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Abstract

In recent years, how to learn a dictionary from input im-
ages for sparse modelling has been one very active topic
in image processing and recognition. Most existing dic-
tionary learning methods consider an over-complete dic-
tionary, e.g. the K-SVD method. Often they require solv-
ing some minimization problem that is very challenging
in terms of computational feasibility and efficiency. How-
ever, if the correlations among dictionary atoms are not
well constrained, the redundancy of the dictionary does
not necessarily improve the performance of sparse coding.
This paper proposed a fast orthogonal dictionary learning
method for sparse image representation. With comparable
performance on several image restoration tasks, the pro-
posed method is much more computationally efficient than
the over-complete dictionary based learning methods.

1. Introduction
In recent years, sparse models for representing natural

images have been an active research topic in computer vi-

sion and image processing community. It is now well estab-

lished that the sparse image models are very powerful tools

for many image restoration and recognition tasks. Sparse

image model assumes that most local image patches can be

well approximated by a sparse linear combination of basis

elements, the so-called atoms. The collection of these el-

ements is called a dictionary. A fundamental question is

then how to find a dictionary under which an input image

can be sparsely modelled. Earlier work on designing dic-

tionary for sparse image modelling focuses on the design

of fixed orthogonal dictionaries, e.g. local discrete cosine
transform (DCT) [25], wavelets [7, 21]. These orthogonal

dictionaries and their over-complete extensions (e.g. tight
frames [8]) remain important tools in many image restora-

tion tasks (e.g. [3, 5]) for their simplicity and efficiency.

Recently, there have been great progresses on constructing

dictionaries adaptive to the input image via some learning

process (e.g. [12, 15, 19, 17]). The basic idea is to learn

the dictionary adaptive to the target image so as to achieve

better sparsity than the fixed ones. Most existing dictionary

learning methods consider an over-complete dictionary and

formulate the learning process as a minimization problem.

Taking the popular K-SVD method [12] for example, the

K-SVD method learns an over-complete dictionary from an

input image via solving the following minimization model:

min
D,{αi}

∑

i

‖gi −Dαi‖22 + λi‖αi‖0, (1)

where ‖ · ‖0 is the sparsity measure defined as the number

of non-zero entries in the input, {gi} ⊂ R
n is the collection

of image patches after vecterization. D = [d1, . . . ,dk] ⊂
R

n×k with k > n is the unknown over-complete dictionary.

The problem (1) is indeed a very challenging non-convex

minimization problem. The iteration scheme for solving (1)

is proposed in [12] which alternatively iterates between two

modules: sparse coding for {αi} and dictionary updating

for D. Both modules use some greedy approach which

lacks rigorious theoretical treatment on its optimality and

convergence. Moreover, they are very computational de-

manding. Since then, many methods have been proposed to

either speed up the computation (e.g. [26]) or to modify the

model (1) for better stability including replacing the non-

convex �0 norm ‖ ·‖0 by its convex relaxation �1 norm ‖ ·‖1
(e.g. [1, 16]) or by the MC penalty [27]. However, the is-

sues on computational efficiency and convergence are still

not completely overcomed.

In this paper, we proposed a new variational model to

learn an adaptive dictionary for sparse image modelling.

Different from the K-SVD method, the dictionary learned

in our approach is an orthogonal dictionary. The seem-

ingly performance loss on sparse coding when adopting an

orthogonal dictionary over an over-complete dictionary in-

deed has little negative impact on the performance of im-

age restoration. The performance of the proposed orthogo-

nal dictionary learning method is at least comparable to the

K-SVD method in several image restoration applications.

