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Abstract

Recently, there is a considerable amount of efforts de-
voted to the problem of unconstrained face verification,
where the task is to predict whether pairs of images are
from the same person or not. This problem is challenging
and difficult due to the large variations in face images. In
this paper, we develop a novel regularization framework to
learn similarity metrics for unconstrained face verification.
We formulate its objective function by incorporating the ro-
bustness to the large intra-personal variations and the dis-
criminative power of novel similarity metrics. In addition,
our formulation is a convex optimization problem which
guarantees the existence of its global solution. Experiments
show that our proposed method achieves the state-of-the-art
results on the challenging Labeled Faces in the Wild (LFW)
database [10].

1. Introduction

Face recognition has attracted increasing attentions due
to its applications in biometrics and surveillance. Re-
cently, considerable research efforts are devoted to the un-
constrained face verification problem [8, 17, 18, 20, 23, 24],
the task of which is to predict whether two face images rep-
resent the same person or not. The face images are taken
under unconstrained conditions and show significant varia-
tions in complex background, lighting, pose, and expression
(see e.g. Figure 1). In addition, the evaluation procedure for
face verification typically assumes that the person identities
in the training and test sets are exclusive, requiring the pre-
diction of never-seen-before faces. Both factors make face
verification very challenging.

Similarity metric learning aims to learn an appropriate
distance or similarity measure to compare pairs of exam-
ples. This provides a natural solution for the verification
task. Metric learning [5,7,22,25,26] usually focuses on the
(squared) Mahalanobis distance defined, for any 𝑥, 𝑡 ∈ ℝ

𝑑,
by 𝑑𝑀 (𝑥, 𝑡) = (𝑥 − 𝑡)𝑇𝑀(𝑥 − 𝑡), where 𝑀 is a posi-
tive semi-definite (p.s.d.) matrix. It was observed in [8, 27]

Figure 1: Example images from the Labeled Faces in the
Wild (LFW) database exhibit large intra-personal varia-
tions: each column is a pair of images from the same person.

that directly applying metric learning methods only yields
a modest performance for face verification. This may be
partly because most of such methods deal with the specific
tasks of improving kNN classification, which may be not
necessarily suitable for face verification. Similarity learn-
ing aims to learn the bilinear similarity function [3, 19]
defined by 𝑠𝑀 (𝑥, 𝑡) = 𝑥𝑇𝑀𝑡 or the cosine similarity
𝐶𝑆𝑀 (𝑥, 𝑡) = 𝑥𝑇𝑀𝑡

/(√
𝑥𝑇𝑀𝑥

√
𝑡𝑇𝑀𝑡

)
[14], which has

successful applications in image searching and face verifi-
cation.

In this paper, we build on previous studies [7, 8, 11, 14,
22, 25, 27] to show the great potential of similarity met-
ric learning methods to boost the verification performance
using low-level feature descriptors such as Scale-Invariant
Feature Transform (SIFT) [8] and Local Binary Pattern
(LBP) [16]. To this end, we develop a novel regulariza-
tion framework to learn similarity metrics for unconstrained
face verification, which is referred to as similarity metric
learning over the intra-personal subspace. We formulate its
objective function by considering both the robustness to the
large intra-personal variations and the discriminative power,
a property that most metric learning methods do not hold.
In addition, our formulation is a convex optimization prob-
lem, and hence a global solution can be efficiently found by
existing algorithms. This is, for instance, not the case for
the current similarity metric learning model [14].

We report experimental results on the Labeled Faces in
the Wild (LFW) [10] dataset, a standard testbed for un-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.299

2408

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.299

2408



constrained face verification. The face images collected
directly from the website Yahoo! News contain significant
intra-personal differences that may be encountered in our
daily life. Our proposed method achieves 89.73% in the
restricted setting, which outperforms the current best re-
sult 88.13% in [18]. Shifting to the unrestricted setting,
our method achieves 90.75%, which is competitive with the
current state-of-the-art result 90.90% in [4].

The paper is organized as follows. Section 2 presents the
proposed model and Section 3 discusses the related work.
Experimental results are reported in Section 4. Section 5
concludes the paper.

Notations: For any 𝑋,𝑌 ∈ ℝ
𝑑×𝑛, ⟨𝑋,𝑌 ⟩ = Tr(𝑋⊤𝑌 )

where Tr(⋅) denotes the trace of a matrix. The space of sym-
metric 𝑑 times 𝑑 matrices is denoted by 𝕊

𝑑, and the set of
positive semi-definite matrices is denoted by 𝕊

𝑑
+. The stan-

dard Euclidean norm on vectors is denoted by ∥ ⋅ ∥ and the
Frobenius norm on matrices by ∥ ⋅ ∥𝐹 . In the following sec-
tions, a face image is represented by a feature vector in ℝ

𝑝.
The notations 𝒮 and 𝒟, respectively, denote the index set
of similar pairs (from the same person) and that of dissim-
ilar pairs (from different persons), i.e. (𝑖, 𝑗) ∈ 𝒮 means a
similar image-pair (𝑥𝑖, 𝑥𝑗).

