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Abstract

We develop a Bayesian modeling approach for tracking
people in 3D from monocular video with unknown cam-
eras. Modeling in 3D provides natural explanations for
occlusions and smoothness discontinuities that result from
projection, and allows priors on velocity and smoothness
to be grounded in physical quantities: meters and seconds
vs. pixels and frames. We pose the problem in the context
of data association, in which observations are assigned to
tracks. A correct application of Bayesian inference to multi-
target tracking must address the fact that the model’s di-
mension changes as tracks are added or removed, and thus,
posterior densities of different hypotheses are not compa-
rable. We address this by marginalizing out the trajectory
parameters so the resulting posterior over data associa-
tions has constant dimension. This is made tractable by
using (a) Gaussian process priors for smooth trajectories
and (b) approximately Gaussian likelihood functions. Our
approach provides a principled method for incorporating
multiple sources of evidence; we present results using both
optical flow and object detector outputs. Results are com-
parable to recent work on 3D tracking and, unlike others,
our method requires no pre-calibrated cameras.

1. Introduction
Tracking remains difficult when there are multiple tar-

gets interacting and occluding each other. These difficul-

ties are common in many applications such as surveillance,

mining video data, and video retrieval, motivating much re-

cent work in multi-object tracking [39, 4, 5, 23, 24, 6, 41].

In these contexts, it often makes sense to analyze extended

frame sequences (“off-line” tracking), and the camera pa-

rameters are often unknown.

In this paper we develop a fully 3D Bayesian approach

for tracking an unknown and changing number of people in

a scene using video taken from a single, fixed viewpoint.

We propose a generative statistical model that provides the

distribution of data (evidence) given an association, where

we extend the well-known formulation of Oh et al. [31]. We

model people as elliptical right-angled cylinders moving on

a relatively horizontal ground plane. We infer camera pa-

rameters and people’s sizes as part of the tracking process.

Further, with a reasonable value for the mean height of peo-

ple, we can establish location with respect to the camera in

absolute units (i.e., meters).

This formulation enables inference in the constant di-

mension data-association space, provided that we integrate

out the continuous model parameters such as those asso-

ciated with trajectories. In other words, we estimate the

marginal likelihoods during inference, which deals with po-

tential dimensionality issues due to an unknown number of

tracks. This principled approach is very amenable to exten-

sions, such the incorporation of new model elements (e.g.,

pose estimation and gaze direction) or new sources of evi-

dence (e.g., color and texture).

Given a model hypothesis, we project each person cylin-

der into each frame using the current camera, computing

their visibility as a consequence of any existing occlusion.

We then evaluate the hypothesis using evidence from the

output of person detectors and optical flow. Our method

thus integrates tracking as detection (e.g., [32, 23, 1])

and classical approaches like tracking as following evi-

dence locally in time as is common in filtering methods

(e.g., [20, 22]). We use a Gaussian process in world coordi-

nates to provide a smoothness prior on motion with respect

to absolute measures. Given a reasonable kernel, observa-

tions that are far apart in time do not influence each other

much, and we exploit this for efficiency.

To track multiple people in videos we infer an associa-

tion between persons and detections, collaterally determin-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.418

3361

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.418

3368



ing a likely set of 3D trajectories for the people in the scene.

We use MCMC sampling (§3) to sample over associations,

and, for a given association, we then sample trajectories to

search for a probable one, conditioned on the association.

We use this to estimate the integral over all trajectories,

again conditioned on the association. During inference we

also sample the global parameters for the video which in-

cludes the camera and the false detection rate, which we

consider to be a function of the scene background.

Closely related work. Our data association approach

extends that of Oh et al. [31]. We further follow Brau et

al. [8] who used Gaussian processes for trajectory smooth-

ness while searching over associations by sampling. Oth-

ers [40, 7] use a similar data association model, but propose

an effective non-sampling approach for inference. All these

efforts are focused on association of points alone; neither

appearance or geometry are considered.

