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Abstract

Recently, studies on sketch, such as sketch retrieval and
sketch classification, have received more attention in the
computer vision community. One of its most fundamental
and essential problems is how to more effectively describe
a sketch image. Many existing descriptors, such as shape
context, have achieved great success. In this paper, we pro-
pose a new descriptor, namely Symmetric-aware Flip In-
variant Sketch Histogram (SYM-FISH) to refine the shape
context feature. Its extraction process includes three steps.
First the Flip Invariant Sketch Histogram (FISH) descrip-
tor is extracted on the input image, which is a flip-invariant
version of the shape context feature. Then we explore the
symmetry character of the image by calculating the kurto-
sis coefficient. Finally, the SYM-FISH is generated by con-
structing a symmetry table. The new SYM-FISH descrip-
tor supplements the original shape context by encoding the
symmetric information, which is a pervasive characteristic
of natural scene and objects. We evaluate the efficacy of the
novel descriptor in two applications, i.e., sketch retrieval
and sketch classification. Extensive experiments on three
datasets well demonstrate the effectiveness and robustness
of the proposed SYM-FISH descriptor.

1. Introduction
With the popularity of tablets, e.g. iPad and Microsoft

Surface, sketch related studies become unprecedented pop-

ular nowadays. For instance, via such devices, people can

easily draw any object in his/her mind by touching the

screens. The sketches drawn by users are used as queries

to feed into any of the sketch retrieval system. The sketches

are essentially different with the real life images in many

aspects. For example, the information of sketches is mostly

represented by edges, in contrast, however, the things in re-

Query Sketch Top 5 retrived images

Figure 1. Several retrieval results of three query sketches are

shown. The first query is non-symmetric, the second query is bi-

lateral symmetric while the last one is rotation symmetric. For

each query, the retrieval results of three kinds of shape descrip-

tors: shape context, FISH and SYM-FISH are shown sequentially

in different rows. The first column is the query sketch images, and

the remaining columns are returned real life images. The incorrect

retrieval images are highlighted by red bounding boxes.

ality are very likely to be with rich textures. That is to say,

a huge gap exists between the simple stroke and the objects

in the real world, and thus brings great challenges for solv-

ing the problem. Actually, beside sketch retrieval [5], many

other edge related tasks, such as sketch detection [23] and

sketch recognition [2] are also extensively studied.

To describe the shape information of the sketch, many

descriptors are proposed. The most widely used one is
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shape context [2], which shows great success in practice.

But it is unable to capture a very important property of im-

ages: symmetry. Symmetry is ubiquitous in both natural

and man-made environments from galaxies, buildings to bi-

ological structures as well as in the arts. Moreover the sym-

metry is of scale invariance as well as translation invari-

ance. Although there is a long history of symmetry study

[9, 13, 21], it has rarely been integrated into descriptors in a

unified framework.

In this paper, our goal is to design a symmetry-aware

shape descriptor. Three steps are conducted sequentially.

First, the image is represented by a flip invariant descrip-

tor. More specifically, a Flip Invariant Sketch Histogram

(FISH) descriptor is extracted (Section 3.1). It is rotation,

translation, scale and flip invariant. Second, we detect the

symmetry axis. To this end, a simple energy measurement

based on the matching costs between different feature points

are calculated (Section 3.2). The measurement is dense-

ly computed on the image patches under different orienta-

tions. Then we minimize the energy measurement to de-

termine the symmetry directions in each image patch. Fi-

nally, we incorporate the symmetry character into image

representation. We construct a graph named symmetry ta-

ble to describe the symmetry character and generate the

SYMmetric-aware Flip Invariant Sketch Histogram (SYM-

FISH)(Section 4.1). Please note that, based on the graph,

we can handle both the case with and without symmetry

property in the image.

To validate the effectiveness of our proposed approach,

we apply it on two applications: sketch retrieval [5] and s-

ketch classification [15]. The sketch retrieval task is quite

challenging because of the huge gap between the sketch

query and real life repository images. Some of the represen-

tative works on sketch retrieval are MindFinder [4] [5] and

Sketch2photo [6]. These works have achieved some impres-

sive success. However, little attention is paid on studying

the symmetry character of the images. Symmetric is very

essential in image retrieval. For an instance in Figure 1, the

second and the third query images are symmetric, so the re-

trieval results should also be symmetric. Furthermore, we

do the experiment on two benchmark datasets: ETH shape

dataset [8] and a large scale sketch retrieval dataset [17].