2. Similarity Metric Learning Over the Intra-
Personal Subspace

In this section, we develop a new method of learning
a similarity metric for face verification, which will be de-
scribed step by step as follows.

2.1. Formulation of the Learning Problem

To obtain a good similarity function measuring the sim-
ilarity between face images, we formulate the learning ob-
jective by considering both the robustness to the large intra-
personal variations and the discrimination for separating
similar image-pairs from dissimilar image-pairs.

Robustness. One challenging issue in face verification is
to retain the robustness of the similarity metric to the noise
and the large intra-personal variations in face images.

To remove the noise, one commonly used method is to
apply the principal component analysis (PCA). PCA com-
putes the 𝑑 eigenvectors with the largest eigenvalues of the
covariance matrix defined by 𝐶 =

∑𝑛
𝑖=1(𝑥𝑖 − m)(𝑥𝑖 −

m)𝑇 ∈ ℝ
𝑝×𝑝, where m is the mean of the data. The

PCA-reduced images are usually referred to as Eigenfaces
(e.g. [2]).

To reduce the effect of large intra-personal variations,
we follow the idea in [9, 13, 21] by further mapping
𝑑-dimensional Eigenfaces to the intra-personal subspace.
Specifically, let the intra-personal covariance matrix be de-

fined by

𝐶𝒮 =
∑

(𝑖,𝑗)∈𝒮
(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)

𝑇 , (1)

and Λ = {𝜆1, . . . , 𝜆𝑘} and 𝑉 = (𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑘) be the top-
leading 𝑘 eigenvalues and eigenvectors of 𝐶𝑆 . The mapping
of the Eigenfaces to the 𝑘-dimensional intra-personal sub-
space (𝑘 ≤ 𝑑) is defined by the whitening process:

�̃� = diag(𝜆−1/2
1 , . . . , 𝜆

−1/2
𝑘 )𝑉 𝑇𝑥. (2)

Note that the features are weighted by the inverse of the
eigenvalues, which penalizes the eigenvectors with large
eigenvalues and therefore reduces the variance of the fea-
tures, i.e. the intra-personal variations.

Throughout this paper, we only consider the special case
where the dimension of the intra-personal subspace equals
the dimension of PCA, i.e. 𝑘 = 𝑑. In this case, if 𝐶𝒮 is
invertible and denote

𝐿𝒮 = 𝑉 diag(𝜆1/2
1 , . . . , 𝜆

1/2
𝑑 ), (3)

then 𝐶𝒮 = 𝐿𝒮𝐿𝑇
𝒮 and equation (2) becomes �̃� = 𝐿−1

𝒮 𝑥.

Discrimination. After the images are mapped to the intra-
personal subspace, we now consider the discrimination us-
ing a similarity metric function, a property that discrimi-
nates similar image-pairs from dissimilar image-pairs. To
this end, one option is to use the cosine similarity function
𝐶𝑆𝑀 which was observed to outperform the distance mea-
surement 𝑑𝑀 in face verification [14]. However, it is not a
convex function with respect to 𝑀. Recent studies [3, 19]
observed that the similarity function 𝑠𝑀 has a promising
performance on image similarity search. Motivated by these
observations, we combine the similarity function 𝑠𝑀 and
the distance 𝑑𝑀 and propose a generalized similarity metric
𝑓(𝑀,𝐺) to measure the similarity of an image pair (�̃�𝑖, �̃�𝑗):

𝑓(𝑀,𝐺)(�̃�𝑖, �̃�𝑗) = 𝑠𝐺(�̃�𝑖, �̃�𝑗)− 𝑑𝑀 (�̃�𝑖, �̃�𝑗). (4)

Apparently, 𝑓(𝑀,𝐺) is linear and convex with respect to vari-
able (𝑀,𝐺).

Let 𝒫 = 𝒮 ∪ 𝒟 denotes the index set of all pairwise
constraints. If image �̃�𝑖 is similar to �̃�𝑗 (i.e. images from the
same individual), define its associated binary output 𝑦𝑖𝑗 = 1
and -1 otherwise. To better discriminate similar image-pairs
from dissimilar image-pairs, we should learn 𝑀 and 𝐺 from
the available data such that 𝑓(𝑀,𝐺)(�̃�𝑖, �̃�𝑗) reports a large
score for 𝑦𝑖𝑗 = 1 and a small score otherwise. Based on
this rationale, we derive the formulation of the empirical
discrimination using the hinge loss:

ℰemp(𝑀,𝐺) =
∑

(𝑖,𝑗)∈𝒫
(1− 𝑦𝑖𝑗𝑓(𝑀,𝐺)(�̃�𝑖, �̃�𝑗))+. (5)
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Minimizing the above empirical error with respect to 𝑀 and
𝐺 will encourage the discrimination of similar image-pairs
from dissimilar ones. However, directly minimizing the
functional ℰemp does not guarantee a robust similar metric
𝑓(𝑀,𝐺) to large intra-personal variations and also will lead
to overfitting. Below, we propose a novel regularization
framework which learns a robust and discriminative simi-
larity metric.