The gain by using an orthogonal dictionary is very notice-

able. There exists a fast alternating iteration scheme for
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solving the resulting variational model with rigorous justifi-

cation on its optimality and convergence. In short, the pro-

posed sparsity-based orthogonal dictionary learning method

is much faster than the K-SVD method but with comparable

performance in image restoration,

1.1. Motivation and our contributions

The main computational issue of the K-SVD method

comes from the fact that the dictionary D ∈ R
n×k is a

highly redundant dictionary (k = 4n in [12]) which lacks

additional constraints on the correlations among atoms. The

purpose using such a high redundant dictionary is for maxi-

mizing the sparsity of the code {αj} by having more atoms

in the dictionary. However, although a highly redundant

dictionary allows the existence of more sparse codes, accu-

rately estimating these code becomes less computationally

feasible with the increased redundancy. One well-known

measure on the quality of dictionary for sparse coding is the

so-called mutual incoherence μ(D) ([11]) defined as

μ(D) = max
i �=j

|d�i dj |
‖di‖2‖dj‖2

which measures the correlations among the atoms. It is

known in compressed sensing literatures that the mutual in-

coherence constant μ(D) need to be small enough to guar-

antee the performance of sparse coding when using match-

ing pursuit methods (see e.g. [28]). However, the constant μ
of the redundant dictionary obtained via the K-SVD method

and its variations usually is not small, as no constraints on

its mutual incoherence are imposed during dictionary up-

dating. In other words, the sparse coding using a redundant

dictionary with large μ(D) becomes not only computation-

ally demanding, but also may not be optimal. The nega-

tive impact of the dictionary with large μ(D) has been no-

ticed in various sparse coding based recognition systems;

see e.g. [30, 14]. One solution is to simultaneously mini-

mize the term μ(D) when update the dictionary which leads

to a complex non-convex minimization problem.

Moreover, the ideal atoms of the learned dictionary

should be those represents repetitive local image patterns.

For natural images, the number of such repetitive local im-

age patterns is not necessarily very large. If we use a very

redundant dictionary, some atoms might be either highly

similar to others, or play very little role in the presenta-

tion. For example, it is shown in [22] that the dimension

of the dictionary learned by the K-SVD method for face

images can be reduced by half without causing much per-

formance loss. In summary, we argue that when learning a

dictionary for sparsity-based image restoration, a highly re-

dundant dictionary often is not necessary for having a good

sparse approximation. Instead, a dictionary with little re-

dundancy and with very small μ(D) could perform as effi-

cient as the redundant ones. For example, when using patch

size of 8× 8, the dictionary size of K-SVD is four times of

that of the proposed orthogonal dictionary. However, both

the K-SVDs and ours use about 4.3K coefficients to achieve

an approximation with PSNR=25dB to the image ”Lena”.

Based on the above discussions, we propose to use an or-

thogonal dictionary for sparsity-based dictionary learning in

image restoration, which leads to the following minimiza-

tion model:

min
D∈Rn×r,αi∈Rn

∑
i ‖gi − [A;D]αi‖22 + λi‖αi‖0,

s.t. D�D = Ir;A
�D = 0,

(2)

where {gi} ⊂ R
n denotes the set of image patches col-

lected from the input image, αi denotes the code of the

patch gi. D = {Di}rj=1 denotes the set of r atoms of

the dictionary for learning, A ∈ R
n×n−r denotes the set of

n − r atoms either from experiences or from other sources

(A is allowed to be empty). The adoption of an orthogonal

dictionary will greatly simplify the computation of both dic-

tionary updating and sparse coding. Indeed, we will show

in the main body that both sparse coding and dictionary up-

dating in our model have explicit solutions.

1.2. Related Work

This section roughly categorizes the sparsity-based dic-

tionary design.

Analytic transform (e.g. [25, 7, 21, 8]). The image restora-

tions under some transform with explicit analytic definition

typically works on small image patches. The small image

patches are projected onto the space spanned by the atoms

of the given transform to yield a set of sparse coefficients.

The widely used transforms include both the orthogonal

ones (e.g. DCT [25], wavelet bases [7]) and the redundant

ones such as tight frame [8] and its data-driven extension

[4]). When using these transforms, the small coefficients

are erased as they are dominated by noise. In practice, the

patches are chosen with overlaps such as the image is pro-

cessed in a sliding windows fashion, which can attenuate

the possible beam artifacts along patch boundaries.

