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Abstract

We present an integrated probabilistic model for layered
object tracking that combines dynamics on implicit shape
representations, topological shape constraints, adaptive ap-
pearance models, and layered flow. The generative model
combines the evolution of appearances and layer shapes
with a Gaussian process flow and explicit layer ordering.
Efficient MCMC sampling algorithms are developed to en-
able a particle filtering approach while reasoning about the
distribution of object boundaries in video. We demonstrate
the utility of the proposed tracking algorithm on a wide vari-
ety of video sources while achieving state-of-the-art results
on a boundary-accurate tracking dataset.

1. Introduction

Tracking is a fundamental task in video sequence anal-
ysis. The resulting tracks can be used to analyze past be-
havior and predict future trajectories of objects in the scene
(e.g. [6]). Segmentation and motion analysis of video pro-
vides a preprocessor for object classification. Accurate ob-
ject boundaries enable methods for learning shape models
(e.g. [23]). We focus on object tracking with accurate
boundaries in contrast to bounding box methods. Figure
1 illustrates the difference between the two. The result-
ing probabilistic model for layered object tracking com-
bines dynamic appearance and shape models, topology con-
straints, and Gaussian process flow. These concepts have
been considered individually in a variety of contexts in-
cluding tracking. Here, we consider an integrated model
and develop efficient sampling-based algorithms. We ob-
tain state-of-the-art results on the SegTrack dataset [29].
Furthermore, we also formulate a novel shape sampler that
addresses a flaw in the formulation of [5] and is directly
applicable to general segmentation problems.

Elements of the approach are certainly related to pre-
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Figure 1: Bounding box tracking versus boundary accurate
tracking. The object boundaries were found using the algo-
rithm described in this paper.

vious work. Layered models have been popular since the
Bayesian model of [8], with the promising results of [31]
motivating many similar approaches. The layered appear-
ance model described herein is closely related to [15, 24],
but as described in Section 2, differs explicitly by coupling
occlusions and disocclusions with the layer supports. Sim-
ilarly, Section 3 discusses how our flow model generalizes
that of [32] by using Gaussian processes.

Owing to the wealth of literature in tracking and segmen-
tation, we focus on relevant prior work. Some optimization-
based approaches, such as [11, 18, 21], are able to automat-
ically segment objects of interest by processing the entire
video offline. Others (e.g. [29]) require annotations to iden-
tify key objects or frames. Such batch processing is akin
to Bayesian smoothing, where inference depends on both
past and future observations. Alternatively, analogous to
Bayesian filtering, one can track objects in an online fash-
ion (e.g. [23, 24, 25]). The proposed method adopts a filter-
ing approach, scaling linearly in the number of frames for
computation, and having constant memory consumption.

There is also a rich literature in probabilistic tracking,
most of which track bounding box trajectories instead of
accurate boundaries. A notable exception is [23] which
uses an unconventional particle filter that propagates parti-
cles with a number of gradient descent iterations instead of
a randomized proposal. We show that this deterministic ap-
proximation is unnecessary. Additionally, the dynamics do
not correspond to an underlying object motion, and there-
fore, do not couple the changes in appearance and shape.

To our knowledge, only [25] and [10] (optimization-
based methods) consider topology constraints in video anal-
ysis. The first uses digital topology to penalize merges of
two connected components (each corresponding to a sepa-
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rate object). This soft constraint does not, however, neces-
sarily preserve connected components. Similarly, the sec-
ond extends binary topology to M -ary topology to restrict
objects from merging. This method does not use an appear-
ance or flow model and also does not handle occlusions that
may split the visible support of objects.

Similiar to the proposed method, Sun et al. [27, 28] es-
timate motion and reason about depth ordering in a layered
model. In fact, [27] extends [28] to infer the number of
layers, something the proposed method does not consider.
In contrast to the proposed method, these methods segment
objects via batch processing of the entire sequence. Unlike
our method which reasons over the shape distribution, [27]
adopts an energy minimization approach within a graphical
model formulation. While [28] achieves state-of-the-art op-
tical flow results, it does so at considerable computational
expense. Furthermore, they do not allow for temporal evo-
lution of layer ordering. Processing times on current stan-
dard computer hardware are on the order of hours per frame
as compared to approximately one minute per frame for the
proposed approach.