With respect to representation, several others share our

preference for 3D Bayesian models for humans (e.g., [36,

11, 37, 9]). In particular, Isard and MacCormick [21] use

a 3D cylinder model for multi-person tracking using a sin-

gle, known camera. However, this approach does not deal

with data association, since it is not detection-based. Sim-

ilarly, there is other work in tracking objects on the 3D

ground plane [16, 13, 28] without considering data asso-

ciation. Other approaches estimate data association as well

as model parameters [39, 19, 10]. However, we model data

association explicitly in a generative way, as opposed to es-

timating it as a by-product of inference. In addition, none

of these approaches model humans as 3D objects.

Andriyenko and Schindler [3] pose data association as

an integer linear program. In subsequent work [4], they for-

mulate an energy approach for multi-target tracking in 3D

that includes terms for image evidence, physics based pri-

ors, and a simplicity term that pushes towards fewer trajec-

tories. Later, Andriyenko et al. [5] attempt to solve both

data association and trajectory estimation problems using

similar modeling ideas as in their previous work. In contrast

to our work, they simultaneously optimize both association

and trajectory energy functions, which results in a space of

varying dimensionality.

Technical contributions include: (1) A full Bayesian

formulation that incorporates both data association and the

3D geometry of the scene; (2) Robust inference of camera

parameters while tracking; (3) A Gaussian process prior on

trajectory smoothness applied in absolute 3D coordinates;

(4) Inferring people’s heights and widths simultaneously

while tracking to improve performance; (5) Explicitly han-

dling occlusion as a natural consequence of perspective pro-

jection while tracking; (6) Extending data association track-

ing to use multiple detections from multiple detectors, and

associated proposal strategies; (7) A new model for the prior

on the number of tracks, and associated births and deaths;

and (8) Integrating optical flow and detection information

into probabilistic evidence for 3D tracking.

2. Model, priors, and likelihood
In the data-association treatment of the multi-target

tracking problem [30, 8], an unknown number of objects

(targets) move in a volume, producing observations (detec-

tions) at discrete times. The objective is to determine the

association, ω, which specifies which detections were pro-

duced by which target, as well as which were generated spu-

riously. Here, the targets are the people moving around the

ground plane, and the observations (B) are detection boxes

obtained by running a person detector [14] on each frame of

a video.

Our goal is to find ω which maximizes the posterior

distribution p(ω |B) ∝ p(B |ω)p(ω), where p(ω) is the

prior distribution and p(B |ω) is the likelihood function.

The prior over associations contains priors over quantities

like the number of tracks and the number of detections per

track. The likelihood arises from modeling the underlying

3D scene captured by the video.

In our model, each person in the scene has a 3D con-

figuration zr, which is composed of their trajectory (a se-

quence of points on the ground plane) and their size, which

consists of height, width, and girth. We also model evi-

dence from optical flow features [26], I . Using all this,

we can compute the likelihood function of an association

by integrating out all possible 3D configurations; that is

p(B, I |ω) = ∫ p(B | z, ω)p(I | z, ω)p(z) dz where the fac-

tors in the integrand are, respectively, the two likelihoods of

the 3D scene given the two sources of data and the prior

over the scene (with z = (z1, . . . , zm)). The overall graph-

ical model is shown in Figure 1.

2.1. Association

Formally, an association ω = {τr ⊂ B}mr=0 is a parti-

tion of the set of detections B, where τ1, . . . , τm are called

tracks, and represent across-time chains of observations of

the objects being tracked, and τ0 is the set of false alarms.

An example association is shown in Figure 2(a). The asso-

ciation entity is based on well-known work by Oh et al. [31],

but we extend that work by (1) allowing tracks to produce

multiple measurements at any given frame and (2) employ-

ing a prior on associations which allows parameters gov-

erning track dynamics and detector behavior to adapt to the

environment of a particular video.

We assume an association is the result of the following

generative process. When the video starts, there are e1 peo-

ple in the scene. At each subsequent frame t, et people enter

the scene, resulting in m =
∑T
t=1 et tracks, whose lengths

are lr, r = 1, . . . ,m. In addition, dt people exit the scene.