Learned dictionary (e.g. [12, 15, 20, 26, 24, 27]). In re-

cent years, the concept of the adaptivity has been exploited

to design the dictionary specifically optimized for the tar-

get image, the so-called dictionary learning. The earlier

works [23, 15] learn the dictionary from the statistics of

image features or patches to obtain a sparser representa-

tion of natural images. The pioneering K-SVD method [12]

learns an over-complete dictionary as well as the sparse rep-

resentations of the patches under that dictionary in an alter-

nating minimization framework. Starting from the set of

overlapping image patches collected from the input image,

the K-SVD method alternatively iterates between two sub-

problems: sparse coding and dictionary updating. Both sub-

problems in [12] are based on heuristic greedy methods: the
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sparse coding under the overcomplete dictionary is solved

via orthogonal matching pursuit (OMP) and the dictionary

is estimated via column-wise sequentially SVD updates.

Since the appearance of the K-SVD method, many ap-

proaches have been proposed to further improve it on com-

putational efficiency and effectiveness in image restoration.

An efficient implementation of the K-SVD method is de-

veloped in [26] which uses the Batch-OMP to accelerate

the sparse coding and use two simple matrix-vector product

to replace the SVD operation. The multi-scale generations

of the K-SVD method are proposed in [20, 24] to further

improve the performance by learning multiple dictionaries

from different sets of image patches corresponding to differ-

ent scales. In [27], the MC penalty is proposed to replace �0
norm for better performance and better numerical stability.

The K-SVD method and its variations are not only used

for image restoration, they are also used in various recog-

nition tasks. For example, a discriminative approach is

proposed in [18] for image classification. Zhang and Li

[30] generalized the K-SVD algorithm for face recognition.

Jiang et al. [14] proposed a label consistent K-SVD for

both face recognition and object recognition. Fore recog-

nition, the term μ(D) is usually included in the minimiza-

tion model when updating a dictionary to lower its mutual

incoherence. Such an approach leads to a non-convex min-

imization problem.

Combination of dictionary learning and non-local ap-
proach (e.g. [10, 17]). The non-local approach such as

BM3D [6] is another representative patch-based image

restoration approach which groups the similar patches into

a 3D array and filters the 3D array. Several methods

have been proposed to combine the non-local approach and

dictonary-learning for better performance in image restora-

tion. For example, based on the groups of similar patches,

the K-SVD method is used in [17], the local PCA-based

method is used in [9, 29] and the PCA-based dictionary

learning is used [10] for image denoising.

2. Fast orthogonal dictionary learning
Throughout the paper, the following mathematical nota-

tions are adopted for discussion. We use upper case bold

letters for matrices, e.g. X and use lower case bold letter

for the vectors, e.g. Xi. The Frobenius norm of a matrix X
is define as: ‖X‖F := (

∑
i,j |Xi,j |2)1/2. ‖X‖0 denotes

the number of nonzero entries in X . The trace of a matrix

X is defined as: Tr(X) :=
∑

k Xk,k. Let X = UΣQ�

be the singular value decomposition (SVD) for X . Given

a vector v ∈ R
n, the hard thresholding operator Tλ(v) is

defined as [Tλv]i = vi, if |vi| > λ and 0 otherwise.

2.1. Problem formulation

Given an image g, let G = {g1, · · · , gm} ∈ R
n×m de-

note the training set of image patches of size
√
n × √n

collected from the image after vecterization. The image

patches for the training can be selected randomly or reg-

ularly. Now we consider the sparse approximation prob-

lem for the set G under an orthogonal dictionary D̂ :=
[A,D] ∈ R

n×n whose columns refers to dictionary atoms.

The dictionary has two sub-dictionaries in our implementa-

tion: one is A ∈ R
n×n−r which contains the input orthogo-

nal atoms known as good ones from other sources; the other

is D ∈ R
n×r which denotes the set of atoms need to be

learned from the input image. The orthogonal constraint on

the dictionary says that

D̂�D̂ = In ⇒ A�A = In−r;D
�D = Ir; A

�D = 0.