2. Layered Model

We begin by developing the probabilistic model, de-
picted as a directed graph in Figure 2a, used to represent
scenes. While it is important for any practical method to be
able to detect new objects entering a scene, for purposes of
exposition, we restrict ourselves to the case of tracking M
previously detected objects. The method of initialization is
discussed in Section 6.

2.1. In-Frame Appearance

Scene models are comprised of M layers, where each
object lies in one layer, and one layer is the designated back-
ground. The support of layer m at time t is denoted by
�tm ∈ {0, 1}N , where N is the number of pixels. Specifi-
cally, �tm,i = 1 iff pixel i is in the support of layer m at time
t. The layers are ordered with zt, which contains a permu-
tation of the integers 1 to M . The visible layer at pixel i,
denoted vti , can then be expressed as

vti = argmin{m|�tm,i=1} z
t
m. (1)

Associated with each layer is a pixel-wise appearance
model, atm ∈ R

N×3, where atm,i is the 3-dimensional color
(we use the Lab colorspace) at pixel i. Assuming Gaussian
observation noise, the observed image, xt is generated by

xt
i|at, �t, zt ∼ N(atvt

i ,i
,ΣX). (2)

We note that the visible pixel, vti , is implicitly dependent
on zt through Equation 1. We assume the color channels
are independent, i.e. ΣX is diagonal. While [15] and [24]
use similar models, they do not address the appearance of
occluded or disoccluded pixels which we now discuss.

(a) Graphical Model (b) Types of Pixels

Figure 2: (a) Graphical model: x denotes a frame, �m, am,
and fm are the support, appearance, and flow for layer m,
and z controls the layer order. (b) An example of the three
types of pixels that can occur in a new frame.

2.2. Temporal Appearance Dynamics

Given the appearance and support of a previous frame,
the dynamics of these random variables evolve jointly based
on the underlying motion of the layer. We describe the mo-
tion model for layer m from frame (t − 1) to t, denoted
f t
m, in Section 3. The motion is related to optical flow,

and we use the terms “motion” and “flow” interchangeably.
While deformations of 3D objects are typically diffeomor-
phic, projections onto the 2D image plane are not because
of occlusions and disocclusions. For example, consider the
illustration in Figure 2b where a visible pixel in the new
frame can belong to three possible portions of a layer: (1)
observed portion,O, which has been seen before; (2) disoc-
cluded portion, D, which has never been seen and was pre-
viously occluded by another layer; or (3) revealed portion,
R, which has never been seen and was previously hidden by
a pixel belonging to the same layer. Consequently, we de-
fine a probability distribution over the evolving appearance
model for each of these categories.

Observed portions,Ot
m, evolve with a Gaussian distribu-

tion from the aligned appearance model

p(atm,i|i ∈ Ot
m, fat−1

m ) = N(atm,i; fa
t−1
m,i ,ΣA), (3)

where fat−1
m denotes the aligned appearance obtained by

evolving at−1
m with the flow f t

m, and fat−1
m,i indexes pixel i

from the image fat−1
m . Similar to the observation, we as-

sume independent color channels with a diagonal ΣA.
Disoccluded portions are often similar to neighboring

pixels. For example, the disoccluded pixels in Figure 2b
are likely to be green or black. Because no additional prior
information is given, these pixels are drawn from

p(atm,i|i ∈ Dt
m, fat−1

m )

∝
∑

j∈Ot−1
m

N(j; i, σ2
DI)δ

(
atm,i − fat−1

m,j

)
, (4)

whereN(j; i, σ2
DI) is a 2D Gaussian over pixel coordinates.

Lastly, revealed portions appear when objects turn and
reveal a new side. These can look quite different from
neighboring pixels. For example, the revealed side of the
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box in Figure 2b can be of any color. Appearances in Rt
m

are therefore drawn from a mixture of a uniform distribution
and a kernel density estimate of the observed appearances

p(atm,i|i ∈ Rt
m, at−1

m ) = (1 − αR)U3(atm,i) + αRk(a
t
m,i),

k(a) = 1

|Ot−1
m |

∏
d

∑
j∈Ot−1

m

N(ad; at−1
m,j,d, σ

2
k), (5)

where U3 is the uniform distribution over the colorspace, d
indexes a color. k(·) can be estimated with [33] and σ2

k is
chosen to be the “rule-of-thumb” bandwidth. While these
simple assumptions do not explain all situations, we have
empirically found that they work well in most videos.