Proposed Regularization Framework. Based on the
above discussions, our target now is to learn matrices 𝑀
and 𝐺 such that 𝑓(𝑀,𝐺) not only retains the robustness to
the large intra-personal variations but also preserves a good
discriminative information. To this end, we propose a new
method referred to as similarity metric learning over the
intra-personal subspace which is given by

min
𝑀,𝐺∈𝕊𝑑

ℰemp(𝑀,𝐺) +
𝛾

2
(∥𝑀 − 𝐼∥2𝐹 + ∥𝐺− 𝐼∥2𝐹 ). (6)

By introducing the slacking variables, the above formula-
tion is identical to:

min
𝑀,𝐺∈𝕊𝑑

∑
𝑡∈𝒫

𝜉𝑡 +
𝛾

2
(∥𝑀 − 𝐼∥2𝐹 + ∥𝐺− 𝐼∥2𝐹 ),

s.t. 𝑦𝑖𝑗 [𝑓(𝑀,𝐺)(�̃�𝑖, �̃�𝑗)] ≥ 1− 𝜉𝑖𝑗 ,
𝜉𝑡 ≥ 0, ∀𝑡 = (𝑖, 𝑗) ∈ 𝒫.

(7)

The regularization term ∥𝑀−𝐼∥2𝐹+∥𝐺−𝐼∥2𝐹 in our formu-
lation (7) prevents image vectors �̃� in the intra-personal sub-
space from being distorted too much, and hence retains the
most robustness of the intra-personal subspace. Minimizing
the empirical term

∑
(𝑖,𝑗)∈𝒫 𝜉𝑖𝑗 promotes the discriminative

power of 𝑓𝑀,𝐺 for discriminating similar image-pairs from
dissimilar ones. The positive parameter 𝛾 is trade-offing the
effects of the two terms in the objective function of (7). We
emphasize here that we did not constrain 𝑀 or 𝐺 to be pos-
itive semi-definite in the above formulation. Later on, for-
mulation (7) is referred to as Sub-SML for similarity metric
learning over the intra-personal subspace.

2.2. Dual Formulation and Algorithm

We now turn our attention to the computational algo-
rithm of (7). It is easy to see that Sub-SML is a con-
vex optimization problem which guarantees a global solu-
tion. For notational simplicity, for any 𝑡 = (𝑖, 𝑗) ∈ 𝒫 , let

�̃�𝑡 = (�̃�𝑖−�̃�𝑗)(�̃�𝑖−�̃�𝑗)
𝑇 and ˜̄𝑋𝑡 = �̃�𝑖�̃�

𝑇
𝑗 . We can establish

the dual problem of Sub-SML as follows.

Theorem 1. The dual formulation of Sub-SML (i.e. formu-
lation (7)) can be written as

max
0≤𝛼≤1

∑
𝑡∈𝒫

𝛼𝑡 +
∑

𝑡=(𝑖,𝑗)∈𝒫
𝛼𝑡𝑦𝑡(∥�̃�𝑖 − �̃�𝑗∥2 − �̃�𝑇

𝑖 �̃�𝑗)

− 1
2𝛾 (

∥∥∑
𝑡∈𝒫

𝑦𝑡𝛼𝑡�̃�𝑡

∥∥2

𝐹
+

∥∥∑
𝑡∈𝒫

𝑦𝑡𝛼𝑡
˜̄𝑋𝑡

∥∥2

𝐹
).

(8)

Moreover, if the optimal solution of (8) is denoted by 𝛼∗

then the optimal solution (𝑀∗, 𝐺∗) of (7) is given by 𝑀∗ =
𝐼 − 1

𝛾

∑
𝑡∈𝒫

𝑦𝑡𝛼
∗
𝑡 �̃�𝑡 and 𝐺∗ = 𝐼 + 1

𝛾

∑
𝑡∈𝒫

𝑦𝑡𝛼
∗
𝑡
˜̄𝑋𝑡.

