
Volumetric Semantic Segmentation using Pyramid Context Features

Jonathan T. Barron1 Pablo Arbeláez1 Soile V. E. Keränen2
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Abstract

We present an algorithm for the per-voxel semantic seg-
mentation of a three-dimensional volume. At the core of
our algorithm is a novel “pyramid context” feature, a de-
scriptive representation designed such that exact per-voxel
linear classification can be made extremely efficient. This
feature not only allows for efficient semantic segmentation
but enables other aspects of our algorithm, such as novel
learned features and a stacked architecture that can reason
about self-consistency. We demonstrate our technique on
3D fluorescence microscopy data of Drosophila embryos for
which we are able to produce extremely accurate semantic
segmentations in a matter of minutes, and for which other
algorithms fail due to the size and high-dimensionality of
the data, or due to the difficulty of the task.

1. Introduction
Consider Figure 1(a), which shows slices from a volu-

metric image of a fruit fly embryo in its late stages of devel-

opment, acquired with 3D fluorescence microscopy. Such

data is a cornucopia of knowledge for biologists, as it pro-

vides direct access to the internal morphology of a widely

studied model organism at an unprecedented level of detail.

Traditionally, such information is encoded in a morpholog-

ical atlas (for Drosophila, see [7]), which is painfully con-

structed by physically slicing embryos and manually anno-

tating each tissue. However, the recent availability of high-

resolution volumetric images from multiple modalities has

spurred a great interest in the scientific community for the

creation of “virtual atlases” [15, 16, 20], typically relying on

the semantics provided by interactive segmentation or gene

expression patterns. From a computer vision perspective,

the problem at hand is that of volumetric semantic segmen-

tation, in which we must predict a tissue label for each voxel

in a volume. In this paper, we present an extremely accurate

and efficient algorithm for volumetric semantic segmenta-

tion, based on a novel feature type called the “pyramid con-

text”. Figure 1(b) presents ground-truth annotations manu-

ally collected by an expert for 8 key morphological struc-

tures, and Figure 1(c) shows the results of our approach on

this test-set volume.

The state-of-the-art in semantic segmentation on 2D

images is represented by the leading techniques on the

PASCAL VOC challenge [14]. The best performing meth-

ods, e.g. [2, 8, 9] operate by classifying object candidates

obtained by expensive bottom-up grouping. They use rep-

resentations tailored to capture the appearance of com-

mon objects (e.g. colorSIFT [24]), and the output of pre-

trained object detectors [2], combined with non-linear clas-

sifiers [2, 9] or, alternatively, high-dimensional second or-

der features [8]. A second family of approaches, based on

CRFs, e.g. [6], extends such pixel-wise classifiers by mod-

eling also pairwise dependencies, co-occurrence statistics,

or higher-order potentials. All such techniques, which build

(a) Input Signal (b) Ground Truth (c) Our Prediction

Figure 1. We will address the task of taking a volumetric scan of

an object (in our case, a late-stage Drosophila embryo, see 1(a) for

a visualization of some of the constituent “slices” of the volume,

where the upper left slice is the top of the embryo and the bottom

right slice is the bottom) and producing a per-voxel semantic seg-

mentation of that volume. Given training annotations of 8 tissues

or organs from a biologist, such as in 1(b), we can produce a per-

voxel prediction of each tissue from a new (test-set) volume in a

matter of minutes, as shown in 1(c). Many more such figures can

be found in the supplementary material.
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Figure 2. An overview of our pipeline. Our classification architec-

ture consists of two layers. Our first layer takes as input 4 feature

types computed from the input volume (top row, position features

are not shown) to produce a per-voxel prediction. This output is

fed to a second layer, which computes the same types of features

from that per-voxel prediction, and uses the first-layer features

with the new second-layer features (bottom row) to produce a new

prediction. The output of the two-layer model is then smoothed

using a joint-bilateral filter. See Section 3.1 for an explanation of

the different feature channels shown here.

upon decades of computer vision research on 2D natural

images, are simply intractable and inapplicable in the terra
incognita of volumetric semantic segmentation: sophisti-

cated 2D segmentation techniques break down when faced

with 15 million voxels, and simple approaches like water-

sheds produce segments which are too coarse for the ac-

curate per-voxel labeling of extremely fine-scale biological

structures. Traditional sliding-window detection techniques

[12] are intractably expensive to densely evaluate at every

window in a 15 megavoxel volume, and generally reason

only about local appearance, not large-scale context. The

handful of volumetric segmentation techniques which do

exist are restricted to the specific task of connectomics with

Electron Microscopy [1, 25, 26].