2.3. Temporal Support Dynamics

The evolution of each layer support is coupled to the evo-
lution of its appearance. However, by introducing disoc-
cluded and revealed pixels, we must also allow the support
of each layer to deviate from the aligned support, f�t−1

m .
Consequently, layer supports are chosen to evolve accord-
ing to a distribution proportional to exponentiated symmet-
ric area difference (SAD), where SAD can be expressed as

SAD(�1, �2) =
∑

i
1I
[
�1i �= �2i

]
, (6)

and 1I[·] is one iff [·] is true. Additionally, we impose a curve
length penalty on the shape of each layer and enforce each
layer to be a single connected component. The resulting
temporal dynamics on layer support are expressed as

p(�tm|�t−1
m , f t

m) ∝ QL(�
t
m)

∏
i
QS(�

t
m,i|f�t−1

m,i ), (7)

QL(�
t
m) = 1I

[
T (�tm) = 1

]
exp

[−αLCtm
]
, (8)

QS(�
t
m,i|f�t−1

m,i ) = exp
[−αS1I

[
�tm,i = f�t−1

m,i

]]
, (9)

where Ctm is the contour length of �tm, T (·) counts the num-
ber of connected components, and the αL, αS control the
relative weighting of these penalties.

The appearance and shape model we describe will not
explain every situation. For example, an object that splits
into two will violate the topology prior of the model. If
a light is turned on, the Gaussian diffusion of appearances
may be too restrictive. However, in subsequent sections we
show that they yield good empirical performance across a
variety of video sequences.

3. Gaussian Process Flow

Having detailed the observation model conditioned on
the layered flow fields, we describe a flow model com-
prised of layered Gaussian processes (GPs). A GP can
be parametrized with a mean and covariance function (c.f.
[22]). We restrict the model to zero-mean GPs with sta-
tionary covariance kernels which, as shown in Section 5,
enables an efficient sampling-based inference method.

(a) (b) (c) (d)

Figure 3: Samples from different GPs: (a) sparse neigh-
borhood precision; (b) SE kernel with layered composition
using the layers of (c). (d) Flow vectors mapping to colors.

GPs have been widely used as a prior for trajectories (e.g.
[2, 16, 30]). In practice, however, these formulations have
been applied to object trajectories, whereas here we con-
sider their application to dense flow between frames. GPs
are not typically used to model flow for two reasons: (1)
GPs are often smooth everywhere, causing errors across ob-
ject boundaries; and (2) naı̈ve inference requires inverting
covariance matrices that do not scale well with the image
size. We address the first issue here and the second via an
approximation in Section 5.

One particular GP covariance kernel is closely related
to the L2 penalty in the Horn-Schunck optical flow formu-
lation [13]. However, that L2 penalty on flow differences
results in an improper distribution with a rank deficient co-
variance matrix. Regardless, one can approximate this prior
with a GP having a sparse precision matrix (inverse of the
covariance), arising from the 4-connected neighborhood of
each node. Figure 3a shows a sample from this type of GP,
which fails to capture long range correlations in flow fields
and, concurrently, overly penalizes discontinuities across
object boundaries. Following [32], we instead compose
smooth, layered flows using

f i = fvi,i ∀i ∈ {1, · · · , N}. (10)

Here, fm is the flow for layer m, and f is the composite
flow for visible pixels. Similar to optical flow, we assume
that the x and y components of flow are independent. Fig-
ure 3b shows a sample from a GP using Equation 10 with
the squared exponential (SE) kernel (c.f. [22]). Composing
multiple smooth GPs in this fashion mitigates the problem
of discontinuities.

Unlike [32] which uses layered flows of the form of [13],
a GP flow is a valid prior distribution that can capture long-
range dependency. While any 2D GP has an equivalent
Gaussian Markov random field (GMRF). The associated
graphical structure is fixed and depends on the covariance
kernel. The resulting GMRF typically has complex con-
nectivity impacting inference. However, by utilizing a GP
formulation, we show in Section 5 that inference is easily
adapted to changes in the covariance.