We propose to learn the orthogonal dictionary D via solving

the following minimization model

min
D∈Rn×r,V ∈Rn×m

‖G− [A,D]V ‖2F + λ2‖V ‖0
s.t. D�D = Ir;A

�D = 0,
(3)

It is noted that r = n if the set A is empty.

The minimization (3) is quite similar to the model (1)

used in the K-SVD method , except some additional linear

and bi-linear constraints on D. In the next, we will show

that the minimization (3) is much easier to solve than (1).

2.2. Numerical method

Same as the K-SVD method, we take an alternating iter-

ative scheme to solve (3). More specifically, let D(0) be the

initial dictionary to start (e.g. the DCT dictionary or multi-

scale wavelet dictionary). Then for k = 0, 1, . . . ,K − 1,

1. sparse coding: given the orthogonal dictionary D(k),

find the sparse code V (k) via solving

V (k) := argmin
V ∈Rn×m

‖G− [A,D(k)]V ‖2F + λ2‖V ‖0 (4)

2. dictionary updating: given the sparse code V (k),

update the dictionary via solving the minimization:

D(k+1) := argmin
D∈Rn×r

‖G− [A,D]V (k)‖2F ,

s.t. D�D = Ir,A
�D = 0.

(5)

In the next, we show that both the minimization (4) for

sparse coding and (5) for dictionary update are trivial to

solve. Indeed, each of them has an explicit solution. De-

fine D̂ = [A,D(k)]. Then by the definition of A and D(k),

we have D̂�D̂ = In. The next proposition gives an explicit

solution to (4).

Proposition 2.1 (sparse coding) Suppose that D̂�D̂ =
In. The following minimization problem

min
V
‖G− D̂V ‖2F + λ2‖V ‖0 (6)

has a unique solution given by V ∗ = Tλ(D̂
�G).
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Proof See Appendix A.

For dictionary update, let V (k) = [V
(k)
A

�
,V

(k)
D

�
]�, where

V
(k)
A denotes the codes associated with A and V

(k)
D asso-

ciated with D(k). Let PA denote the orthogonal projection

operator from R
n to the space spanned by the columns of

A: PAv = A(A�v), ∀v ∈ R
n. Then, the next proposition

gives the explicit solution to the minimization (5).

Proposition 2.2 (dictionary updating) The following con-
strained minimization

minD∈Rn×r ‖G− (AVA +DVD)‖2F
s.t. D�D = Ir, A

�D = 0
(7)

has a unique solution given by D∗ = PQ�, where P and
Q denote the orthogonal matrices defined by the following
SVD

(In − PA)GV �
D = PΣQ�.

Proof See Appendix B.

Therefore, each iteration in the proposed alternative itera-

tion scheme is very simple. There is no need for solving

any minimization problem when doing the sparse coding

and dictionary updating. The sparse coding is done via a

hard thresholding operation and the dictionary updating is

done via a single SVD. See Algorithm 1 for the complete

description of the algorithm.

Algorithm 1 Online orthogonal dictionary learning

Input: image patches G, input orthogonal atoms A
Output: learned dictionary D
Main procedure:

1. Set the initial guess D(0).

2. For k = 0, 1, . . . ,K,

(a) V
(k)
D := Tλ(D

(k)�G);
(b) run the SVD for the matrix

(In − PA)GV
(k)
D

�
= PΣQ�;

(c) D(k+1) := PQ�.

3. D := D(K+1).

2.3. Complexity analysis of Alg. 1

In this section, we give a detailed analysis on the com-

putational complexity of Algorithm 1 for sparsity-based or-

thogonal dictionary learning. Let m denotes the number

of training patches in G and consider the worst scenario in

which no pre-defined atom provided, i.e. D ∈ R
n×n.