Proof. We use the Lagrangian multiplier theorem to prove
the desired result. By introducing Lagrangian multipliers
𝛼, 𝛽 ≥ 0, define the Lagrangian function related to (7)

by ℒ(𝛼, 𝛽;𝑀,𝐺, 𝜉) =
∑
𝑡∈𝒫

𝜉𝑡 +
𝛾

2
(∥𝑀 − 𝐼∥2𝐹 + ∥𝐺 −

𝐼∥2𝐹 ) −
∑

𝑡=(𝑖,𝑗)∈𝒫
𝛼𝑡

(
𝑦𝑖𝑗 [𝑠𝐺(�̃�𝑖, �̃�𝑗) − 𝑑𝑀 (�̃�𝑖, �̃�𝑗)] − 1 +

𝜉𝑡
) −∑

𝑡∈𝒫
𝛽𝑡𝜉𝑡. Then, taking the derivatives of ℒ with re-

spect to the primal variables 𝑀,𝐺 and 𝜉 implies that 𝑀 =

𝐼− 1
𝛾

∑
𝑡∈𝒫

𝑦𝑡𝛼𝑡�̃�𝑡, 𝐺 = 𝐼+
1

𝛾

∑
𝑡∈𝒫

𝑦𝑡𝛼𝑡
˜̄𝑋𝑡, and 𝛼𝑡+𝛽𝑡 = 1.

Substituting these equalities back to ℒ, we get the desired
result. This completes the proof of the theorem.

Formulation (8) is a standard quadratic programming
(QP) problem, which can be solved by the standard MAT-
LAB subroutine quadprog.m. However, these QP solvers
employed the interior-point methods which use the second-
order information (Hessian matrix) of the objective func-
tion. In the dual problem (8), the number of variables
equals the number of image-pairs which is usually very
large. Hence, the interior methods quickly become infeasi-
ble when the number of image-pairs increases. Instead, we
use the accelerated first-order (gradient-based) algorithm
proposed in [1,15] which is suitable for large-sized datasets.
This method is guaranteed to converge to the global solution
with rate 𝒪(1/𝑘2) where 𝑘 is the iteration number.

3. Related Work and Discussion

There is a large amount of work on learning similarity
metrics. Below we review metric learning models [11, 22,
25, 27] which are closely related to our proposed method
Sub-SML, and show the inherent relationship among these
models.

Xing et al. [25] proposed to maximize the sum of dis-
tances between dissimilar pairs, while maintaining an up-
per bound on the sum of squared distances between similar
pairs. Specifically, the following formulation was proposed:

max𝑀∈𝕊𝑑+
∑

(𝑖,𝑗)∈𝒟
√

𝑑𝑀 (𝑥𝑖, 𝑥𝑗)

s.t.
∑

(𝑖,𝑗)∈𝒮 𝑑𝑀 (𝑥𝑖, 𝑥𝑗) ≤ 1.
(9)

Weinberger et al. [22] developed the method called
LMNN to learn a Mahalanobis distance metric in kNN clas-
sification settings. It aims to explore a large margin nearest
neighbor classifier by exploiting nearest neighbor samples
as side information in the training set. Specifically, given
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a similar set 𝒮 = {(𝑖, 𝑗) : 𝑥𝑖 similar to 𝑥𝑗} and a triplet
set 𝒯 = {(𝑖, 𝑗, 𝑘) : 𝑥𝑖 similar to 𝑥𝑗 , 𝑥𝑗 dissimilar to 𝑥𝑘}.
LMNN can be rewritten as the following:

min
𝑀,𝜉

∑
𝜏=(𝑖,𝑗,𝑘)∈𝒯

𝜉𝑖𝑗𝑘 + 𝛾
∑

(𝑖,𝑗)∈𝒮
𝑑𝑀 (𝑥𝑖, 𝑥𝑗)

𝑑𝑀 (𝑥𝑗 , 𝑥𝑘)− 𝑑𝑀 (𝑥𝑖, 𝑥𝑗) ≥ 1− 𝜉𝑖𝑗𝑘,
𝑀 ∈ 𝕊

𝑑
+, 𝜉𝑖𝑗𝑘 ≥ 0, ∀ (𝑖, 𝑗, 𝑘) ∈ 𝒯 .

(10)

The recent proposal by Ying and Li [27] is very similar
to the method in [25]. Specifically, the authors proposed the
following method:

max𝑀∈𝕊𝑑+ min(𝑖,𝑗)∈𝒟 𝑑𝑀 (𝑥𝑖, 𝑥𝑗)

s.t.
∑

(𝑖,𝑗)∈𝒮 𝑑𝑀 (𝑥𝑖, 𝑥𝑗) ≤ 1.
(11)

This method was further shown to be an eigenvalue opti-
mization problem which, hence, is referred to as DML-eig.