Promising results have been achieved. The second applica-

tion is sketch classification. Intuitively, symmetry is useful

for classification, i.e., sketch images from the same catego-

ry may have certain common preference to symmetry. Such

as apples are usually bilaterally symmetric and flowers tend

to rotation symmetric. We conduct extensive experiments

on the sketch dataset [15]. Experimental results show that

the proposed SYM-FISH descriptor is more discriminating

than standard descriptors, such as shape context, and can

significantly improve sketch classification performance.

2. Related work

There are limited related works on sketch classification.

One of the most representative work is [2], which is a his-

togram representation of the sample points. It maps interest

points into a log-polar space based on the relative position-

s of the points. In addition, self-similarity [22] adopts a

similar log-polar mapping function to compute the intensi-

ty differences among log-polar bins. Another work on s-

ketch classification is [15]. The authors used a traditional

bag of word method to classify the sketches. However, all

the aforementioned descriptors do not enforce the descrip-

tors to be flip invariant, while our propose SYM-FISH can

handle the flip cases well.

Image retrieval has made a significant progress in recent

years [12, 20]. Sketch retrieval is as a branch of image re-

trieval but with more difficulties. In MindFinder system [4],

the edge position and gradient were used to represent the

sketches. To make the representation translation invariant

and more discriminative, [16] proposed a tensor descriptor

which firstly divided the image into cells, and then com-

puted the dominant orientation of each cell to construct a

structure preserving descriptor. The above-mentioned de-

scriptors are not robust to the image rotation. Therefore, we

propose a novel sketch descriptors which can handle various

transformations e.g. translation, rotation and scale. Further-
more, [17] proposed a bag of features framework based on

local features. But the retrieval results would be influenced

by the ambiguity of visual words. Thus, in our proposed

method, we introduce the symmetry structure of the image

to compensate such shortcoming.

Symmetry detection has been studied for many years

[13]. A recent related work is [10], which proposed a sym-

metry score approach to find the symmetry feature points,

afterwards constructed a symmetry descriptor for building

matching. But our work is different from theirs because

their method involves the score strategy, but SYM-FISH is

based on the feature points matching.

To encode the full structure information in descriptor

construction process will lead it sensitive to rotation. There-

fore, Zhang et al. [24] propose to build a GVP (geometrical
visual phase) to represent an image. In [24], the authors

construct an offset space to compute the co-occurrences vi-

sual phase words in a particular spatial layout. However

this method may work well for rigid construction e.g. build-

ings, when there existing some distortions the visual phase

will also be changed. Our proposed symmetry visual word

phase is robust to the distortions and noise.

3. The approach

The whole procedure of extracting SYM-FISH descrip-

tor consists of three main components: 1) computing the

FISH descriptor on the input image, 2) discovering the sym-

314



(a) Sampled Feature Points

(b) (c) (d)

Log-polar Mapping

Figure 2. FISH descriptor construction process: sampling feature

points, mapping sampled points in the log-polar coordinate, and

developing the descriptor representation. We compare the pro-

posed FISH descriptor with shape context descriptor. (b), (c) and

(d) are the visualization of FISH and shape context descriptors of

red, green and blue stars in the original image (a).

metry character of the image by analyzing matching scores

and 3) constructing a symmetry table combined with FISH

descriptor to finally generate the SYM-FISH.

3.1. Flip Invariant Sketch Histogram

Before we introduce the procedure of extracting FISH

descriptor, we first briefly review how shape context de-

scriptor is extracted. The procedure is shown in Fig. 2.

Shape context is constructed based on the distribution of

feature points sampled along the edge, which is detected by

edge detector operator or by computing the gradient of the

image. Then the log-polar mapping function (five bins for

radius and twelve for angles in our figure representation) is

applied and the number of feature points in each log-polar

bin is computed. After normalization, shape context fea-

ture can be obtained. Although shape context has achieved

great success, it cannot handle the flip case. For example

in Fig. 2 (b) and (d), their shape context features are totally

dissimilar even though their feature points corresponding to

red and blue star in Fig. 2 (a) are quite similar (only under

flip changes).