3.1. Smooth Deformable Flow

Tracking deformable objects encounters additional com-
plexity when parts of the objects exhibit self-occlusions or
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Figure 4: Consecutive frames of a deformable object with
self occlusions and disocclusions.

disocclusions (e.g. the arms and legs of the girl in Figure
4). The SE kernel often results in overly smoothed flow es-
timates that do not adequately capture object deformation.
We mitigate this issue by adopting a covariance kernel that
is the composition of the SE kernel and a delta function. It is
easily verified that the resulting GP follows the distribution

p(fm) = N(fm ; 0,Σg + σ2
f I), (11)

where Σg is the resulting covariance from the SE kernel,
and σ2

f I is the resulting covariance from the delta kernel.
Notation is slightly abused since each component of the
flow is not explicitly written. We show in Section 5 how
to exploit a decomposition of this flow for efficient infer-
ence. In particular, we decompose the flow into the smooth
flow (denoted gm) and the remaining independent part with

p(gm) = N(gm ; 0,Σg), (12)

p(fm|gm) = N(fm ; gm, σ2
f I). (13)

4. Shape Sampling

Having developed a dynamic appearance and shape
model, we present a Bayesian filtering procedure that rea-
sons about the distribution of the hidden variables condi-
tioned on past and current observations. Exact inference
in such complex models is generally intractable. A typical
approach is to use a particle filter [14], where the distribu-
tion at any time is represented by a set of weighted samples.
Particles, generally propagated by the prior dynamics, often
suffer from “weight decay” resulting in a poor representa-
tion. Sequential resampling techniques are often utilized to
address this issue. An alternative is to propagate particles
with observed data information (e.g. [7, 9, 23]). Unfortu-
nately, many of these methods introduce additional approx-
imation errors and/or suffer from slow convergence.

Here, we propose a more accurate particle propagation
approach by incorporating both the prior and the data likeli-
hood terms. In this case, similar to a Gibbs sampler, weight
updates are unnecessary because samples are drawn from
the true conditional distribution. A formal derivation is pro-
vided in the supplement. Though more accurate, this ap-
proach is typically avoided because sampling from the full
conditional distribution can be computationally prohibitive.
A key enabler is our extension of [5] to efficiently sample
the support of shapes. The overall inference algorithm is
presented in Section 5 following this discussion.

4.1. Gibbs-Inspired Metropolis Hastings

Markov chain Monte Carlo (MCMC) techniques are of-
ten used when direct sampling from a target distribution,
π(�), is difficult. MCMC samplers construct a transition
distribution (often referred to as the proposal distribution)
such that the stationary distribution of the chain is the
target distribution. The Metropolis-Hastings (MH) algo-
rithm [12] enforces the correct stationary distribution by
generating �̂(t) from a user-specified proposal distribution,
q(�̂(t)|�(t−1)), and accepting the transition with probability

Pr
[
�(t) = �̂(t)

]
= min

[
1, π(�̂(t))

π(�(t−1))
· q(�(t−1)|�̂(t))
q(�̂(t)|�(t−1))

]
, (14)

where (t) indexes the chain. Otherwise, the old sample is
kept. Under mild technical conditions, the resulting �l will
be a sample from π(�).

The Gibbs-Inspired Metropolis Hastings shape sampler
(GIMH) [5] uses the MH-MCMC algorithm. GIMH rep-
resents the support of a region using a level set function. It
assumes that the target distribution only depends on the sign
of the level set function and can be expressed as a product
of a prior and independent likelihoods:

π(�) = p(�)
∏

i
p(xi|�i) (15)

By using a look-up table for calculating local changes in
curve length, GIMH achieves extremely fast burn-in times
and can control the topology of the resulting sample. Both
of these aspects are directly applicable to the prior we place
on layers described in Section 2.

GIMH generates a proposal by adding a random constant
to the level set function in a random subset of pixels. Be-
cause of the ordering implied by the level set function, only
a linear number of possible configurations in the size of the
subset is possible (as opposed to the exponential number
of total configurations). A proposal distribution is chosen
such that Equation 14 evaluates to 1 and every proposal is
accepted. However, due to a minor flaw in the formulation
GIMH does not preserve the correct stationary distribution.
The following alternative construction, detailed in the sup-
plement, resolves this issue while leading to computational
savings.

4.2. Permutation-Based GIMH

Instead of implicitly ordering pixels with a level set func-
tion as in GIMH, we consider explicitly using a random to-
tal ordering, o, on all pixels. We now consider how to sam-
ple a binary label from this joint distribution. We provide
an M -ary extension in the supplement.