Kan et al. [11] proposed a side-information based lin-
ear discriminant analysis (SILD) approach for face veri-
fication. SILD is a modification of LDA which is given
by: argmaxTr(𝑊𝐶𝒟𝑊𝑇 )

/
Tr(𝑊𝐶𝒮𝑊𝑇 ), where 𝐶𝒟 =∑

(𝑖,𝑗)∈𝒟(𝑥𝑖−𝑥𝑗)(𝑥𝑖−𝑥𝑗)
𝑇 . Let 𝑀 = 𝑊𝑇𝑊 then SILD

can be rewritten as

max
𝑀∈𝕊𝑑+

Tr(𝐶𝒟𝑀)

Tr(𝐶𝒮𝑀)
= max

𝑀∈𝕊𝑑+

[∑
(𝑖,𝑗)∈𝒟 𝑑𝑀 (𝑥𝑖, 𝑥𝑗)∑
(𝑖,𝑗)∈𝒮 𝑑𝑀 (𝑥𝑖, 𝑥𝑗)

]
. (12)

A common term in the above three formulations is the
summation of distances between similar image-pairs, i.e.∑

(𝑖,𝑗)∈𝒮 𝑑𝑀 (𝑥𝑖, 𝑥𝑗) = Tr(𝐶𝒮𝑀) = Tr(𝐿𝑇
𝒮𝑀𝐿𝒮) (re-

calling that 𝐶𝒮 = 𝐿𝒮𝐿𝑇
𝒮 ). Let 𝑀 = 𝐿𝑇

𝒮𝑀𝐿𝒮 , and then
formulation (9) is equivalent to the following

max
˜𝑀∈𝕊𝑑+

∑
(𝑖,𝑗)∈𝒟

√
(�̃�𝑖 − �̃�𝑗)𝑇𝑀(�̃�𝑖 − �̃�𝑗)

s.t. Tr(𝑀) ≤ 1,
(13)

where, according to the definition of 𝐿𝒮 (equation (3)) in
Section 2, �̃�𝑖 = 𝐿−1

𝒮 𝑥𝑖 is the mapped vector of 𝑥𝑖 in the
intra-personal subspace. In analogy to the above argument,
LMNN is equivalent to

argmin
˜𝑀,𝜉

∑
𝜏=(𝑖,𝑗,𝑘)∈𝒯

𝜉𝑖𝑗𝑘 + 𝛾Tr(𝑀)

𝑑
˜𝑀
(�̃�𝑗 , �̃�𝑘)− 𝑑

˜𝑀
(�̃�𝑖, �̃�𝑗) ≥ 1− 𝜉𝑖𝑗𝑘

𝜉𝑖𝑗𝑘 ≥ 0, ∀ (𝑖, 𝑗, 𝑘) ∈ 𝒯 ,𝑀 ∈ 𝕊
𝑑
+,

(14)

and DML-eig can be rewritten as

max
˜𝑀∈𝕊𝑑+

min
(𝑖,𝑗)∈𝒟

𝑑
˜𝑀
(�̃�𝑖, �̃�𝑗)

s.t. Tr(𝑀) ≤ 1.
(15)

SILD is equivalent to

max
˜𝑀∈𝕊𝑑+

[∑
(𝑖,𝑗)∈𝒟 𝑑

˜𝑀
(�̃�𝑖, �̃�𝑗)

Tr(𝑀)

]
. (16)

We should mention that the image-vectors 𝑥𝑖 and 𝑥𝑗

in formulations (9), (10), (11) and (12) for face verifica-
tion are PCA-reduced vectors (i.e. 𝑑-dimensional Eigen-
faces). They all aim to maintain the average distance∑

(𝑖,𝑗)∈𝒮 𝑑𝑀 (𝑥𝑖, 𝑥𝑗) between similar images small. We can
observe, from their equivalent formulations (13), (14), (15),
and (16), that they can also be regarded as metric learn-
ing over the intra-personal subspace. In this sense, we can
say that minimizing the average distance between similar
images plays a similar role as mapping the images to the
intra-personal subspace using the whitening process (2).

The learned metric on the intra-personal subspace should
best reflect the geometry induced by the similarity and dis-
similarity of face images: the distance defined on the intra-
personal subspace between similar image-pairs is small
while the distance between dissimilar image-pairs is large.
The metric learning methods [11, 22, 25, 27] used different
objective functions to achieve this goal.

However, the above methods mainly have two limita-
tions: (L1) Although these methods can be regarded as met-
ric learning over the intra-personal subspace, they mainly
focused on the discrimination of the metric and do not ex-
plicitly take into account its robustness. Hence, the learned
metrics may not be robust to intra-personal variations; (L2)
Despite the fact that the bilinear similarity function 𝑠𝑀 and
𝐶𝑆𝑀 outperform metric learning using 𝑑𝑀 for face verifi-
cation [14], the above methods only used the distance met-
ric 𝑑𝑀 . These limitations could degenerate their final veri-
fication performance. Our proposed method Sub-SML ad-
dressed the above limitations by introducing a new similar-
ity metric and a novel regularization framework for learning
similarity metrics.

4. Experiments

In this section, we evaluate our proposed method on the
Labeled Faces in the Wild (LFW) database [10]. There
are 13233 face images of 5749 people in this database, and
1680 of them appear in more than two images. It is com-
monly regarded to be a challenging dataset for face verifica-
tion since the faces were detected from images taken from
Yahoo! News and show large variations in pose, expression,
lighting, and age etc.