The sparse coding of Alg. 1 uses 2mn2 operations to ob-

tain the matrix product D�G and mn2 operations in hard

thresholding. Let K denote the average number of non-

zero entries in each column of V . For dictionary update of

Approx. K-SVD [26] Alg. 1

Sparse m(8n2 + 4K2n+ 12Kn)+
3mn2

Coding mK3 + 16n3

Dictionary
20mKn+ 64n3 2mKn+ 21n3

Learning

Total
m(8n2 + 4nK2 + 32Kn+K3) m(3n2 + 2Kn)

+80n3 +21n3

Table 1. Complexity analysis for one iteration

Alg. 1, the number of operations required to calculate the

multiplications ĜV � is 2mnK. The standard algorithm to

obtain the singular value decomposition of ĜV � ∈ R
n×n

takes 21n3 operations [13]. So, the total number of opera-

tions in one iteration of Alg. 1 is

T = 3mn2 + 2mnK + 21n3 (8)

The K-SVD method [12] is very computationally de-

manding. The OMP used for sparse coding is known to be

slow. The dictionary update of the K-SVD method need to

call SVD operators for 4n times. Thus, a fast approximate

K-SVD method is developed in [26] which use batch-OMP

for sparse coding and replacing SVD by matrix-vector mul-

tiplication. The analysis of the approximate K-SVD method

(the dimension of dictionary is set 4n by default), together

with ours are listed in table 1. Clearly, Algorithm 1 requires

far less operations. The computational efficiency in appli-

cations will be further investigated in the experiments.

2.4. Applications in image restoration

The sparsity-based online orthogonal dictionary learning

Algorithm 1 is very simple to implement and also very com-

putationally efficient. To evaluate its performance in image

restoration in terms of recovery quality and computational

efficiency, we applied Algorithm 1 on two sample image

restoration tasks: image denoising and image in painting.

Image denoising. Algorithm 1 can be directly applied on

de-noising by taking the noisy image as the input image for

training. It is known in signal processing that most noise are

in the high-pass channels. Thus, we fix a low-pass filter in

the dictionary and only learn n−1 high-pass filters from the

input image. That is, we define A = [α0] ∈ R
n×1, where

α0 = n−1/2[1, 1, . . . , 1]�.

Clearly, the orthogonal constraint α�0 D = 0 on D ensures

that all atoms in D ∈ R
n×n−1 are high-pass filters. Af-

ter generating the training matrix G by randomly sampling

the image patches of size
√
n × √n from the noisy image,

the dictionary D is learned from Algorithm 1. Then the

de-noised image is reconstructed from the de-noised patch

matrix D̂Tλ1(D̂
�G) by averaging the overlaping pixels,

where D̂ = [α0,D]. For computationally efficiency, the
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patches for trained are uniformly elected from the image

at random. The patches for denoising are the patches uni-

formly selected with overlaps. See Algorithm 2 for details.

Image inpainting. Image in-painting is about recovering

the missing values of image pixels or removing unwanted

content from the image, which can be formulated as solving

the following under-determined linear inverse problem:

f(k) = g(k) + ε, k ∈ Λc,

where g denote the image for recovery, Λ denotes the region

for in-painting and Λc denotes its complement, and ε de-

notes noise. Using a dictionary D generated from wavelet

frame filters, Cai et al. [3] proposed the following iteration

scheme for in painting f :

G(k+1) = (I − PΛ)F + PΛD
−1(TλDG(k)), (9)

where PΛ is the diagonal projection matrix whose diago-

nal element equals to 1 if in Λ and 0 otherwise, G(k) are

mage patch matrices from g(k) and f respectively. In our

implementation, we use the same iteration scheme. Dif-

ferent from image noising. During each iteration of Algo-

rithm 1, we use the newest estimate g(k) to generate the

training patch matrix. See Algorithm 3 for the details.

Algorithm 2 Denoising via orthogonal dictionary learning

Input: noisy image g
Output: denoised image g∗

Main procedure:

1. Initilization.

(a) synthesizing image patch matrix G from g;

(b) defining A = [a0] for some low-pass filter a0.

2. Learning a dictionary D∗ using Algorithm 1 with input

G and A = [a0].

3. De-noising patch matrix G∗ := D̂Tλ1
(D̂�Ĝ) with

D̂ = [A,D∗].
4. Synthesizing the denoised image g∗ from G∗ by

averaging the overlapping pixels.