To handle the flip variations, we propose a FISH descrip-

tor, which can be viewed as a post-processing procedure

after shape context feature is extracted. More specifically,

we re-order all the bins in the shape context by two steps:

determine the reference bin and the rotation orientation se-

quentially. First, we determine the reference bin. It is set as

Table 1. The average evaluation results between FISH and Shape

context, and the best are highlighted with bold.

FISH Shape Context

Transformation Precision Recall Precision Recall

Rotation 0.0588 0.3098 0.0160 0.1062

Flip 0.6357 0.8954 0.0046 0.0453

Scale1 0.1847 0.1552 0.1839 0.1550

Scale2 0.1582 0.1316 0.1582 0.1316

Scale3 0.1400 0.1160 0.1408 0.1158

Scale4 0.1348 0.1080 0.1353 0.1092
Scale5 0.1260 0.1028 0.1251 0.1031

the most dense bin (MDB) of the log-polar, i.e. bin marked
by deepest color of the shape context feature in Fig. 2. After

determining the MDB, we re-order all bins in shape context

by putting the MDB in the first bin of the FISH descrip-

tor. Second, the rotation orientation is determined by the

orientation from MDB to the second most dense bin (SMD-

B). To sum up, we can roughly align the FISH features by

re-ordering the bins of shape context according to the in-

ferred reference bin and the rotation orientation. One pos-

sible problem of the above mentioned strategy is the MDB

and SMDB bins may share the same polar angle. In this

case, we skip the original SMDB and depend on the third

MDB to determine the rotation orientation.

We show the effectiveness of the proposed FISH descrip-

tor in Fig. 2. The red and blue stars in Fig. 2 (a) are quite

similar, and thus their FISH are similar, shown in Fig. 2 (b)

and Fig. 2 (d). To the contrary, the green star in Fig. 2 (a)

looks quite dissimilar with the other stars. Therefore, its

FISH Fig. 2 (c) is dissimilar with Fig. 2 (b) and Fig. 2 (d).

Since we map the feature points into log-polar space.

Moreover, the relative distance is used to develop feature

points distribution. Therefore, FISH is translation, rotation

and scale invariant. After re-ordering, FISH is also flip in-

variant.

Evaluation of Flip Invariant Sketch Histogram: We
will quantitatively compare FISH with shape context in the

image matching task. However there is no benchmark s-

ketch dataset specially for matching, a sketch pairs database

is collected by ourselves. The dataset is composed of 250

pairs. each pair is consisted of original image and its rota-

tion, flip and scale version. In the sketch pair database, the

orientation angle is randomly selected from (0,360). The s-

cale parameter selected from the fixed 5 scales from 1√
2
to

2. For the flip situation, we flip the whole original image.

The setting of the matching experiment is as follows:

300 feature points are sampled on two sketch images, then

an adjacency matrix is constructed by computing the sim-

ilarity among their FISH descriptors. Afterwards, the KM

matching approach [18] is used to get the global one-vs-one

correspondence of feature points. Finally a RANSAC [19]

method is utilized to further improve the matching results.

We use precision and recall to evaluate the matching per-
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Figure 3. The Kurtosis values of different symmetry types. The red

line indicates the detected symmetry axis of the original image.

For bilateral symmetry image (a), the kurtosis value is large and

the distribution has a peak (d). While the rotation symmetry image

(b) has a small kurtosis value and a flat distribution (e). The non-

symmetry image (c) has a smaller kurtosis value distribution (f).

formance. A match is considered as correct if the estimat-

ed matching points are less than 10 pixels away from the

ground truth matching points. The results can be found in

Tab. 1. In this table, we show the average matching results

of 250 sketches. The reason is that the variation tendency of

precision and recall is like other local descriptors. We think

the average value can be used to measure the performance.

In the rotation and scale situations, FISH achieves a compet-

itive matching results comparing with shape context. And

under flip situation, FISH obtains significant improvements.

3.2. Symmetry discovering

According to common sense and previous studies[10],

the symmetry sketch can be divided into two categories1 :

bilateral symmetry and 2n-rotataion symmetry, the defini-

tion of which are:

Bilateral symmetry: A sketch contains only one sym-
metry axis or two (near) orthogonal axises. Specially, two

separated parts could be mapped to each other by the angle

of the symmetry axis. One example of bilateral symmetry

is Fig. 3 (a).