We define a consistent ordering as an ordering that puts
all pixels with �i = 0 before pixels with �i = 1. If the con-
ditional distribution, p(o|�), is chosen to be uniform over all
consistent orderings, we show in the supplement that this
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Figure 5: An example of the PGIMH proposals. A random
window is chosen (left), W = {♠, �,�,♣}, where suits indi-
cate indices and colors indicate labels. A consistent relative
order is selected at random. One of the NW + 1 possible
consistency-preserving moves is selected to produce �(t).

ordering does not need to be instantiated. In fact, the flaw
of [5] is resolved via a simple sampling procedure while
preserving the correct stationary distribution.

Similar to GIMH, we change a random subset of pix-
els, W at each iteration. Conditioned on W , a relative or-
dering is defined to be an ordering on the pixels only in
W . We note that a relative ordering derived from a con-
sistent total ordering must also be consistent. Randomly
changing the labels of pixels within W will, in general, not
preserve the consistency of the relative ordering. However,
there are exactly NW + 1 consistency-preserving changes,
where N(·) = |(·)|. These observations lead to the develop-
ment of the Permutation-based GIMH (PGIMH) sampler,
detailed in Algorithm 1. Here, Wl denotes the subset of W
with label l, and Ŵl denotes the proposed subset with label
l. Figure 5 illustrates an example proposal from PGIMH.

Algorithm 1 An iteration of sampling π(�) via PGIMH

1. Randomly sample a subset of pixels, W , by selecting
a circle with random location and radius

2. Sample a consistent relative ordering of pixels in W
uniformly using a Knuth shuffle [17] on each Wl

3. Enumerate the NW + 1 consistency-preserving moves
4. Sample �(t) from the possible moves according to

q(�̂ | �,W ) ∝ π(�̂) · 1
NŴ0

!NŴ1
!

We note that the topology-controlled version of PGIMH ex-
tends straightforwardly from [5] by ignoring moves with in-
valid topologies. Additional details and derivations related
to this section can be found in the supplement.

5. Inference

The development of the PGIMH method allows one to
quickly sample layer supports from an arbitrary distribu-
tion. We now describe a sequential (in time) Gibbs sampler
that utilizes PGIMH to perform tracking. As noted, this type
of sampler can be viewed as a particle filter without weight
updates. Joint inference of flow and layer supports often

exhibits better convergence [27]. Our sampler marginalizes
out part of the flow and, owing to our particular formula-
tion, infers hidden variables on the order of one minute per
frame as compared to [27] which takes hours per frame.

5.1. Single Layer Sampler

The sampler we use iterates over the following steps

gt ∼ p(gt|f t), (16)

�t ∼ p(�t|gt, �t−1, at−1, xt, zt), (17)

f t ∼ p(f t|gt, �t, �t−1, at−1, xt, zt), (18)

zt ∼ p(zt|f t, �t, at−1, xt). (19)

Sampling from gt|f t is equivalent to sampling a GP with
observations. With some manipulation from the typical GP
regression (c.f. [22]), this distribution can be expressed as

gtm|f t
m ∼ N(μ∗g,Σ∗g), (20)

μ∗g = Σ[Σ + σ2
f I]−1f t

m , Σ∗g = Σ− Σ[Σ + σ2
f I]−1Σ.

Sampling from this expression is difficult because of the di-
mension of the GP. By drawing on the work of [26], we
show in the supplement that a GP with a stationary covari-
ance kernel, k(x− x′), can be approximately sampled with

gtm|f t
m ∼

[
hμ ∗ f t

m

]
+N(0, I) ∗ hΣ, (21)

hμ = F−1
{

K
K+σ2

f

}
, hΣ = F−1

{√
K − K2

K+σ2
f

}
.

Here, K denotes the Fourier transform of k. We note that
this approximation degrades closer to image boundaries.

Thousands of iterations of the PGIMH sampler in Algo-
rithm 1 are used to sample the layer supports of Equation
17 in less than a second. As each iteration perturbs only a
single layer, we refer to it as the “Single Layer Sampler”.
We randomly choose a layer, m, and sample its support by
manipulating the following proportional distribution∫

p(f t
m|gtm)p(�tm|f�t−1

m )p(atm|fat−1
m )p(xt|�t, at, zt) df t

m

= QL(�
t
m)

∏
i

∫
p(f t

m,i|gtm,i)Lt
m,i(f

t
m,i − gtm,i) df

t
m,i

(22)

where the pixel-wise likelihood term, Lt
m,i(j), is

QS(�
t
m,i|g�t−1

m,i+j)p(a
t
m,i|gat−1

m,i+j)p(x
t
i|�ti, ati, zt), (23)

and we have used the fact that

f(·)t−1
m,i = g(·)tm,i+ft

m,i−gt
m,i

. (24)