Because existing techniques are insufficient, we must

construct a novel semantic segmentation algorithm. We will

address the problem as one of evaluating a classifier at every

voxel in a volume. Our features must be descriptive enough

to differentiate between fine-scale structures while spatially

large enough to incorporate coarse-scale contextual infor-

mation, and per-voxel classification of our features must be

efficient. To address these issues we introduce the “pyramid

context” feature, which can be thought of as a variant of

retina-like log-polar features such as the shape context [3].

A key property of this feature is that by design, the dense

evaluation of a linear classifier on pyramid context features

is extremely efficient. To create a semantic-segmentation

algorithm, we will construct these pyramid context features

using oriented edge information (as in HOG [12] or SIFT

[21]) and also learned “codebook” like features (as in a bag-

of-words models [18]). We can then stack these pyramid

context layers into a multilayer architecture which allows

our model to reason about context and self-consistency. A

visualization of our semantic-segmentation pipeline can be

seen in Figure 2.

Our results are extremely accurate, with per-voxel APs

in the range of 0.86-0.98 — accurate enough that our test-

set predictions are often indistinguishable from our ground-

truth by trained biologists. Our model is fast — evaluation

of a volume takes a matter of minutes, while the time taken

by a biologist to fully annotate an embryo is often on the or-

der of hours, and the time taken by existing computer vision

techniques is on the order of days. And our model is exact

— we gain efficiency not through approximations or heuris-

tics, but by designing our features such that exact efficient

classification is possible.

2. The Pyramid Context Feature
At the core of our algorithm is our novel “pyramid con-

text” feature. The pyramid context is similar to the shape

context feature [3], geometric blur [4, 5], or DAISY features

[23] — all serve to pool information around a location in a

log-polar arrangement (Figure 3). The key insight behind

our pyramid context feature is that there exist two equiva-

lent “views” of the feature: it can be viewed as a Haar-like

(a) Input Signal (b) Shape Context [3] (c) Geometric Blur

[4, 5] / DAISY [23]

(d) Pyramid Context (e) Pyramid Context

Figure 3. Given an input signal and a location (3(a)) we can pool

local information in a retina-like fashion to construct a feature,

such as shape context (3(b)) or geometric blur / DAISY (3(c)). We

present a novel feature type, the “pyramid context” (3(d)) which

can be thought of as a pyramid/Haar-like generalization of past

pooling features. The key insight of this paper is that this fea-

ture can be re-expressed as efficient local operations on a Gaussian

pyramid of a signal (3(e)), which allows us to extremely efficiently
evaluate a linear classifier on pyramid context features at every
pixel in the image using simple pyramid operations and convolu-

tions with very small kernels.
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pooling of signals at different scales (Figure 3(d)) or as a

series of interpolations into a Gaussian pyramid of a sig-

nal (Figure 3(e)). Because of this, we can evaluate a linear

classifier on top of pyramid context features at every voxel

in a volume extremely efficiently, using simple pyramid op-

erations and convolutions with very small kernels. In this

section we will formalize our feature, and present an effi-

cient per-voxel classification algorithm which is orders of

magnitude faster than existing alternatives.

Let V be a volume, and let us define c(V, x, y, z), which

computes a feature vector from V at location (x, y, z):

c(V, x, y, z) = [ V (x+ 1, y + 1, z + 1);
V (x, y + 1, z + 1);
...
V (x, y − 1, z − 1);
V (x− 1, y − 1, z − 1)]

(1)

Where V (x, y, z) is the linearly-interpolated value of vol-

ume V at location (x, y, z). c(·) simply vectorizes a 3×3×3
region of a volume into a vector. Note that the offsets are

ordered such that 〈w, c(V, x, y, z)〉 = (V ∗w)x,y,z
1. This

means that a linear classifier on top of these features can be

reformulated as a convolution of the volume.