2n-fold rotation symmetry: There exist more than two
symmetry lines of a sketch, while these lines are intersected

in one point. In our problem, if a sketch include two sym-

metry lines, which are not orthogonal, we also define it as

rotation symmetry. One example of rotation symmetry is

Fig. 3 (b).

Thus, discovering local symmetry of a region can be con-

verted to search the symmetric axis of the sketch. To detect

the symmetry axis on the input sketch, we propose a com-

pact energy minimization method. The whole strategy is

1The curved symmetry may be considered as another symmetry cate-

gories. But we think the curved symmetry is a kind of piecewise bilateral

symmetry. Moreover in this paper we do not discuss such situation.

Algorithm 1 The procedure for symmetry discovering.
1: Input: an image Ii, the all-zero 36-dim vector �, thresh-
old �1 and �2

2: for each sampled angle O within (0,360) degrees do
3: for each sampled point p in the image I do
4: calculate the symmetric score of the {O, p} pair
by Eq. 2.

5: end for
6: set �(o) = S coreIi (O).
7: end for;
8: calculate kurtosis coefficient Kurt(VScore) by Eq. 3.
9: if Kurt(VScore) ≥ �1 then
10: image I is bilateral symmetric
11: else
12: if #matchedpoints ≥ �2 then
13: image Ii is rotation symmetric
14: end ifimage Ii is not symmetric
15: end if
16: Output: its symmetry type and the symmetric points;

shown in Algorithm 1. Firstly, as shown in line 2 of Al-

gorithm 1, we traverse all orientations/angles o, which are
evenly distributed in (0,360) degrees, with the interval of 10

degrees. Thus, we have 36 sampled angles. Secondly, we

traverse all sampled keypoints p in the image Ii, as shown
in line 3. Till now, we get the sampled {o, p}(indicating
{angle, point}) pair. Then we divide the sketch image into
two parts based on current {o, p} pair. Then we calculate
the symmetric score for each orientation/angle o. Small-
er matching score means more symmetric. The symmetric

score is defined as:

S coreIi (O) =
∑

j

min D( f ij(O), f
i
c( j)(O)), (1)

∀O ∈ {10, 20, ..., 360} (2)

where c( j) represents the corresponding feature points of
j, and f ij is the feature representation of point j in the im-
age i. D(·) displays the Euclidean distance. O represents

the symmetry directions, which is fixed from 10 degree to

360 degree for every 10 degrees. Then, we select the mini-

mum scores of each orientation o as the potential symmetry
orientation, We accumulate all the scores to generate a 36-

dim vector, shown in line 6 of Algorithm 1. We observe

that for the bilateral symmetry sketch the matching score

S coreIi (O) has an unimodal distribution, while for the ro-
tation symmetry, S coreIi (O) has a multimodal distribution.
The kurtosis coefficient [11] can discriminate the two cases:

output lower value for a single peak distribution and higher

value for the multi-peak distribution. The kurtosis coeffi-

cient is calculated by:

Kurt(VScore) =
1

σ4

∑

λ

(λ − μλ)
4S coreIi (3)

316



where σ is the standard deviation and λ represents the an-
gel of the symmetry axis. μλ is the expected value of λ and
Vscore is the distribution of confidence symmetry. The step
corresponds to line 8 in Algorithm 1. Usually, the bilater-

al symmetry produces much higher Kurt score comparing
with rotation symmetric and non-symmetric, as shown in

Fig. 3 (d). We take advantage of this property, and set a

threshold �1 shown in line 9 of Algorithm 1. Since both ro-

tation symmetric and non-symmetric produce similar lower

Kurt score, shown in Fig. 3 (e) and Fig. 3 (f). We have
to judge the type by another criterion, i.e., the number of

matching feature points �2. Intuitively, non-symmetric im-

ages have small number of matched feature points, as shown

in line 12 of Algorithm 1. Till now, we can classify all three

kinds of symmetric types.

Evaluation of symmetry discovering: We test the ef-
fectiveness Algorithm 1 on a subset of sketch database [17].