At frame t we also observe art detections due to person r
and nt detections due to noise. We define at =

∑m
r=1 art as
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(a) Graphical model for an association

m

φd φB

dr B

λA
τr xr I C

φω
γ φx φI φC

(b) Graphical model after association

Figure 1. Graphical model. Filled circles represent observed vari-

ables and red dots represent constants. (a) Graphical model of

prior over associations. e, and l are the number of tracks cre-

ated at each frame and their lengths; n and A are the detections

from noise and tracks, respectively; ω is the resulting associa-

tion. The remaining nodes are parameters for different terms of

the prior distribution. (b) Graphical model of the joint distribu-

tion, omitting details about the association prior. τr are tracks

(with ω = {τ1, . . . , τm}) and γ = (κ, θ, λN ) are parameters for

the association prior; xr denote trajectories, and dr are the dimen-

sions of objects; C denotes the camera; B is the detection data and

I the image optical flow data. The remaining Greek letters (the φs)

represent parameters of probability distributions. Noise detections

and noise optical flow vectors are omitted.

the number of true detections at frame t, andNt = nt+at as

the total number of detections at t. Finally, a fully-specified

assignment in frame t is a permutation of its Nt detections,

with the first nt associated to noise, the next a1t associated

to the first track in the frame, etc. (see Figure 1(a))

We assume that e1 ∼ Pois(κ), and that lr ∼ Exp(θ),
r = 1, . . . ,m. Assuming the distribution of the number of

tracks is stationary, this implies that et ∼ Pois(κθ), t > 1.

The number of detections per target per frame, as well as

the number of noisy detections, are also Poisson distributed,

with parameters λA and λN , respectively. Under these con-

ditions, it can be shown that the prior depends only on the

t t + 1 t + 2 t + 3 t + 4

bt+1 2

bt+1 1

bt 1

bt 2

bt 3

bt+2 1

bt+2 2

bt+2 3

bt+3 1

bt+3 2

bt+4 1

bt+4 2

(a) An example association

x11
x12

x13
x14

x15

x21

x22 x23

h 2

h 1

w2

w1

(b) Corresponding scene

Figure 2. An example association and its corresponding 3D con-

figuration. (a) An association with two tracks that span a video

of five frames. The red boxes make up τ1 and the blue boxes are

τ2, while the black boxes are part of the set of false alarms τ0.

(b) The corresponding 3D scene with two trajectories z1 and z2,

whose colors correspond to the tracks in (a). Although τ1 has no

detections at time t+ 3, z1 still exists there with position x14.

total tracks m, entrances e, exits d, true detections a, noisy

detections n, and track lengths l, as well as the number

of ways to permute track labels within frames, and detec-

tions within tracks and frames. The resulting expression for

p(ω |κ, θ, λN ) is

(κe−λA)mθe+dλnNλ
a
Ae
−(κ+(T−1)κθ+lθ+TλN )∏T

t=1 (Nt!et!nt!
∏mt

i=1 ait!)
, (1)

Finally, we consider κ, θ, and λN to depend on the video

and must infer their values. Consequently, we place vague

Gamma priors on them; e.g., κ ∼ G(ακ, βκ).
2.2. Scene and Camera

Each track τr ∈ ω, has a corresponding trajectory on

the ground plane. The trajectory corresponding to track τr
is xr = (xr 1, . . . , xr lr )

T, xr j ∈ R
2. The length lr of

trajectory xr is determined by the first and last detections

of track τr. Note that, while τr contains no elements for

frames where the person was not detected, xr j is specified

for every j between the track’s initial and final frame. Each

person has three size dimensions: width, height and girth,

denoted by dr = (wr, hr, gr). We will denote the 3D con-

figuration of track τr by zr = (xr, dr).
We model motion as a realization of a multi-output

Gaussian process (GP) [33, 35]. Specifically, trajectory xr
is the curve generated by a sample from a GP with inputs

Sr = {1, . . . , lr}, with the zero mean function and the

squared-exponential covariance function. That is, xr | τr ∼
N (0,Kr), where Kr is the covariance matrix, whose ele-

ment (s, s′) is given by k(s, s′) = σ2
x exp− 1

2l2x
(s−s′)2, for

all pairs in Sr × Sr. The smoothness and scale parameters

lx and σx are set using calibration data. Person size is a pri-
ori normally distributed, e.g., hr ∼ N (μh, σh), following

actual human size [27].