Now let P (V ) be a K-level Gaussian pyramid of V , such

that Pk(V ) is the k-th level of the pyramid (P1(V ) = V ). A

pyramid context feature is the concatenation of our simple

“context” features at every scale of the pyramid:

C(V, x, y, z) = [ c (V, x, y, z) ;
c
(
P2(V ), x

2 ,
y
2 ,

z
2

)
;

...
c
(
PK(V ), x

2K−1 ,
y

2K−1 ,
z

2K−1

)
]

(2)

Where K = 6 in our experiments.

Consider a linear classifier for pyramid context features.

To classify every voxel in a volume, we must compute

〈w, C(V, x, y, z)〉 for all (x, y, z). Doing this naively is ex-

tremely inefficient: the volume is extremely large (15 mil-

lion voxels), and the corresponding features for each voxel

are hard to compute: each requires hundreds of trilinear in-

terpolation operations into a pyramid.

To make this problem tractable, we leverage the fact that

every operation in this architecture is linear, and therefore

associative. Instead of calculating 〈w, C(V, x, y, z)〉 for all

(x, y, z), we convolve each level of P (V ) with wk, the sub-

set of w that corresponds to level k, reshaped into a 3×3×3
filter. Once we have a filtered Gaussian pyramid, we col-

lapse the pyramid by upsampling each scale to the size of

the volume, and summing the upsampled scales. We will re-

fer to this process (computing P (V ), filtering each Pk(V )
with wk, and collapsing the filtered P (V ) to a volume) as

V ⊗w, or as “pyramid filtering” V with w.

1In a slight abuse of notation, w will simultaneously be referred to as a

vector and as a 3× 3× 3 filter

Instead of learning classifiers directly on the input vol-

ume V we will produce a set of “feature channels” {F}
from V , pyramid filter each channel with its own set of

weights w(j), and sum those together to produce our per-

voxel prediction: G =
∑

j F
(j) ⊗w(j). This can be made

much faster by noticing that the pyramid collapse at the end

of each pyramid filtering is linear, and so we can sum up

the filtered pyramids and then collapse the summed pyramid

only once. Formally, pseudocode for our efficient per-voxel

classification is:

1: G← 0
2: for k = [1 : K] do
3: Gk ← 0
4: for j = [1 : |{F}|] do
5: Gk ← Gk + Pk(F

(j)) ∗w(j)
k

6: G← G+ upsample(Gk)

7: return G

See the supplementary material for a demonstration of the

improvement in efficiency yielded by using “pyramid fil-

tering” instead of pre-existing techniques, such as sliding-

window [12] or FFT-based filtering [13]. Empirically our

technique is 200× faster than sliding window while hav-

ing nearly as small a memory footprint, and is 5× to 20×
faster than FFT-based techniques while requiring 1/6th or

1/160th the memory. In short, only pyramid filtering can

run efficiently (or, at all) on the volumetric data we are in-

vestigating — naive alternatives either take over 1.5 hours

or require over a hundred gigs of memory, while our tech-

nique takes less than 30 seconds and requires less than 1
gigabyte of memory. Analytically, we show through com-

plexity analysis that pyramid filtering should be 42× as

fast as sliding-window, though we see a much greater im-

provement in practice because small convolutions are gen-

erally fast for non-algorithmic reasons (memory locality,

optimized code, etc).

3. Semantic Segmentation Algorithm

We will now build upon our novel feature descriptor

and its corresponding efficient classification technique to

construct a volumetric semantic-segmentation algorithm, as

shown in Figure 2. In Section 3.1 we will present three

kinds of feature channels for use as input to our model,

some of which are themselves built upon pyramid context

features. In Section 3.2 we present an additional feature

type based on the absolute position of each voxel. In Sec-

tion 3.3 we will show how to use the output of a single-layer

classification model built on the features in Sections 3.1 and

3.2 to build a two-layer model which uses contextual infor-

mation, again by exploiting our pyramid context features.

In Section 3.4 we present a post-processing step based on

joint-bilateral filtering.
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3.1. Feature Channels

The simplest feature-channel which we can use is the

raw input volume, which we will refer to our “raw” feature

channel. We augment this channel with two kinds of feature

channels computed from the raw input volume: a “fixed”

type based on simple first and second derivatives of the in-

put volume (similar to HOG [12] or SIFT [21]) and a novel

“adaptive” type learned from pyramid context features on

top of the raw volume.