The validation database is composed of 31 human drawing

sketches, which contain bilateral symmetry sketch, rotation

symmetry sketch and non-symmetry sketch. We would like

to know whether the symmetry type can be correctly classi-

fied. We find that the total classification accuracy is 67.7%,
which is much higher than random guess 33.3%.

3.3. Symmetry-aware Flip Invariant Sketch His-
togram

In image retrieval and classification the local descrip-

tors, such as SIFT [14], shape context [2] and FISH, will

not be directly used for the image representation. Usual-

ly, we summarize all the local descriptors in a sketch im-

age with the Bags of words (BoWs) representation. Thus,

in this section, we will illustrate how to fuse the symmetry

property among feature points into the visual word repre-

sentation. Traditionally BoWs features ignore the relation-

ships between different visual words. A lot of works have

put attention on adding the spatial relation between differ-

ent visual words [3] [24]. In this paper we only focus on

symmetry and do not exploit other spatial structure of the

sketch images.

We propose to use a symmetry table to capture the sym-

metry relations among visual words. The whole process

contains four steps. Firstly, the k-means is used to cluster

the feature points to get the dictionary. And we map all the

feature points into its nearest visual words to get the visu-

al word representation. This step is same with traditional

BoWs framework. Secondly, we detect the symmetric fea-

ture points by the method introduce in Sec 3.2. Thirdly,

we map the symmetry of feature points to symmetry of vi-

sual words. This step is similar with [3] whose purpose

is to transfer the feature points spatial distribution to visual

word representation. Finally, we construct a symmetry table

Y ∈ {0, 1}, which is a N×N matrix, where N is the number
of visual words. Y is an index matrix, whose element Yi, j

indicates whether the visual word Vi and Vj are symmetric

in the sketch images. More specifically, Yi, j = 1 if vi and
v j are symmetry, otherwise Yi, j = 0. With the symmetry

table, the symmetry relationship is transferred from feature

points level to the visual words level. To sum up, besides

the original BoWs feature, for each sketch image, we have

a new structural feature called SYMmetry-aware Flip In-

variant Sketch Histogram (SYM-FISH) shape feature. It is

the combination of original FISH feature and a symmetry

table. The SYM-FISH feature is easy to compute and all its

values are binary. Thus the distance between two symmetry

table is just humming distance.

4. Applications of SYM-FISH

4.1. SYM-FISH descriptor in sketch retrieval

Searching the real life images by using a sketch query is

not an easy task. The sketches are essentially different with

the real life images in many aspects. For example, sketch

images convey information mostly by edges while real life

images always have rich texture.

The SYM-FISH is used in the sketch retrieval task by

re-ranking the original ranking list. The original list could

be generated by any retrieval method, such as using the in-

verted file structure. For the SYM-FISH reranking, we first

extract the symmetry table for all the images in the reposito-

ry. Then the original list is reorder by the distances between

symmetry table. We use Eq. 4 to compute the distance be-

tween symmetry tables.

D(Iq, Ir) = ||STq − STr ||F , (4)

where Iq and Ir display the query image and repository im-
age. ST is the symmetry table for each image. The sub-
script F represents the Frobenius norm.
From the experiments, we observe that SYM-FISH not

always output good rerank results. The main reason is that

it is very difficult to extract the edges of real life images .

And the SYM-FISH descriptor is sensitive to edge detection

errors. To partially solve the problem, we use subwindows

method.

The candidate subwindows are chosen based on the their

objectness [1]. The objecness of an image is defined to find

the regions which most likely include the objects. Suppos-

ing we have m candidate windows in the query image, and
n candidate windows in one repository image. Next, we
should identify how to measure the distance between query

and repository images. Till now, the original image-image

distance has been transfered to a set-set distance, where al-

l candidate windows in an image form a set. To solve the

problem, we assume that if two images are similar, there ex-

ist some quite similar subwindows too. Therefor, we mea-

sure the image-image distance by averaging the distance of
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Figure 4. The sketch retrieval results on ETH dataset. (a)-(c) are average retrieval results for top 10, 20 and 40 cases.

top 3 similar subwindows:

D(Iq, Ir) =
1

3

3∑

i=1

d(i, I pq , I pr ), (5)

where d(i, I pq , I pr ) denoted the i-th similar subwindows be-
tween query image Iq and reposotyr image Ir.