Combining these elements and assuming trajectories and

sizes to be independent of one another, we get the following
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prior for a scene:

p(z |ω) =
m∏
r=1

p(xr | τr, φx)p(dr |φd), (2)

where φx = (lx, σx) and φd = (μw, σw, μh, σh, μg, σg).
Camera. We assume a standard perspective camera

[18] with simplifying assumptions[12]. We set the ori-

gin of the world to be on the ground plane, for which

we use the xz-plane. We assume the camera center to

be at (0, η, 0) (η is the camera height), a pitch angle of

ψ, and a focal length of f (see Figure 3 (top)). Fur-

ther, we assume the camera has unit aspect ratio, and that

the roll, yaw, axis skew, and principal point offset are

all zero. We let η, ψ, and f have vague normal priors

whose parameters we set manually. Specifically, we have

η ∼ N (μη, ση), ψ ∼ N (μψ, σψ), and f ∼ N (μf , σf ). As-

suming independence between parameters, the camera prior

is p(C) = p(η |μη, ση)p(ψ |μψ, σψ)p(f |μf , σf ) where

C = (η, ψ, f).
Projecting the scene. We convert a 3D scene to a

2D representation by transforming every cylinder at every

frame into a 2D box in the image via the camera. Given

a trajectory element xrj , we take uniformly-spaced (3D)

points on the rims of the cylinder, project them onto the im-

age plane using the camera C and find the minimum bound-

ing box hrj around the resulting 2D points. We call hrj a

model box (see Figure 3 (top)).

For each model box hrj , we also compute the region ĥrj
that is not occluded from the camera, as follows. First, we

discretize hrj into a grid of small cells. We then shoot a ray

from the center of each grid cell to the center of the camera,

and declare it visible if the ray does not intersect any other

box. Then, ĥrj is simply the union of these visible cells.

2.3. Likelihood

We use two sources of evidence: person detectors and

optical flow. First, we run various person detectors on the

video frames to get bounding boxes Bt = {bt1, . . . , btNt
},

t = 1, . . . , T , whereNt is the number of detections in frame

t. We parametrize each box btj by (bx
tj , b

top
tj , b

bot
tj ), represent-

ing the x-coordinate of the center, and the y-coordinates

of the top, and bottom, respectively. We also run a dense

optical flow estimator on the video, which outputs a set of

velocity vectors It = {vt1, . . . , vtNI
} for each frame t =

1, . . . , T−1, whereNI is the number of pixels in the frame.

Finally, we use B = ∪Tt=1Bt and I = {I1, . . . , IT−1}, and

we denote the complete data set by D = (B, I).
Box likelihood. We model data boxes as having i.i.d.

Laplace-distributed errors in the x, top, and bottom pa-

rameters. That is, for any assigned data box btj ∈ τr,
r �= 0, and the corresponding model box (for simplicity,

assume track τr starts at t = 1) hrt = C(xrt, dr), we have

xrj

�

�

hrj

hrj
x b rj

x
urj

v

hrj
hr j+1

Figure 3. Likelihood computation. Top: the cylinder from target

zr in frame j gets projected via camera onto the image plane, and

model box hrj is computed around it. Bottom-left: The likelihood

for the x component of hrj (blue) given one of its corresponding

data boxes b ∈ B (dark red), i.e., bx |hx
rj ∼ Laplace(hx

rj , σ
x).