The images were prepared in two ways: “aligned” us-
ing commercial face alignment software by [20] and “fun-
neled” available on the LFW website [10]. We use two
facial descriptors on the “aligned” images: local Binary
Patterns (LBP) [16] and three-Patch Local Binary Patterns
(TPLBP) [24]. On the “funneled” images, we use SIFT
descriptors [8] which are computed at 9 facial key points.
Both original values and square roots of these descriptors
are tested as suggested in [8, 24].

The images are divided into ten folds where the identi-
ties are mutually exclusive. In each fold, 300 similar and
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Method 𝑑 Original Square Root
PCA 100 0.7598± 0.0031 0.7730± 0.0023

Intra-PCA 100 0.8132± 0.0046 0.8253± 0.0033

Sub-ML 100 0.8153± 0.0037 0.8252± 0.0029

Sub-SL 100 0.8247± 0.0036 0.8305± 0.0058

Sub-SML 100 0.8452± 0.0045 0.8527± 0.0052

PCA 200 0.7640± 0.0057 0.7787± 0.0027

Intra-PCA 200 0.8232± 0.0034 0.8345± 0.0024

Sub-ML 200 0.8220± 0.0042 0.8330± 0.0026

Sub-SL 200 0.8417± 0.0042 0.8460± 0.0041

Sub-SML 200 0.8540± 0.0042 0.8632± 0.0046

PCA 300 0.7723± 0.0053 0.7855± 0.0035

Intra-PCA 300 0.8218± 0.0027 0.8295± 0.0023

Sub-ML 300 0.8218± 0.0033 0.8265± 0.0038

Sub-SL 300 0.8348± 0.0047 0.8403± 0.0068

Sub-SML 300 0.8555± 0.0061 0.8622± 0.0027

(a)

Method 𝑑 Original Square Root
PCA 100 0.7843± 0.0033 0.7855± 0.0028

Intra-PCA 100 0.8307± 0.0037 0.8332± 0.0045

Sub-ML 100 0.8335± 0.0031 0.8350± 0.0041

Sub-SL 100 0.8368± 0.0041 0.8340± 0.0037

Sub-SML 100 0.8447± 0.0056 0.8397± 0.0053

PCA 200 0.8043± 0.0046 0.8043± 0.0031

Intra-PCA 200 0.8455± 0.0063 0.8460± 0.0061

Sub-ML 200 0.8452± 0.0068 0.8457± 0.0059

Sub-SL 200 0.8563± 0.0055 0.8508± 0.0052

Sub-SML 200 0.8608± 0.0049 0.8628± 0.0055

PCA 300 0.8047± 0.0051 0.8098± 0.0038

Intra-PCA 300 0.8423± 0.0055 0.8445± 0.0043

Sub-ML 300 0.8435± 0.0056 0.8432± 0.0043

Sub-SL 300 0.8500± 0.0052 0.8510± 0.0058

Sub-SML 300 0.8673± 0.0053 0.8688± 0.0061

(b)

Table 1: Performance of Sub-SL,Sub-ML, Sub-SML across different PCA dimension 𝑑 : (a) SIFT descriptor and (b) LBP
descriptor.

Method SIFT LBP
Xing [25] 0.7593± 0.0059 0.7462± 0.0045

DML-eig [27] 0.8127± 0.0230 0.8228± 0.0041

SILD [11] 0.8085± 0.0061 0.8007± 0.0135

ITML [7] 0.7812± 0.0045 0.7998± 0.0039

Sub-ITML 0.8145± 0.0046 0.8398± 0.0048

LDML [8] 0.7750± 0.0050 0.8065± 0.0047

Sub-LDML 0.8105± 0.0048 0.8227± 0.0058

CSML [14] − 0.8557± 0.0052

KISSME [12] 0.8308± 0.0056 0.8337± 0.0054

Sub-SML 0.8555± 0.0061 0.8673± 0.0053

Table 2: Comparison of Sub-SML with other metric learn-
ing methods on the single descriptor in the restricted set-
ting of LFW. Sub-ITML and Sub-LDML denote ITML and
LDML over the intra-personal subspace. The result of
CSML on LBP is copied from [14] and the notation ‘−’
means that the result on SIFT was not reported.

300 dissimilar image-pairs are provided. It has two dif-
ferent training settings. In the restricted setting, only 600
similar/dissimilar pairs are available while the identity of
images is unknown. In the unrestricted setting, the iden-
tity information of images is provided. The performance is
reported using mean verification rate (standard error) and
ROC curve.