To compute our “fixed” features we take our volume V ,

compute a Gaussian pyramid P (V ), convolve each level by

a set of filters, half-wave rectify the output [22], and con-

catenate the channels together2. The filters we use are just

3-tap oriented gradient filters in all directions (12 in all),

and the 3D discrete Laplace operator. For each filter f , we

convolve each pyramid level Pk(V ) with that filter, and pro-

duce the following two channels:

max(0, Pk(V ) ∗ f), max(0,−(Pk(V ) ∗ f)) (3)

giving us a total of 26 channels. Examples of our “fixed”

channels can be seen in Figure 2.

Though these simple filter responses are powerful, they

are limited. They describe coarse first or second order vari-

ation of the volume, but do not, for example, describe local

context, or the distribution of the signal at multiple scales

at the same location. It is difficult to use one’s intuition to

hand-design appropriate features, especially in unexplored

domains such as our volumetric fluorescence data, so we

will use semi-supervised feature learning to learn our sec-

ond set of “adaptive” feature channels.

Traditional feature-learning techniques usually involve

learning a set of filters from image patches [11, 19]. On our

data, these techniques fail for the same reasons that naive

classification fails: the sheer size and high-dimensionality

of our data makes basic techniques intractable. Filtering

volumes with the medium-sized filters commonly used in

feature learning experiments (9 × 9, 14 × 14, etc) is in-

tractable, and such filters have too small a spatial support to

provide useful information regarding context or morphol-

ogy. We will therefore use our pyramid context features as a

substrate for feature learning: we will extract pyramid con-

text features from the raw volume, learn a set of filters for

those features, and then pyramid filter the volume according

to those learned filters.

We use the feature-learning technique of [11] to learn

filters, which is effectively whitening and k-means (see the

supplementary material for a thorough explanation). This

procedure gives us a set of filters {f} and a set of biases

2in a slight abuse of our formalism in Section 2, instead of producing a

feature channel and constructing a pyramid from that channel, we instead

produce a pyramid from the volume, and then filter and rectify each scale

of that pyramid independently. This works significantly better due to half-

wave rectification being applied to the pyramid rather than the volume.

{b}, with which we can compute our feature channels {F}
as follows:

F (j) = max(0, (V ⊗ fj) + bj) (4)

Where⊗ is pyramid filtering, as described earlier. We learn

26 channels, the same number as our “fixed” feature set,

so that we can compare the effectiveness of both feature

sets. We take a semi-supervised approach when learning

features: for each tissue, we learn a different set of filters

using only locations within 10 voxels of the tissue of in-

terest. Examples of the channels we learn can be seen in

Figure 2.

Note that our “adaptive” channels describe fundamen-

tally different properties than our “fixed” channels. Our

fixed channels describe the local distribution of a volume at

a given location, orientation, and scale, while our adaptive

channels describe the local distribution of pyramid context
features at a given position, and as such they can describe

non-local phenomena. An adaptive channel may learn to ac-

tivate at voxels which are slightly to the left of some mass at

a fine scale and distantly to the right of a much larger mass

at a coarse scale, for example.

With our one “raw” channel, our 26 “fixed” channels,

and our 26 “adaptive” channels, we can construct a feature

vector for a voxel by computing pyramid context features

for each channel at that voxel’s location and concatenating

those pyramid context vectors together (See Figure 2). This

feature can be augmented by incorporating position infor-

mation, as we will now demonstrate.

3.2. Position Features

Our imagery has been rotated to the “canonical” orienta-

tion used by the Drosophila community (see Figure 1(b)),

and all volumes have been roughly registered to each other,

which means that the absolute position of a voxel is infor-

mative. Our feature vector for a voxel’s position is an em-

bedding of the voxel’s (x, y, z) position into a multiscale

trilinear spline basis. That is, we use trilinear interpolation

to embed each voxel’s position into a 3D lattice of control

points, and we do this at multiple scales. Our resulting fea-

ture vector is mostly sparse, with values from 0 to 1, where

the closer a position is to a control point determines how

close that control point’s bin is to 1 in the vector. We use a

multiscale basis (different grids at different resolutions) to

improve generalization: 4 lattices at different scales, with

the coarsest having (5 × 2 × 2) bins, and the finest having

(40× 16× 16) bins.