Bottom-right: hrj along with its model direction urj (thick blue

arrow) and the flow vectors it contains (dotted red arrows). The

thick red arrow is the average of the flow vectors which lie in ̂hrj ;

i.e., those not occluded by the red box.

that bx
tj − hx

rt ∼ Laplace(μx, σx) (see Figure 3 bottom-

left) which implies that bx
tj |hx

rt ∼ Laplace(hx
rt + μx, σx),

and analogously for htop
rt and hbot

rt . At each frame we also

observe nt spurious detections, which we model as uni-

formly distributed across the image, e.g., p(bx
tj) =

1
wI

and

p(btop
tj ) =

1
hI

, for all false alarms btj ∈ τ0, where wI and hI
are the width and height of the image. Combining all these

factors, and considering conditional independence, we get a

box likelihood p(B | z, ω, C) given by∏
b∈τ0

p(b |wI , hI)
∏

b∈B\τ0
p(b |h(b), C, φB), (3)

where h(b) is the model box of the cylinder for the

target and frame corresponding to box b, and φB =
(μx, σx, μtop, σtop, μbot, σbot).

Image likelihood. We aggregate optical flow vector into

averages as follows. Let IB be the set of boxes of all sizes

and locations that fit within the image, and v̄t(b) be the av-

erage of the optical flow vectors from frame t contained

in box b. We define It = {v̄t(b) | b ∈ IB}, and let I =
{I1, . . . , IT−1} as before. Now, consider a pair of consec-

utive model boxes hrt and hr t+1, and let urt = (uxrt, u
y
rt)

be the difference of their centers (called model direction)

and v = (vx, vy) ∈ It be the average flow vector that cor-
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responds to the box of location and size equal to hrt. We

model the error between each of their coordinates as having

a Laplace distribution, so that vx |uxrt ∼ Laplace(uxrt, σxI ),
and analogously for vy (see Figure 3 (bottom-right)). Fi-

nally, any v ∈ I which does not have a corresponding

model box has coordinates which have vague Laplace dis-

tributions, e.g., vx ∼ Laplace(0, σ̂xI ).
The full image likelihood p(I | z, ω, C) is

T−1∏
t=1

[ ∏
v∈I∗t

p(v |u(v), C, φI)
∏

v∈It\I∗t
p(v |φI)

]
, (4)

where I∗t is the set of foreground boxes at time t, u(v) is the

model direction corresponding to v, and φI are the Laplace

distribution parameters. We can simplify this by taking ad-

vantage of the sparsity of the trajectory boxes and dividing

by the constant
∏
v∈I p(v |φI) to get

p(I | z, ω, C) ∝
T−1∏
t=1

∏
v∈I∗t

p(v |u(v), C, φI)
p(v |φI) . (5)

Finally, since detection boxes and optical flow are con-

ditionally independent, we have that p(D | z, ω, C) =
p(B | z, ω, C)p(I | z, ω, C)

Occlusion. Having a 3D model provides valuable infor-

mation about occlusion, which we exploit in two ways. In

the box likelihood computation, we replace the first factor in

eq. 3 with the mixture |ĥ(b)|p(b |h(b), C)+(1−|ĥ(b)|)p(b)
where |ĥ(b)| is the area of ĥ(b), i.e., the fraction of h(b)
which is visible. In addition, we only average the flow vec-

tors which are contained in the visible cells of the model

box which corresponds to u(v) (see figure 3, bottom-right).

3. Inference
We wish to find the MAP estimate of ω as a good solu-

tion to the data association problem. In addition, we need

to infer the camera parameters C, and the association prior

parameters γ = (κ, θ, λN ), which we consider functions of

the video. Hence, we seek a value (ω,C, γ) that maximizes

the posterior distribution

p(ω,C, γ | D) ∝ p(ω | γ)p(γ)p(C)p(D |ω,C) (6)

= p(ω | γ)p(κ)p(θ)p(λN )p(C) (7)

×
∫
p(D | z, ω, C)p(z |ω) dz,

where the factors in the expression are given by equa-

tions 1, 2, 3, and 5. To search the space of associations

and associated parameters we use Markov chain Monte

Carlo (MCMC) sampling techniques. At each iteration, we

use different moves to sample over each of three variable

blocks, stopping when the posterior stops changing.

birth

death

extension

reduction

merge

split

switch

Figure 4. Sampling moves. The blue and red boxes belong to

tracks τ1 and τ2, respectively, and the black boxes are part of the

false alarms τ0.