In particular, on each test, for Sub-SML, PCA is applied
to reduce the noise of face images and the resultant Eigen-
faces are further mapped to the intra-personal subspace by
using �̃� = 𝐿−1

𝒮 𝑥, where 𝐿𝒮 is given by equation (3). The
covariance matrix to extract PCA components is computed
only from the 9-fold training set. Also, similar image-pairs
from the 9-fold training set are used to compute the intra-

personal covariance matrix 𝐶𝒮 . Image vectors �̃� are then L2
normalized to 1 (i.e. ∥�̃�∥ = 1) before being fed into Sub-
SML. Interestingly, we observed in our experiment that L2
normalization usually improves the performance of most of
metric learning methods. On each test, the trade-off param-
eter 𝛾 and the PCA dimension 𝑑 in Sub-SML are tuned via
three-fold cross validation over the remaining 9-fold train-
ing sets.

4.1. Image Restricted setting

We first evaluate our method in the restricted setting of
the LFW dataset.

Effectiveness of Sub-SML. We conduct experiments to
show that Sub-SML has effectively addressed limitations
of existing metric learning methods listed as (L1) and (L2)
at the end of Section 3. In particular, we show the effec-
tiveness of Sub-SML in two main aspects: the generalized
similarity metric 𝑓(𝑀,𝐺) combining 𝑑𝑀 and 𝑠𝐺, and Sub-
SML as a metric learning method over the intra-personal
subspace. To this end, we conduct the following two com-
parisons.

Firstly, we compare Sub-SML with the following two
formulations, where only the distance metric 𝑑𝑀 or the bi-
linear similarity metric 𝑠𝐺 is used as the similarity metric.
More specifically, we compare Sub-SML with the formula-
tion called Sub-ML given by

min
𝑀∈𝕊𝑑

∑
𝑡∈𝒫

𝜉𝑡 +
𝛾

2
∥𝑀 − 𝐼∥2𝐹 ,

s.t. 𝑦𝑖𝑗 [−𝑑𝑀 (�̃�𝑖, �̃�𝑗)] ≥ 1− 𝜉𝑖𝑗 ,
𝜉𝑡 ≥ 0, ∀𝑡 = (𝑖, 𝑗) ∈ 𝒫,

(17)
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Method Accuracy
Combined b/g samples based methods, aligned [23] 0.8683± 0.0034

LDML combined, funneled [8] 0.7927± 0.0060

DML-eig combined, funneled & aligned [27] 0.8565± 0.0056

HTBI Features, aligned [18] 0.8813± 0.0058

CSML + SVM, aligned [14] 0.8800± 0.0037

Sub-SML combined, funneled & aligned 0.8973± 0.0038

Table 3: Comparison of Sub-SML with other state-of-the-art methods in the restricted setting of LFW.

and the formulation called Sub-SL given by

min
𝐺∈𝕊𝑑

∑
𝑡∈𝒫

𝜉𝑡 +
𝛾

2
∥𝐺− 𝐼∥2𝐹 ,

s.t. 𝑦𝑖𝑗 [𝑠𝐺(�̃�𝑖, �̃�𝑗)] ≥ 1− 𝜉𝑖𝑗 ,
𝜉𝑡 ≥ 0, ∀𝑡 = (𝑖, 𝑗) ∈ 𝒫.

(18)

As baselines, PCA and Intra-PCA denote the methods us-
ing the Euclidean distance over the PCA-reduced subspace
and the intra-personal subspace, respectively. It is worth
mentioning that, when ∥𝑥𝑖∥ = ∥𝑥𝑗∥ = 1 and 𝑀 and 𝐺
are identity matrices, 𝑠𝐺(𝑥𝑖, 𝑥𝑗) = (2− 𝑑𝑀 (𝑥𝑖, 𝑥𝑗))/2 =
(𝑓(𝑀,𝐺)(𝑥𝑖, 𝑥𝑗)− 2)/3. Hence, in this special case the ver-
ification rate using the Euclidean distance is the same as that
using 𝑓(𝑀,𝐺).

Table 1 reports the comparison results on the SIFT de-
scriptor and LBP descriptor. We can observe from Table 1a
that, across different PCA dimensions, Intra-PCA is much
better than PCA, which shows the effectiveness of removing
intra-personal variations by mapping Eigenfaces into the
intra-personal subspace using the whitening process given
by equation (2). From Table 1a, we can further see that
Sub-ML and Sub-SL are only comparable with or slightly
improve Intra-PCA while the performance of Sub-SML is
much better than Intra-PCA. Taking the PCA dimension
300 for instance, Sub-SML yields 85.55%, which is better
than 82.18% of Sub-ML and 83.48% of Sub-SL. Similar
observation can be made on the LBP descriptor as shown
in Table 1b. These observations show the effectiveness of
learning the generalized similarity metric 𝑓(𝑀,𝐺) compared
with only learning the distance metric 𝑑𝑀 or the bilinear
similarity metric 𝑠𝐺.

Secondly, we compare with other metric learning meth-
ods such as the method in [25] denoted by Xing, ITML [7],
LDML [8], SILD [11], and DML-eig [27]. For fairness
of comparison, we also compare with their variants where
image-vectors were processed by PCA and further mapped
to the intra-personal subspace before being fed into met-
ric learning methods. As shown in Section 3, Xing, SILD
and DML-eig implicitly incorporate the above processing
steps. For simplicity, we refer to such variants of ITML and
LDML as Sub-ITML and Sub-LDML, respectively.