3. Experiments
In this section, we evaluate the performance of the pro-

posed orthogonal diction learning on image denoising and

image in-painting. The experiments are conducted in MAT-

LAB R2011b (64bit) Linux version on a PC workstation

with an INTEL CPU (2.4GHZ) and 48G memory. The ini-

tial dictionary is generated by the local DCT transform: ei-

ther 8 × 8 or 16 × 16. The image patches for training are

uniformly selected from the input image at random. For im-

age size 512 × 512 and patch size 16 × 16, about 4 ∗ 104
patches are used for training.

Computational efficiency. Under the same software and

hardware environment, Algorithm 1 is compared to the

Algorithm 3 Inpainting via orthogonal dictionary learning

Input: image g and inpainting region Λ
Output: inpainted image g∗

Main procedure:

1. Initialization.

(a) initilizing an in-painted image g(0) by interpolation;

(b) synthesizing patch matrix G(0) from g(0); and

defining A = [a0].
2. For k = 0, 1, . . . ,K,

(a) learning a dictionary D(k) using one iteration of

Algorithm 1 with input G(k) and A = [a0];
(b) synthesizing the image h(k+1) from the denoised

patch matrix G∗ := D̂Tλ1(D̂
�G);

(c) defining g(k+1) := (I − PΛ)(g) + PΛh
(k+1).

3. g∗ := g(K+1).

implementation module 8× 8 16× 16

dictionary update 8.60 24.87
K-SVD [12]

sparse coding 1.19 2.18

dictionary update 0.56 1.45
Approx. K-SVD [26]

sparse coding 1.44 3.50

dictionary update 0.02 0.15
Algorithm 1

sparse coding 0.04 0.18
Table 2. Running time (in second) breakdown on one iteration of

the K-SVD method, approximated K-SVD method and the imple-

mentation of Algorithm 1 with patch size 8× 8 and 16× 16.

widely used over-complete dictionary learning: the K-SVD

algorithm [12] and its fast version, the approximated K-

SVD algorithm [26] with the implementations from the

original authors 1. Table 3 listed the detailed running time

of each module in K-SVD method, approximated K-SVD

method and Agorithm 1. For each iteration, clearly Algo-

rithm 1 is much faster than both the K-SVD method and the

approximate K-SVD method.

The shorter running time for each iteration does not im-

ply the algorithm run faster, as it might has slow conver-

gence. Thus, we conduct another test on the overall running

time when applying the three methods on image de-noising.

The tested image is the image ”Barbara” of 512 × 512 in

the presence of i.i.d. Gaussian noise with s.t.d. σ = 30.

Totally 15 iterations are used in the K-SVD method and the

approximate K-SVD method as more iterations do no im-

prove the PSNR value anymore. Table 3 listed the total run-

ning time of the two K-SVD methods and Alg. 1. While all

three methods have comparable PSNR values, our method

is much faster that the other two.

Image denoising. Algorithm 2 for image denoising is eval-

uated on several tested images shown in Fig. 2 with different

1http://www.cs.technion.ac.il/ ronrubin/software.html
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Patch size\ running time (sec.) K-SVD Approx. Alg. 1

method vs. PSNR (dB) K-SVD

time 202.75 98.35 2.02
8× 8

PSNR 28.51 28.61 28.44

time 484.25 206.49 12.11
16× 16

PSNR 27.86 27.84 28.93
Table 3. Running time of the K-SVD method, approximated K-

SVD method with 15 iterations and Algorithm 1 with 30 iterations

noise levels. Through all the experiments, we set λ = 3.5σ
and λ1 = 2.7λ as the thresholding value for the dictio-

nary learning process. Our results are compared against two

fixed transform based thresholding methods: linear spline

framelet [8] and 8× 8 DCT, the PCA-based non-local hier-

archical method [9] and the K-SVD denoising method [12]

with patch size of both 8 × 8 and 16 × 16. See Table 4 for

the list of PSNR values of the results and Fig.1 for a visual

illustration.

(e) K-SVD (f) Alg. 2

Figure 1. The dictionaries learned from the image ”Barbara” with

noise level σ = 20 using the K-SVD method and Algorithm 1.