4.2. SYM-FISH descriptor in sketch classification

In the traditional classification approach [15] , chi-square

distance is usually used to compute the similarity between

different images while the symmetry character of the s-

ketches is not considered. The chi-square distance is just

based on the similarity of the bags of visual words represen-

tation. In our approach, we combine the distance between

visual word representation and the similarity of symmetry

table. Formally, we have:

D(Ii, I j) = χ2(Ii, I j) + λ ∗ ST (Ii, I j) (6)

where χ2(Ii, I j) computes the chi-square distance between
different images, and ST (Ii, I j) is the similarity of symme-
try table between different images. However, there exists

variation within the category, this distance may increment

the distance within the class. In fact, we observe that the

distance within the category is increasing, but the distance

between different categories is growing more larger. To val-

idate the performance of such combination, the experiment

results are shown in Section 5.2.

5. Experiments
We evaluate our proposed descriptor FISH and SYM-

FISH on two applications : sketch retrieval and sketch clas-

sification. In the sketch retrieval experiment, we first check

the performance of FISH and SYM-FISH on ETH shape

database [8]. The further validation of these two descrip-

tors is on a large scale sketch retrieval dataset [17]. In the

sketch classification experiment, we test the performance of

proposed descriptors on sketch classification dataset [15].

5.1. Sketch Retrieval Results

5.1.1 Evaluation on the ETH dataset

In this experiment, we compare FISH, SYM-FISH with

shape context [2], self-similarity [22] and HOG [7] on ETH

shape dataset. This dataset contains five classes (bottles,

swans, mugs, giraffes and apple logos) with a total of 255

images collected from the web. It is very challenging, as the

objects appear in a wide range of scales. And there is con-

siderable intra-class shape variations, and many images are

severely cluttered, with objects comprising only a fraction

of the whole image. The ETH dataset provides one repre-

sentative sketch image for each class, which is used as the

input query in our experiment. All the real life images in

the dataset are used as repository data. We use precision

to measure the performance of different descriptors, which

is the ratio of corresponding images in the top n returned
images: Precision = #corresponding images/ n.

The results are shown in Fig. 4, we test all the five de-

scriptors in top 10, 20 and 40 cases. And we conclude that

SYM-FISH achieves the best performance. Note that it is

significantly better than shape context, the most widely used

shape descriptor. The possible explanation is that the pro-

posed SYM-FISH descriptor becomes more robustness be-

cause of the novel encoding approach and can better handle

the flip situation. Moreover, the introduced symmetry prop-

erty enables the representation more discriminative. We

also test the performance w.r.t. different vocabulary sizes

from 100 to 1000. From Fig. 4, we can see that in all cases,

the maximal precision is achieved when the dictionary size

is 500, which is a trade-off between descriptors’ discrimi-

nation and quantization error.

5.1.2 Evaluation on the Large Scale Image Database

We have demonstrated the effectiveness of FISH and SYM-

FISH on a relatively small ETH database. In this ex-

periment, we validate their performances on a large scale
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dataset [17]. This database is composed of two parts, name-

ly a benchmark dataset and a distractor image dataset. The

benchmark dataset contains 31 benchmark sketches as well

as 40 corresponding images for each sketch while the dis-

tractor image dataset contains 100,000 creative commons

images. We mix the benchmark dataset and the distractor

images together and use each of the 31 benchmark sketch-

es as the query. For each query, a list which contains the

ranking of the corresponding 40 benchmark images is s-

tored. We use Kendalls rank correlation [17] to measure

the performance ranging in [-1, 1] and higher value means

the higher consistency:

τ =
#concordant pairs − #discordant pairs

1
2
n(n − 1) , (7)

where # concordant pairs evaluates the consistency between

two lists and # discordant pairs measure the inconsistency

between two lists. n is the length of the rank lists.
In this experiment, we compare the description perfor-

mance of FISH and SYM-FISH with shape context. All re-

sults are illustrated in Table 2. We can observe that FISH is

marginally better than shape context and SYM-FISH is the

best one. We also show several qualitative retrieval exam-

ples in Fig. 5. The results are obtained by using SYM-FISH

descriptor. We can see that, in most cases, the returned re-

sults are visually and semantically similar with the query.

Table 2. The retrieval results on large scale image benchmark [17].