When extracting features for training, we construct these

sparse position feature vectors using trilinear interpolation.

Once we have trained a linear classifier (on a concatena-

tion of our feature vector from Section 3.1 with these posi-

tion features) we can evaluate the position part of the clas-

sifier by reshaping the weights into our multiscale lattice,
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(a) A segmentation (b) Weights (pyr) (c) Weights (flat)

Figure 4. Because our volumes are in a canonical frame of ref-

erence, the absolute position of a voxel is informative. In 4(a) we

have an embryo and a ground-truth annotation of a tissue, shown

for reference. We then have the weights that our model learns

for position for that tissue shown as a multiscale lattice (4(b)) and

flattened to a single-scale volume (4(c)). Our multiscale repre-

sentation allows our model to learn broad trends about position in

coarse scales (such that the tissue is unlikely to occur at the top

of the volume) while still learning fine-scale trends (like the shape

of the tissue at the bottom of the volume). Weights are shown as

max-projections, where red is positive, white is neutral, and blue

is negative.

and collapsing that pyramid to be the same size as the in-

put volume. This can be pre-computed, making evaluating

this part of classification extremely fast: the collapsed pyra-

mid of weights is just a per-voxel “bias”. See Figure 4 for a

visualization of a pyramid of learned weights for position,

and of that pyramid collapsed to a volume.

3.3. Context

Given the features in Sections 3.1 and 3.2 we train a

linear classifier (we use logistic regression) to produce a

per-voxel prediction. This prediction is noisy, as we clas-

sify each voxel in isolation. We therefore construct a “two-

layer” model which uses the prediction of the “single-layer”

model to reason about the relative arrangement of the tis-

sue, thereby adding information about context and self-

consistency. We do this by making new “raw”, “fixed”

and “adaptive” features (Section 3.1) from the output of the

single-layer model. We then learn a two-layer model which

uses as its feature channels both the channels used in the

first layer, and these new features built on the output of the

first layer. See Figure 2 for examples of second-layer fea-

tures and for a visualization of this two-layer architecture.

Of course, the output of our single-layer model is signif-

icantly more accurate on training-set volumes than on test-

sets. This means that naively training a two-layer model on

the output of the single-layer model can overfit drastically.

To prevent this, when training single-layer models, we use

leave-one-out cross validation on the training set to pro-

duce predictions for each training-set volume. This cross-

validated output looks similar to the output of the model

on the test-set. We train our two-layer model using these

cross-validated predictions as input, which improves gener-

alization on the test-set.

3.4. Post-Processing

Though our classification model can reason about con-

text and self-consistency, its per-voxel predictions are still

often noisy and incomplete at a fine scale. We therefore use

a CRF-like technique to smooth and “inpaint” our predic-

tions. We would like to smooth our predictions while still

respecting intensity discontinuities in the raw input volume

— that is, we want to smooth within tissue boundaries, but

not across tissue boundaries. For this, we will use a joint-

bilateral filter, where the predictions are smoothed in accor-

dance with the intensity of the input volume.

We can efficiently apply a joint-bilateral filter using the

bilateral grid [10]. We expand the output probabilities from

our two-layer model to a 4-dimensional “grid”, where each

probability is embedded (or “splatted”) with linear inter-

polation into one of three bins: low-intensity, medium-

intensity, and high-intensity (bin centers are [8, 24, 48] ).

The intensity bins are determined by the intensity of the

raw volume while the quantity being filtered is the proba-

bility — hence the “joint” aspect of the bilateral filter. We

then blur the 4D grid by convolving it with a 5-tap binomial

filter in the three “position” dimensions and a 3-tap bino-

mial filter in the “intensity” dimension. We then resample

(or “slice”) the smoothed 4D grid according to the linearly-

interpolated volume intensity to produce a smoothed 3D

volume. This procedure takes only a few seconds per vol-

ume. See Figure 5 for a visualization.

This joint-bilateral smoothing can be viewed as a sin-

gle step of mean-field belief-propagation in a CRF, as in

[17]. We experimented with complete belief-propagation,

but found that only the first iteration contributed signifi-

cantly to the output. This is probably because most tissues

are usually so distant from the other tissues that the pairwise

potentials have little effect.