We can marginalize f t
m by approximating p(f t

m,i|gtm,i) =

N(f t
m,i − gtm,i, σ

2
f ) with a discrete FIR filter, hf . The dis-

tribution over �tm in Equation 17 is then proportional to

QL(�
t
m)

∏N

i=1

∑
j
hf (j)Lt

m,i(j), (25)
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which is of the form of Equation 15 and is efficiently sam-
pled using Algorithm 1. Equation 25 is efficiently evaluated
for hf with small support. A detailed derivation is found in
the supplement. Changing the mth layer accomplishes one
of the following: (1) grow and occlude the currently visible
layer; (2) grow behind the visible layer; (3) shrink and dis-
occlude the next layer; (4) shrink behind the visible layer.
Each situations can be expressed with Equations 2-9. Fur-
thermore, the Gaussian appearance dynamics and observa-
tion models allow for efficient marginalization of previously
observed appearances. For disoccluded and revealed ap-
pearances, we draw a sample from the distributions in Equa-
tion 4-5. Similarly, f t

m is approximately sampled (Equation
18) by multiplying Equation 25 by 1I

[
f t
m,i = gtm,i + j

]
.

We conclude a full iteration by sampling the layer order-
ing, zt. Because of the uniform prior on orderings, Equation
19 is proportional to the observation likelihood which can
be computed using Equations 2-9. The videos we analyze
typically have fewer than ten objects. As such, it is efficient
to simply enumerate all possible total orders. When the
number of layers is larger, a swap proposal in a Metropolis-
Hastings framework can be used.

5.2. Multiple Layer Sampler

The second step of the preceding algorithm samples the
support of a single layer at once which can exhibit slow
convergence in certain situations. For example, if layers
m = 1, 2, 3 all have support at pixel i, but the actual visible
layer should be the background (m = 3), the sampler must
move through an intermediate state before making the back-
ground visible. If the intermediate state is unlikely, this type
of proposal can get stuck in a local extrema. Consequently,
we develop a single-pixel layer support sampler that sam-
ples all layers jointly. First, a visible layer is sampled ac-
cording to the following categorical distribution

Pr(vti = m) (26)

= p(xt
i|vti = m) Pr[�tm,i = 1]

∏
{l|zt

l<zt
m}

Pr[�tl,i = 0],

where we have omitted the conditioning variables. If layer
m is visible, all layers above m are explicitly precluded
from having support at pixel i and all layers below are sam-
pled from Equation 7. This process is repeated for all pixels
in a random order. In practice, we sample from Equation 17
by running a full iteration of this “Multiple Layer Sampler”
followed by a full iteration of the “Single Layer Sampler”.

6. Experiments

Having described a model and associated inference
procedure, we compare the performance of the pro-
posed method with results reported in the literature. As
noted, we assume that objects of interest have been de-

tected. In our experiments, simple user annotations fol-
lowed by Lazy Snapping [19] are used to initiate track-
ing. In contrast to [27] which uses hand-tuned param-
eters for different datasets, flow parameters are learned
automatically using a procedure described in the supple-
ment. Other parameters are fixed across all sequences
and can be found in our publicly available source code
(http://people.csail.mit.edu/jchang7/). We have verified that
a wide range of parameters yield similar performance.

The goal of this work is to develop an efficient, inte-
grated, probabilistic approach for tracking that incorporates
flow. While the GP flow lends itself to efficient inference,
we do not expect sampling-based inference in conjunction
with the partial independence assumption of Equation 11 to
outperform state-of-the-art optical flow algorithms, nor is
that our goal. Additionally, annotating the segmentation of
the first frame leads to an unfair comparison. However, for
the interested reader, quantitative results on the Middlebury
dataset [1] are provided in the supplement.

6.1. Implementation Details

Flow is an inferred latent variable and, theoretically, ini-
tialization does not impact convergence guarantees. How-
ever, as with any iterative procedure, convergence may be
to a local mode. We have found that using a combination
of the optical flow estimates of [4] and [20] as an initial-
ization improves convergence empirically. For each frame,
both flows are calculated, and the flow that minimizes the
L2 warped image difference is used. Additionally, while a
pixelwise appearance model is used, edge effects created by
the cameras are not explicitly modeled. Boundary pixels be-
tween two regions in an image are often a convex combina-
tion of the bordering regions. We find that preprocessing the
frames with a simple edge-sharpening procedure improves
results. Further details can be found in the supplement.