For all dictionary size, the best results are achieved by SYM-FISH.

Dictionary Size Shape context FISH SYM-FISH

100 0.12395 0.11683 0.1261
300 0.10911 0.11041 0.1409
500 0.10914 0.10815 0.1688
700 0.10391 0.10225 0.1762
900 0.11594 0.12225 0.1829
1000 0.11066 0.1243 0.1801

5.2. Sketch Classification Results

In this section, we test the effectiveness of the proposed

SYM-FISH on the sketch classification task. In this part,

a subset of human sketch dataset [15] is used, which con-

tains 24 categories: airplane, bicycle, car(sedan), cat, chair,

computer monitor, couch, cow, dog, flying bird, horse, mo-

torbike, person setting, person walking, potted plant, race

car, sailboat, sheep, speed boat, table, table lamp, train, tv

and wine-bottle. Each sketch class contains about 80 im-

ages with different styles. To train the sketch model, we

randomly divide the dataset into 2 subset: 58 images from

each category are randomly selected as the training set and

the remaining images are used as testing set. We train 24

SVM classifiers one for each category in a one-vs-all man-

ner. We use the self-defined kernel converted from Eq. 6.

In this experiment, we compare three descriptors: shape

context, FISH, SYM-FISH. The comparison results are

Figure 5. Examples of the retrieval results using the proposed

SYM-FISH descriptor in the large scale dataset [17]. The first

column is the query sketch image, while the remaining columns

correspond to the retrieved real life images. The incorrect results

are highlighted by red bounding boxes.
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Figure 6. The classification results w.r.t. different dictionary size.

shown in Fig. 6. The evaluation metric is category’s recog-

nition accuracy. We can observe that in most cases, SYM-

FISH achieves best performance. We also show the accura-

cies for each category in Tab. 2. Again, in 10 out of total 24

categories, SYM-FISH achieves best results. The average

result of 0.53 is much higher than 0.47, which is the result
of shape context. The reasons can be summarized as fol-

lows: firstly there exists many flip situations in the dataset

Query Sketch Top 5 retrieved images
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Table 3. The comparisons between our descriptors and baselines.

The best results are highlighted in bold.
Categories [15] SC[2] FISH SYM-FISH

airplane 0.38 0.44 0.30 0.63
bicycle 0.77 0.56 0.44 0.59

car(sedan) 0.30 0.63 0.48 0.52

cat 0.22 0.26 0.15 0.37
chair 0.67 0.52 0.74 0.78

computer monitor 0.81 0.48 0.59 0.59

couch 0.62 0.59 0.63 0.67
cow 0.5 0.22 0.2 0.19

dog 0.41 0.19 0.11 0.37

flying bird 0.19 0.19 0.11 0.22
horse 0.54 0.52 0.63 0.44

motorbike 0.44 0.48 0.44 0.41

person setting 0.52 0.44 0.59 0.46

person walking 0.69 0.52 0.59 0.56

potted plant 0.81 0.67 0.81 0.81
race car 0.22 0.22 0.11 0.07

sailboat 0.93 0.59 0.74 0.67

sheep 0.58 0.41 0.44 0.56

speed boat 0.35 0.22 0.11 0.37
table 0.89 0.7 0.74 0.70

table lamp 0.27 0.59 0.70 0.67
train 0.44 0.37 0.33 0.41

tv 0.56 0.48 0.67 0.67
wine-bottle 0.81 0.89 0.70 0.89
Average 0.538 0.47 0.48 0.53

and our proposed descriptor is flip-invariant. Secondly, the

symmetry table can better preserve the symmetry proper-

ties of the sketches which both decrease the intra-category

distances and increase inter-category distances.

6. Conclusion and Future Work

In this paper, we propose a novel shape descriptor SYM-

FISH which can handle the flip changes and encode im-

age’s symmetric property. It is low-dimensional and easy

to compute. We thoroughly analyze its characteristics on

two applications: sketch retrieval and classification. Ex-

periments validate that SYM-FISH is significantly and con-

sistently better than the shape context descriptors in most

cases. Although we only validate the effectiveness of the

descriptor on sketch retrieval and classification tasks in this

paper, we believe that it can also be used in other tasks, such

as sketch detection. We leave it as our future work.
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