(a) Input (b) Ground-truth (c) Raw

Prediction

(d) Smoothed

Prediction

Figure 5. In 5(a) we have a cropped slice of an input volume, for

which we have a ground-truth annotation of a tissue in 5(b). Our

model produces the prediction in 5(c), which is often noisy and

incomplete, so we use joint-bilateral smoothing to produce the

smoothed prediction in 5(d), which propagates label information

across the volume while respecting cell-boundaries.
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3.5. Training

For each tissue we train a binary classifier using logis-

tic regression, which we found to work as well as a lin-

ear SVM while having the benefits of being interpretable

as probabilities and of introducing a non-linearity, which

is important for our “two-layer” models. To train, we fea-

turize each volume into a set of channels, and from those

channels we extract many pyramid context features and cor-

responding position features, train a classifier, evaluate the

classifier densely on each volume, and then mine for neg-

atives (where a “negative” is a voxel labeled true with a

probability less than 0.9, or a voxel labeled false with a

probability greater than 0.1). We do 8 such bootstrapping

iterations, after which most tissues converge. For our two-

layer architecture, we do cross-validation on the training

set, produce cross-validated predictions, produce features

from those, concatenate those second-layer channels with

our first-layer channels (and position), and then train on

both with bootstrapping. We then apply our post-processing

to the predicted output. We evaluate our results using per-

voxel precision and recall, and report the average precision

for each tissue. For our visualizations which require binary

output such as Figure 1(c), we use the threshold which max-

imizes the F-measure of precision and recall on the training

set.

4. Experiments

We demonstrate our semantic segmentation algorithm on

fluorescence volumes of late-state Drosophila embryogen-

esis. We have a dataset of 28 volumes, each with a size of

454×177×185, or nearly 15 million voxels. A Drosophila
biologist annotated 8 biologically meaningful tissues, such

as “left salivary gland” or “hindgut wall”, and we split our

annotated data into 14 training and 14 test volumes. The

staining, imaging, and preprocessing of this imagery will

be described in a later paper.

As mentioned previously, the large size and dimensional-

ity of our data makes most pre-existing techniques difficult

to use. Therefore, constructing good baseline techniques for

comparison is very challenging. As one baseline we present

an “oracle” segmentation technique: we use standard water-

shed segmentation techniques (threshold the volume, com-

pute the distance transform, then compute the watershed

transform) on the input volume to produce an oversegmen-

tation of 10-25 thousand “supervoxels”. At test-time we

assign each supervoxel a prediction proportional to the frac-

tion of the supervoxel that has been labeled in the ground-

truth. This oracle technique gives us an upper-bound on

the performance we should expect from super-voxel based

semantic-segmentation techniques. This oracle performs

poorly because so much detail is lost during the segmen-

tation, demonstrating the value of our per-voxel classifica-

tion technique. We attempted more sophisticated segmenta-

tion techniques such as those based on normalized-cuts, but

these are intractable in our domain.

As a second baseline we present an “oracle” exemplar

registration technique: for each test-set annotation we use

iterative closest point to find an affine transformation from

each training-set annotation to that test-set annotation, and

then use the best-fitting training-set annotation as a per-

voxel prediction by linearly interpolating the annotation

into the test volume and blurring it by a (1, 2, 1) bino-

mial kernel. Because this prediction is produced by regis-

tering tissue annotations instead of actual tissues, this or-

acle technique serves as an upper bound on the perfor-

mance we should expect from (affine) registration-based or

correspondence-based techniques such as [15]. This oracle

performs poorly, due to the heavy variation in each tissue

and the fine-grained detail of cellular boundaries.

As a third baseline comparison, we use the well-known

Histogram of Gradients [12] feature, generalized to volu-

metric data (gradients in 3D instead of 2D, 3D bins of size

4× 4× 4, block-normalization, and 2× 2× 2 cell arrange-

ments), which we optionally augment with our position fea-

tures from Section 3.2. Standard sliding-window detection

with this 3D HOG feature is only tractable because of the

severe pooling used in constructing the features — instead

of 15 million voxels, we need only classify a quarter-million

HOG features. But this comes with a cost, as these coarse

features prevent us from producing per-voxel predictions.

HOG is also limited in that it cannot incorporate contex-

tual information without the feature vectors becoming in-

tractably large. Of course, these limitations are exactly the

motivation for our work.