From Table 2 we can see that, on the SIFT descriptor,
Sub-SML significantly outperforms the other methods such
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Figure 2: ROC curve of Sub-SML and other state-of-the-art
methods in the restricted setting of the LFW database.

as ITML, LDML, Sub-ITML and Sub-LDML by obtaining
85.55% verification rate. Furthermore, Sub-SML achieves
86.73% on the LBP descriptor which is better than 85.57%
by CSML [14]. These are the best results, to the best of
our knowledge, reported so far for SIFT and LBP on the re-
stricted setting of LFW dataset. This observation validates
the effectiveness of Sub-SML as a similarity metric learn-
ing method over the intra-personal subspace. In addition,
we can observe that Sub-ITML and Sub-LDML improve
the performance of ITML and LDML, respectively, which
shows the effectiveness of the mapping to the intra-personal
subspace mentioned in Section 2.

Overall, the above comparison results suggest that our
proposed method Sub-SML has effectively overcome lim-
itations of existing metric learning methods listed as (L1)
and (L2) at the end of Section 3.

Comparison with the state-of-the-art methods. Now we
compare Sub-SML with previously published results by
combining different descriptors followed the procedure in
[8, 24]. Specifically, we first generate the similarity scores
by Sub-SML from three descriptors SIFT, LBP and TPLBP
and their square roots (six scores). And then we train a Sup-
port Vector Machine (SVM) on the vector fused by the six
scores to make prediction. Note that each of these published
results uses its own learning technique and different fea-
ture extraction approaches. Table 3 lists the comparison re-
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sults and Figure 2 depicts the ROC curve comparison, from
which we observe that Sub-SML outperforms existing re-
sults. In particular, it achieves 89.73%, which outperforms
the current state-of-the-art result 88.13% obtained by using
High-Throughput Brain-Inspired (HTBI) Features [18] 1.

4.2. Image Unrestricted setting

Here, we evaluate Sub-SML on the unrestricted setting
of LFW, where the label information allows us to generate
more image-pairs during training.

Firstly, we study the performance of Sub-SML when us-
ing an increasing number of image-pairs: 1000, 1500 and
2000 pairs per cross-validation fold (instead of the 600 pro-
vided in the restricted setting), where the image-pairs (half
similar image-pairs and half dissimilar ones) are randomly
generated by following the procedure in [10]. Table 4
shows the comparison results on the SIFT descriptor against
state-of-the-art metric learning methods such as ITML [7],
LDML [8], and their variants Sub-ITML and Sub-LDML.
We observe that, across the number of pairs per fold, the
performance of Sub-SML is significantly better than other
methods, which shows its effectiveness as a similarity met-
ric learning method over the intra-personal subspace. In ad-
dition, we observe that Sub-ITML and Sub-LDML respec-
tively improve the performance of ITML and LDML, which
again verifies the effectiveness of removing intra-personal
variations using the whitening process given by equation
(2). We did not directly compare our method with LMNN
in Table 4, since LMNN needs the information of triplets.
However, we notice that the performance of Sub-SML on
SIFT listed in Table 4 is much better than the best perfor-
mance 80.50% of LMNN as reported in [8].

Secondly, we compare Sub-SML with existing state-of-
the-art results on the unrestricted setting of LFW using sin-
gle and multiple descriptors. Table 5 presents the compari-
son results and Figure 3 depicts the ROC curves compar-
ison. In particular, we see from Table 5 that Sub-SML
86.42% on the SIFT descriptor outperforms PLDA [17]
86.20% and LDML 83.20%. As for the LBP descriptor,
Sub-SML is competitive with that of PLDA. By further
combining three descriptors and their square roots follow-
ing the procedure [8,24], Sub-SML using 2000 image-pairs
achieves 90.75%, which outperforms 90.07% of PLDA and
is competitive with 90.90% of Joint Bayesian [4]. The per-
formance of Sub-SML may be further improved by includ-
ing more image-pairs.

5. Conclusion

In this paper we introduced a novel regularization frame-
work of learning a similarity metric for unconstrained face

1Recently, Cui et al. [6] obtains 89.35% in their CVPR 2013 paper
which was achieved, however, by using spatial face region descriptors and
a multiple metric learning method.
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Figure 3: ROC curve of Sub-SML and other state-of-the-art
methods in the unrestricted setting of LFW.

verification. We formulate its learning objective by incorpo-
rating the robustness to large intra-personal variations and
the discrimination power of novel similarity metrics, a prop-
erty most existing metric learning methods do not hold. Our
formulation is a convex optimization problem which guar-
antees the existence of its global solution. Our proposed
method has achieved the state-of-the-art performance on the
benchmark LFW dataset.
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