Sampling association parameters. Sampling γ is

straightforward. The full conditional distributions of its

components are easy to compute (and sample from), given

the conditional independence properties of our model, e.g.,

p(κ | θ, λN , ω, C,D) = p(κ | θ, ω), with analogous equali-

ties holding for the full conditionals of θ and λN . From this

and the conjugate hyper-priors (see Section 2.1), we have

that κ | θ, ω ∼ G(m + ακ, 1 + (T − 1)θ + βκ), θ |κ, ω ∼
G(e + d + αθ, l + (T − 1)κ + βθ), and λN |ω ∼ G(n +
αλ, T +βλ), where the Gamma distribution is parametrized

by shape and rate in all cases.

Sampling associations. We use the Metropolis-Hastings

(MH) algorithm to sample from p(ω | γ, C,D), using an ex-

tension of the MCMCDA proposal mechanism [31, 8]. Let

ω be the current sample. We draw an association ω′ from

the proposal distribution q(· |ω), which we accept or reject

based on the MH acceptance probability

min

(
1,
p(ω′ | γ, C,D)q(ω |ω′)
p(ω | γ, C,D)q(ω′ |ω)

)
. (8)

We use seven sampling moves to efficiently explore the

space of associations, which are loosely based on the stan-

dard MCMCDA moves. At each MH iteration, we perform

move j with probability qm(j), where j ∈ {1, . . . , 7}, (birth

is 1, death 2, etc.). In what follows, let ω = {τ0, . . . , τm}
be the current sample, and ω′ be the proposed association.

Birth/death moves. A frame, ti, is sampled uniformly,

and the first detection τm′ 1 in the new-born track τm′ is

sampled uniformly from the set of false alarms at time ti.
We then decide whether to grow forward or backward in

time with probability 1
2 . Assuming forward growth: to grow

to time t = ti + 1, we fit a line through the bottom of the

previous s boxes, extrapolate the position of the next box,

and independently choose to append candidates at time t
based on their squared distance from the predicted point

(see Figure 5). If none of the detections from time t is as-

signed, we stop growing τm′ with probability c; otherwise,

we continue with t + 1. The new association is then set to
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bt 1
bt 2

bt 3

Figure 5. The growing procedure and the disconnect move. The

blue boxes represent the last detections of the track, the red line is

fit to their bottoms and extrapolates the ideal position of the new

boxes, represented by the center of the concentric circles. The

black boxes are then appended to the track based on their distance

from the ideal point (e.g., in this case, bt2 has the best chance of

being added).

be ω′ = ω ∪ {τm′}. To kill a track, we choose r uniformly

from {1 . . . ,m}, and let ω′ = ω\{τr}.
Extension/reduction moves. For extension, we choose a

track τr uniformly. We then grow it forward or backward

to produce τr′ using the procedure described for the birth

move. For reduction, we pick a detection τr j uniformly

from {τr 2, . . . , τr lr−1}, choose a direction, and remove all

detections from the track after (or before) τr j . In both, the

resulting association is ω′ = (ω\{τr}) ∪ {τr′}.
Merge/split moves. We replace the standard MCMCDA

merge and split moves with alternatives that exploit the fact

that we allow tracks to contain multiple detections from a

single frame. In the merge move, we assign a weight to

each pair of tracks (τr′ , τr′′) proportional to the probability

of birthing track τr′ ∪ τr′′ , as described in the birth move

above. We then choose a pair based on those probabilities,

and the resulting track becomes τr = τr′ ∪ τr′′ . The pro-

posed association then becomes ω′ = (ω\{τr′ , τr′′}) ∪ τr.
To split track τr, we first choose two frames t and t′ uni-

