 31.9

n=3 29.6 57.3 10.1 17.1 25.2 47.8 55.0 18.4 21.6 24.7 23.3 11.2 57.6 46.5 42.1 12.2 18.6 31.9 44.5 40.9 31.8

n=4 31.8 57.2 10.1 14.7 24.3 50.0 54.1 18.2 20.4 24.8 19.3 11.0 57.0 40.2 38.1 12.8 22.8 28.4 46.6 40.0 31.1

n=5 32.2 57.6 10.4 17.2 23.2 54.5 54.0 15.6 19.6 24.2 25.1 11.3 56.2 47.8 39.3 12.0 18.5 30.9 48.7 39.8 31.9

n=6 30.5 56.7 11.0 16.2 22.1 49.7 54.1 13.9 19.6 21.7 21.4 11.2 55.7 46.8 38.5 8.3 23.6 26.0 43.9 40.8 30.6

ours (λp = 0.12) 30.8 56.3 9.4 15.5 28.4 52.4 54.5 19.8 21.9 30.1 28.0 11.3 57.1 45.7 38.6 14.7 15.4 31.8 44.5 43.2 32.5
comp. num. 4 6 1 2 2 3 4 5 2 4 3 5 4 4 6 4 1 2 6 3 3.6

bbox aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mean

n=1 25.0 50.2 8.3 6.5 28.3 45.6 54.5 17.2 19.6 22.8 23.1 5.2 50.4 37.9 33.8 6.8 14.9 31.1 35.0 44.0 28.0

n=2 31.0 58.5 10.2 10.7 27.4 52.6 56.2 26.1 21.5 26.6 22.3 10.8 61.6 45.3 40.0 13.5 17.9 29.9 45.4 42.6 32.5

n=3 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 46.6 41.9 12.2 17.8 33.6 45.1 41.6 32.2

n=4 32.1 59.6 10.2 15.3 24.6 51.9 57.5 18.5 20.2 25.1 17.3 11.0 57.4 43.0 36.6 12.5 22.5 28.0 46.6 41.7 31.6

n=5 31.0 58.5 10.4 17.7 23.5 54.9 57.6 17.3 19.5 22.6 24.7 11.1 57.6 49.2 39.8 11.6 18.4 32.3 47.1 40.8 32.3

n=6 29.6 56.1 10.9 15.3 21.8 50.5 57.1 15.3 20.2 19.8 21.0 11.4 55.7 45.5 38.5 10.3 23.6 25.4 42.6 41.6 30.6

ours (λp = 0.12) 33.6 57.6 9.4 15.5 28.9 51.7 55.3 20.2 22.1 30.4 28.9 11.5 58.1 46.4 38.8 14.1 16.2 32.3 45.6 43.8 33.0
context aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mean

n=1 27.9 52.0 11.2 9.8 29.7 47.7 56.3 23.6 20.8 25.0 26.4 13.3 53.4 42.2 35.5 9.0 15.7 34.4 38.3 45.8 30.9

n=2 33.2 60.5 12.5 10.8 28.6 52.7 58.0 30.9 22.9 28.7 26.3 13.2 65.3 47.6 42.6 15.6 19.9 33.1 49.3 44.2 34.8

n=3 31.1 61.6 11.9 17.3 27.1 49.0 59.6 22.9 23.0 26.7 24.5 12.9 60.2 49.5 43.2 13.5 18.9 36.4 49.2 43.0 34.1

n=4 35.2 59.4 12.4 16.7 25.4 51.9 59.1 20.2 21.3 26.3 18.8 12.7 60.3 46.2 38.3 14.5 21.4 30.6 51.1 43.1 33.2

n=5 32.6 58.4 12.7 17.9 25.1 55.8 58.9 17.5 19.9 24.7 21.4 13.2 61.0 51.6 42.4 13.5 19.4 32.8 49.8 41.5 33.5

n=6 30.8 57.1 12.1 15.7 21.6 49.1 57.7 19.1 20.6 22.3 18.8 13.3 58.3 47.1 41.4 12.0 22.9 28.0 43.0 42.2 31.7

ours (λp = 0.12) 35.8 59.9 10.3 18.1 29.3 53.4 56.3 25.3 23.5 30.6 31.0 13.9 60.5 48.9 41.1 16.1 17.3 35.3 49.5 45.7 35.1

Table 4. Accuracies on VOC 2007 test with models trained on trainval. Evaluation is performed based on 1) root and part (root+part)
filters, 2) bounding box (bbox) prediction, and 3) context rescoring. The last row in the root+part table shows the number of non-sparse
components out of a total of 6 components being trained.

performance. The task of selecting an appropriate number
of subcategories for each category becomes even more cru-
cial in this context. We are investigating these directions.
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