Our other baselines are ablations of our technique, many

of which are actually extremely similar to preexisting tech-

niques. Pyramid context features on top of the raw input

volume resemble the original use of Shape Context features

[3], except that we use a soft rectangular Haar-like pooling

instead of an expensive log-polar binning, and we use pyra-

mid filtering to densely evaluate our classifier at every voxel

instead of using correspondence for a sparse set of points.

Our pyramid context features on top of our “fixed” feature

channels also resemble Geometric Blur features [4, 5], ex-

cept that instead of sampling a blurred signal is a log-polar

arrangement, we sample a blurred signal is a rectangular

Haar-like arrangement, and again use pyramid filtering in-

stead of correspondence. That same model is also similar

to Daisy features [23], but again made tractable using pyra-

mid filtering. See Figure 3 for a comparison of these feature

types. This comparison of our ablations to past techniques

is generous, as pyramid context features and pyramid filter-

ing are required to make all of these models tractable in our

domain. Actually using standard sliding-window classifica-

tion would take many hours per volume, making bootstrap-
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Input (Cropped) Ground-Truth HOGP [12] RP [3] RFP [4, 5] RFAP (RFAP)2 (RFAP)2 + post

Figure 6. Some visualizations of the output of our model, and other models, on a test-set volume. In the first column we have the portion

of the input volume containing the tissue, and in the second we have the ground-truth annotation of that tissue. The other columns are

the output of various models, the first being an improved HOG baseline, the last being our complete model, and the others being notable

ablations of our model (some of which resemble optimized and improved versions of other techniques). Note that we process the entire

volume, though we show a cropped view here. Many more similar figures and animations can be found in the supplementary material.

ping, evaluation, and experimentation nearly impossible.

In Table 1 we present the test set average precision for

each model and each tissue. Model names are as follows:

(1) is our “oracle” segmentation technique, (2) is our “or-

acle” exemplar warping technique, (3) is our HOG base-

line, and (4) is (3) where features have been augmented with

our position features. (20) is our complete model, and (5)-

(19) are ablations of (20). (5)-(11) are single-layer mod-

els, where the model name indicates what features have

been included: ‘R’ is the “raw” feature channel, ‘F’ is

our “fixed” feature channels, ‘A’ is our “adaptive” feature

channels, and ‘P’ is our position features. In models (12)-

(14) we set K (the number of levels in our Gaussian pyra-

mids) to small values, to show the value of the coarse scales

of our pyramid context features (in all other experiments,

K = 6). (15)-(19) are our two-layer models, where we

use the previously-described naming convention to indicate

which features have been used for the second layer — so

(RFAP)2 uses all four feature types at both layers of the

architecture. (20) is (19) with the post-processing filtering

of Section 3.4 applied after classification. We also present

Figure 1, which shows ground-truth and predicted labels for

an entire test-set volume, Figure 6, which shows visualiza-

tions of the output of several models for a tissue, along with

the ground-truth annotation and the (cropped) input volume,

and Figure 7, which shows precision/recall curves for a sub-

set of the models on two tissues. See the supplementary

material for many more such visualizations.

Analyzing our results, several trends become clear. The

oracle techniques, despite “cheating” by using the test-set

labels, performs poorly. The HOG baseline does a very poor

job because it cannot produce per-voxel predictions, and be-

cause it cannot reason well about context. Our position-

only baseline shows that, even though our volumes are

registered to each other, position information is not suffi-

cient to solve this problem. Our ablations which resem-

ble shape context and geometric blur features underperform

our complete model, presumably because their input feature

channels are impoverished. Both our “fixed” and “adap-

tive” feature channels improve performance, and so seem

to contribute useful and complementary information. Our

Model Tissue 1 Tissue 2 Tissue 3 Tissue 4 Tissue 5 Tissue 6 Tissue 7 Tissue 8 Avg.