The size of atoms is 8× 8. The number of dictionary atoms is 256
from the K-SVD method and is 64 from the proposed method.

Image Inpainting. Algorithm 3 is only tested on two sam-

ple image in-painting problems. The first example is the

text removal from the image ([2]). The second example is

to filling missing pixels in the image ([27]). In the first ex-

ample, the results are compared to the classic in-painting

method [2], and two dictionary learning based methods de-

rived from the K-SVD method ([27]). The main difference

between two dictionary learning methods lies in the choice

of sparsity promoting functional: one uses the �1 norm and

the other one uses MC penalty. The results are shown in

Fig. 3, together with two zoom-in regions shown in the top-

left and top-right corner of the image for easier inspection.

It is seen that the result from Algorithm 3 has less artifacts

than others. In the second example, the values of 50% of

image pixels are missing at random. Algorithm 3 and two

dictionary learning methods [27] are applied to recover the

missing pixel values. See Figure. 4 for the visual illustra-

Barbara boat couple

fingerprint hill lena
Figure 2. Test images.

tion of the results. It is seen that Algorithm 3 outperformed

the methods derived from the K-SVD methods.

4. Discussion and conclusion
In this paper, we proposed an orthogonal dictionary

learning for image restoration, as an replacement of the

widely used K-SVD method. The performance of the pro-

posed orthogonal dictionary learning method is comparable

to the K-SVD method, but it runs much faster than the K-

SVD method. Such a significant improvement on the speed

could be very important to many image restoration applica-

tion when dealing with image of very large size or process-

ing many images. In future, we would like to study how to

effectively combine the non-local scheme and the proposed

orthogonal dictionary learning method to develop better im-

age restoration methods. Also, we will investigate the pos-

sible applications of the proposed methods in recognition.
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Appendix A: Proof of Proposition 2.1.
By the fact that D̂�D̂ = In, the minimization (6) is the

equivalent to the following minimization

min
V
‖D̂�G− V ‖2F + λ2‖V ‖0, (10)

which can rewritten as

min
{Vi,j}

∑

ij

(Vi,j − (D̂�G)i,j)
2 + λ|Vi,j |

or equivalently the summation of multiple independent uni-

variate minimization problems

∑

i,j

min
{Vi,j}

(Vi,j − (D̂�G)i,j)
2 + λ|Vi,j |.

Recall that minimization problem minx∈R ‖x − y‖22 +
λ2‖x‖0 has a unique solution x∗ = Tλ(y). Thus, the unique

minimizer for (6) is Tλ(D̂
�G).

Appendix B: Proof of Proposition 2.2.

The objective function in (7) is equal to

‖G−AVA −DVD‖2F
=‖G−AVA‖2F + ‖DVD‖2F − Tr((G−AVA)

�DVD).

(11)

If D�D = I and A�D = 0, then the first two terms in

(11) are constant and Tr((AVA)
�DVD) = 0. Therefore,

the minimization (7) is equivalent to

max
D

Tr(D�GV �
D ), s.t. D�D = Ir,A

�D = 0. (12)

Considering the following SVD:

(In − PA)GV �
D = PΣQ�.

From the Theorem 4 in [31], D = PQ� is the minimizer

of the following minimization problem

max
D∈Rn×r

Tr(D�(I − PA)GV �
D ), s.t. D�D = Ir. (13)

Notice that the space spanned by the columns P is equal to

the one spanned by the columns of (I−PA)GV �
D which is

orthogonal to the space spanned by A. Therefore, A�D =
A�PQ� = 0. Put all together, we have D = PQ� is the

minimizer to the following minimization problem.

max
D∈Rr×p

Tr(D�(I − PA)GV �
D ),

s.t. D�D = Ip,A
�D = 0.

(14)

Together with the fact

D�GV �
D = D�PAGV �

D +D�(I − PA)GV �
D

= D�(I − PA)GV �
D

(15)

The last equality in (15) holds when the constraint A�D =
0 is satisfied. The proof is complete.
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