formly, t < t′. All detections before t go to τr′ , and all

detections after t′ go to τr′′ . Each detection between t and

t′ go to either track with probability 1
2 . The resulting asso-

ciation is ω′ = (ω\{τr}) ∪ {τr′ , τr′′}.
Switch move. First select tracks r1 and r2 uniformly, and

choose one detection from each track (with indices j and

k) such that their locations are within a distance v times

their temporal offset. Then, the detections after j in track r1
and those before k in track r2 are swapped. The proposed

association is ω′ = (ω\{τr1 , τr2}) ∪ {τ ′r1 , τ ′r2}}.
Once we sample ω′, we must evaluate its posterior

(eq. 7), which contains an integral over z that cor-

responds to the marginal likelihood of ω′. Due to

the camera projection, this likelihood cannot be per-

formed analytically, nor can it be computed numeri-

cally, due to the high dimensionality of z. Instead,

we estimate the value of the integral using the Laplace-

Metropolis approximation [17], which uses the fact that

p(D |ω,C) = p(D | z∗, ω, C)p(z∗ |ω)/p(z∗ | D, ω, C),
where z∗ = argmax p(D | z, ω, C)p(z |ω). If we approxi-

mate the denominator with the Gaussian pdf, we get

p(D |ω,C) ≈ (2π)
D
2 |H|− 1

2 p(D | z∗, ω, C)p(z∗ |ω), (9)

where H is the Hessian of − log(p(D | z, ω, C)p(z |ω))
evaluated at z∗, and D is the dimension of z.

We estimate z∗ using the Hybrid Monte Carlo (HMC) al-

gorithm [29], using central finite differences to approximate

the gradient of the posterior p(z | D, ω, C). We also use fi-

nite differences to approximate H at z∗. Unfortunately, the

finite differences approximation requires too many evalua-

tions of the posterior, an expensive calculation. To address

this, we exploit the conditional independence that exists

between frames in the likelihood, e.g., p(b, b′ | z, ω, C) =
p(b | z, ω, C)p(b′ | z, ω, C), in two ways. In the gradient

computation, for example, updating a single dimension of

z only affects a small number of boxes, whose likelihoods

we can update independently of the rest. Conditional inde-

pendence also means that most off-diagonal elements of H
are very close to 0, a fact which we exploit by only comput-

ing the finite differences on the diagonal.

Sampling cameras. We use HMC to sample from the

camera posterior p(C | γ, ω,B, I) ∝ p(B, I |C, ω)p(C), as

this has proved effective in the task of camera estimation

under a similar parametrization [12]. We use the same HMC

implementation as that used to approximate z∗ for eq. 9.

4. Data preparation and calibration

Data. For person detections, we used the readily avail-

able MATLAB implementation of the object detector devel-

oped by Felzenszwalb et al. [14], pre-trained for humans.

We found that the detector missed well-defined smaller fig-

ures, mitigated by using double-sized images. For image

data, we precomputed the dense optical flow of each frame

using an existing software [26]. To speed up the computa-

tion of the average flow (§2.3), we precompute the integral

flow of each frame using integral images.

Parameter calibration. We manually annotated boxes

for 47 videos from the DARPA Mind’s Eye Year One (ME-
Y1) data set.1, by drawing tight bounding boxes around each

target throughout the video. To calibrate relevant parame-

ters of the generative model, we match each detection box

to the ground truth box with which it has maximum over-

lapping area, provided it is greater than 50%, otherwise it

is counted as a false detection. Using this matching, we

find reasonable values for λA and for the parameters of the

likelihoods φB and φI . For the former, we simply average

number of detections associated to each ground truth box;

we estimate the latter using a maximum likelihood approach

1http://www.visint.org/datasets
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(using the ground truth boxes). The remaining parameters

are set manually.

Initialization. The sampler is initialized with an empty

association (ω = {}), and a cameraC which is fit to the data

B under the box likelihood (eq. 3) using RANSAC [15].