(1) Oracle Seg. 0.745 0.791 0.781 0.677 0.762 0.818 0.783 0.787 0.768

(2) Oracle Warp 0.485 0.597 0.592 0.468 0.464 0.746 0.443 0.476 0.534

(3) HOG [12] 0.249 0.252 0.256 0.101 0.173 0.470 0.157 0.250 0.239

(4) HOGP [12] 0.417 0.339 0.345 0.204 0.431 0.545 0.337 0.371 0.374

(5) P 0.227 0.200 0.247 0.127 0.237 0.261 0.212 0.249 0.220

(6) R [3] 0.427 0.361 0.371 0.280 0.349 0.717 0.709 0.759 0.496

(7) RP [3] 0.705 0.688 0.691 0.425 0.679 0.848 0.818 0.846 0.712

(8) RFP [5] 0.843 0.878 0.867 0.720 0.851 0.939 0.918 0.925 0.868

(9) RAP 0.857 0.863 0.859 0.736 0.887 0.943 0.927 0.933 0.876

(10) RFA 0.860 0.890 0.894 0.783 0.889 0.953 0.935 0.939 0.893

(11) RFAP 0.869 0.893 0.890 0.775 0.898 0.952 0.937 0.941 0.894

(12) RFAP, K=1 0.781 0.768 0.769 0.590 0.814 0.904 0.895 0.901 0.803

(13) RFAP, K=2 0.828 0.848 0.845 0.694 0.864 0.930 0.919 0.918 0.856

(14) RFAP, K=3 0.848 0.890 0.887 0.778 0.885 0.948 0.928 0.933 0.887

(15) RFAP × RP 0.880 0.903 0.897 0.793 0.913 0.958 0.938 0.946 0.904

(16) RFAP × RFP 0.887 0.909 0.905 0.810 0.925 0.965 0.939 0.948 0.911

(17) RFAP × RAP 0.894 0.917 0.912 0.818 0.932 0.964 0.941 0.950 0.916

(18) RFAP × RFA 0.891 0.916 0.910 0.837 0.925 0.967 0.947 0.952 0.918

(19) (RFAP)2 0.894 0.914 0.912 0.825 0.934 0.967 0.942 0.953 0.918

(20) (RFAP)2 + post 0.914 0.934 0.933 0.865 0.945 0.975 0.947 0.958 0.934

Table 1. Test-set average precisions for our model (20), several

ablations of our model (5-19, some of which resemble past tech-

niques), a baseline technique adapted to volumetric data (3-4), one

“oracle” technique based on oversegmentation (1), and another

“oracle” based on exemplar-based registration. We report APs for

the 8 different tissues in our dataset, and the mean AP across all

tissues. See the text for a description of each technique.

Figure 7. Precision/recall curves for different models on our entire

test set, for one specific tissue. On the left we have the hardest

tissue in our dataset (the one for which our model and the base-

lines performs worst) and on the right we have the easiest. See the

supplementary material for the AP curves for all tissues.

ablations in which our pyramid depths are limited perform

poorly, as they are deprived of contextual information. Our

two-layer model improves markedly over our single-layer

model, and our post-processing helps greatly.
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5. Conclusion
We have presented an algorithm for per-voxel seman-

tic segmentation, demonstrated on 3D fluorescence mi-

croscopy data of Drosophila embryos. The size and high-

dimensionality of our data renders most existing techniques

intractable or inaccurate, while our technique produces very

accurate per-voxel segmentations extremely efficiently —

hundreds of times faster than existing techniques. At the

core of our algorithm is our novel pyramid context fea-

ture, which is not only a powerful descriptive representa-

tion, but is designed such that exact per-voxel linear classi-

fication can be made extremely efficient. We have demon-

strated our model’s efficiency both empirically, through ex-

perimentation, and analytically, through complexity anal-

ysis. For our semantic segmentation algorithm, we have

introduced three feature types — a standard feature set that

uses oriented edge information, a novel feature set produced

by applying feature-learning to pyramid context features,

and a feature which encodes absolute position information.

By learning classifiers on top of pyramid context features

based on these channels we can produce per-voxel segmen-

tations, which can be improved with contextual information

by “stacking” our models and using the output of one layer

as input into the next. We have also presented a CRF-like

post-processing technique for improving our output using

joint-bilateral filtering.

Besides advancing computer vision research, our work

has the added benefit of tackling a crucial and unsolved

problem in Drosophila research — that of automatically

constructing an atlas of embryo morphology. By efficiently

and accurately producing semantic segmentations of tissues

from volumetric data, we enable real, breakthrough biolog-

ical research at a large scale.
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