6.2. Tracking

For each video frame, we draw 100 samples and con-
sider pixels which appear in at least T of the sampled layer
supports. Of this set, we take the largest connected com-
ponent. Results are shown for T = 25%, but other confi-
dence levels may be useful for other applications. Quantita-
tive results on the SegTrack [29] dataset with the top three
state-of-the-art algorithms are shown in Table 1. We note
that [21] and [18] do not require the first frame to be seg-
mented; however by depending on future data, these meth-
ods are a form of Bayesian smoothing instead of filtering.
Additionally, we hand-label each video separately from the
ground truth as a means to gauge human error. The pro-
posed method achieves state-of-the-art results on most of
the videos. Tracked frames and initial annotations for select
SegTrack videos are shown in Figure 6. We note that there
is ambiguity in the parachute sequence; our algorithm in-
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Video Human Ours [21] [18] [29]

birdfall 130 265 189 288 252
cheetah 308 570 806 905 1142

girl 762 841 1698 1785 1304
monkeydog 306 289 472 521 563
parachute 299 310 221 201 235
penguin 279 456 - 136285 1705

Mean Error 347 455 677∗ 740∗ 867

Table 1: Average number of incorrect pixels per frame on
SegTrack [29] dataset. * indicates the exclusion penguin.

Figure 6: Four results on the SegTrack dataset [29]. First
column shows user annotation and segmentation.

corporates the human (as shown in the last frame) whereas
the ground truth and other algorithms do not.

Since SegTrack only contains ground truth for single ob-
ject tracking, we show additional results from the datasets
of [11] and [20] in Figure 7 and the supplement. While
good results are achieved for most videos, the first video of
Figure 7 exhibits a failure of the proposed approach when
a car in the background explodes. Such a rapid appearance
change is not well represented by Gaussian evolution and
the flames are incorrectly labeled as foreground. On the
other hand, the last video is over 500 frames long, and the
proposed approach is able to track the ice skater throughout
the entire sequence.

6.3. Inferring Layer Order

In this section, we show a visualization of the inferred
layer order. While we do not impose temporal dependen-
cies among layers, many videos have a static layer order
for all frames. We can calculate the posterior distribution
over layer orders for the entire video by treating each frame
as an independent observation. We show this distribution
for two videos in Figure 8. In the first video, the posterior
distribution is only non-zero for the three orderings where

Figure 7: Results on the datasets of [11] and [20].

Figure 8: Video frames and pie charts showing the posterior
distribution over orderings.

the printer tray is in front of the printer. The uncertainty
is expected because the phone and printer do not overlap
during the sequence. In the second example, we consider
the penguin video of SegTrack. Although the ground truth
segmentation only tracks one penguin, we track three here.
Because the penguins overlap, the posterior distribution is
essentially a delta function at the correct layer order.

6.4. Independent Contributions

We analyze seven variations of our algorithm in order
to test different aspects of the model. We consider using
only one optical flow algorithm as an initialization (Brox [3]
and Liu [20]), not using edge-sharpening (NoEdge), using
an optimization scheme (Max), not enforcing topology con-
straints (NoTop), and treating optical flow as a measurement
(OF-g and OF-f). For the optimization-based inference, we
change all sampling steps to maximization steps. When us-
ing optical flow as a measurement (which [11, 18, 21] do),
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Figure 9: Average errors on SegTrack using different ver-
sions of our algorithm. Numbers in legend indicate the best
achievable errors. Gray algorithms lie outside the limits.

we can choose to either equate it to g (OF-g) or f (OF-
f). The resulting average errors on the SegTrack dataset are
shown for varying thresholds (T ) in Figure 9. Removing
topology constraints or plugging in flow without reinferring
it perform so poorly that we do not show the curves. Using
different optical flow initializations or removing the edge-
sharpening does not change results significantly. While the
optimization scheme only produces one segmentation and
eliminates the tradeoff with thresholds, it still performs bet-
ter than the current state-of-the-art algorithms.

7. Conclusion

We presented an integrated layered approach for prob-
abilistic tracking that combines coupled appearance and
shape models, topology constraints, layered Gaussian pro-
cess flow, and efficient sampling. The resulting method out-
performs state-of-the-art algorithms. Additionally, we have
demonstrated the ability to infer layer orders and have ana-
lyzed the impact of individual components of the model.
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