5. Experiments and results

We tested our tracker on two widely-used data sets: the

PETS 2009 data set2, and the TUD data set3. For PETS we

tested on the S2L1 video, which has over 795 frames, and

contains 19 pedestrians walking freely about a very large

area. The TUD data set contains three videos, called cam-
pus, crossing, and Stadtmitte, with 71, 201, and 179 frames,

respectively, featuring between 8 and 13 people walking

across the screen, and which were taken with a very low

camera angle, causing targets to be frequently occluded for

long periods of time.

Performance measures. We use the CLEAR metrics

[38] which consists of two measurements, multiple object

tracking accuracy (MOTA) and multiple object tracking

precision (MOTP). MOTA is a measure of false positives,

missed targets and track switches, and ranges from −∞ to

1, with 1 being a perfect score. MOTP measures the av-

erage distance between true and inferred trajectories, and

ranges from 0 to the threshold at which tracks are said to

correspond which, as per convention, we set to 1 meter.

We also use the evaluation proposed by Li et al. [25], of

which we are using two metrics: mostly tracked (MT) and

mostly lost (ML), We use a threshold of 80% for declaring

a target mostly tracked.

Experiments. We report the results of running our

tracker on PETS and TUD, as well as published results for

other algorithms in Table 1. We also ran experiments de-

signed to test the impact of the different parts of our model,

in which we ran our tracker with certain aspects disabled.

Here we used the relatively easy TUD-Campus video. The

results for these experiments are in Table 2. Not surpris-

ingly, the performance took the greatest blow when the

tracker ignored optical flow features. These results also

suggest that our handling of occlusion is also quite helpful,

which supports our fully 3D approach.

Figure 6. Visualization of some of our results: three frames of the

PETS-S2L1 video with the 3D scene super-imposed.

2http://www.cvg.rdg.ac.uk/PETS2009/a.html
3https://www.d2.mpi-inf.mpg.de/node/382

Method MOTA MOTP MT ML

PETS

Our method 0.83 0.8 0.67 0
Zamir [34] 0.9 × × ×

Wu [41] 0.88 × 0.87 0.05
Andriyenko [5] 0.96 0.78 0.96 0
Andriyenko [2] 0.88 0.76 0.87 0.05

TUD-X Our method 0.80 0.78 0.69 0.08
Zamir [34] 0.91 × × ×

TUD-S

Our method 0.70 0.73 0.7 0
Zamir [34] 0.78 × × ×

Andriyenko [5] 0.62 0.63 0.67 0
Andriyenko [4] 0.60 0.66 0.67 0
Andriyenko [2] 0.68 0.65 0.55 0

TUD-C Our method 0.84 0.81 0.75 0.25
Yan [42] 0.85 × × ×

Table 1. Comparison of performance of our approach and several

state-of-the art algorithms on the PETS and TUD (campus, cross-
ing, and Stadtmitte, labeled TUD-C, TUD-X, TUD-S, resp.) data

sets using the CLEAR metrics, as well as those proposed in [25].

We report MOTP as normalized distance, and use × for values not

reported, or reported in 2D.

Method MOTA MOTP MT ML

Base 0.84 0.81 0.75 0.25

NO-OF 0.59 0.79 0.38 0.25

NO-OCC 0.73 0.81 0.62 0.25

Table 2. A summary of the effect of removing key features of our

tracker. “Base” is our full algorithm, “NO-OF” ignores optical

flow features, and NO-OCC does not reason about occlusion.

6. Discussion

We presented a tracker which incorporates representa-

tions for data association and 3D scene in a principled way.

Across all data sets and all measures our method is compa-

rable to the state-of-the-art. Since our approach is Bayesian

and expandable, we expect performance will improve as it

matures. In addition, our algorithm is easily parallelizable.

We emphasize that we are learning more about the scene

than other approaches typically do. In particular, we infer

the camera and sizes of the tracked persons. We expect that

further modeling improvements will similarly lead to better

tracking and inferring more about the scene.
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