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Abstract

We address the problem of action recognition in uncon-
strained videos. We propose a novel content driven pool-
ing that leverages space-time context while being robust to-
ward global space-time transformations. Being robust to
such transformations is of primary importance in uncon-
strained videos where the action localizations can drasti-
cally shift between frames. Our pooling identifies regions
of interest using video structural cues estimated by differ-
ent saliency functions. To combine the different structural
information, we introduce an iterative structure learning al-
gorithm, WSVM (weighted SVM), that determines the opti-
mal saliency layout of an action model through a sparse reg-
ularizer. A new optimization method is proposed to solve the
WSVM’ highly non-smooth objective function. We evaluate
our approach on standard action datasets (KTH, UCF50
and HMDB). Most noticeably, the accuracy of our algo-
rithm reaches 51.8% on the challenging HMDB dataset
which outperforms the state-of-the-art of 7.3% relatively.

1. Introduction
With the constant expansion of visual online collections,

action recognition has become an important problem in

computer vision. It is a difficult task since online videos are

subject to large visual diversity. Robust to such variability,

Bag-of-Features (BoF) [23] has been adopted as the main

paradigm for representing a video. A BoF is computed in

3 steps: (1) local feature extraction, (2) local feature cod-

ing and (3) local feature pooling. This paper focuses on the

third step that aims at summarizing the feature code distri-

bution in a fixed length vector. Traditional pooling consid-

ers each local feature independently [11]. Such an algo-

rithm discards the local feature position information in the

video space-volume. However, this space-time context has

Figure 1: “Soccer” and “Running” are likely to be dis-

tinguished by the area surrounding the human legs while

“Clap” and “Wave” are more easily distinguished by the

upper-bodies.

Inter-Videos Intra-Video

Figure 2: In different videos, actions localization can be

subject to variation due to camera viewpoint change. But,

even within a single video sequence, the action area can

change among frames.

been proven useful for classification [11]. Indeed, discrim-

inative information is not equally distributed in the video

space-time domain as shown by Figure 1. To benefit from

this context, spatial pooling [12, 11] divides a video using

fixed segmentation grids and pools the features locally in

each grid cell. Despite the performance improvement, spa-

tial pooling loses the BoF space-time invariance. Different

action instances with various localizations in the space-time

volume can result in divergent representations. This prob-

lem is severe for the actions which have dramatic space-

time variance as illustrated in Figure 2. In this case, spatial

pooling divides one action across different grid cells which

may lead to a significant performance drop. A BoF repre-

sentation robust to space-time variance is therefore critical
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Figure 3: Illustration of the space-time robustness impor-

tance.

for action recognition.

In this work, we propose to take advantage of the space-

time discriminative context with an emphasis on retaining

the space-time robustness. Beyond standard spatial pooling

which uses fixed segmentation grids, we segment a video

according to its content through saliency maps. Our algo-

rithm relies on the idea that the discriminative information

has a non-uniform distribution in saliency spaces. For ex-

ample, “Running” is more likely to be distinguished from

“Walking” by regions subject to high motion. In addition,

different saliencies can highlight different regions in the

video space-time volumes. They may capture complemen-

tary information which can be appropriately fused. Based

on those observations, we propose two main contributions.

We introduce a novel space-time invariant pooling which

leverages the space-time context. We first extract video

structural cues using various saliency measures. We then

aggregate the local feature statistics over fixed saliency sub-

regions, each sub-region defining a structural primitive. Fo-

cusing on different structural aspects, cornerness, light and

motion saliencies are investigated. Cornerness highlights

regions repeatable under geometric transformations, motion
identifies regions with strong dynamics and light provides

coarse object segmentation.

To automatically determine the optimal structural prim-
itives combination associated to a specific action, we intro-

duce a sparse feature weighting regularizer, which is able

to assign optimal weights to different feature groups. We

integrate the ‖.‖2,p norm to a linear SVM classifier and pro-

pose a Weighted SVM (WSVM) for action recognition. The

WSVM objective function being non-smooth, we propose a

new efficient optimization algorithm to minimize it.

2. Related Work
Spatial pooling [12, 11] has successfully demonstrated

a performance improvement over classic BoF. However, to

be fully effective, feature space-time statistics must align

with the segmentation grids due to their fixed aspect ratio.

Recent efforts [22, 5, 7, 2] have tried to exploit richer spa-

tial or temporal information by learning segmentation grids

adapted to specific task. Jia [7] relies on sparsity to select

segmentation grids in an overcomplete basis while Sharma

and Harada [22, 5] learn weights scheme associated to pre-

defined segmentation grids. Since all those approaches par-

tition local features in the spatial domain, they are not robust

to space-time change. They remain sensible to the action

localization variance. In video, Cao [2] proposes a scene-

adapted pooling. His approach focuses on modeling only

the temporal context. It is also not robust to time variation

since the local features are pooled in the temporal domain.

Saliency has already been used successfully in image

analysis [14, 15, 16, 21, 17, 26]. Rahtu [17] uses saliency

to segment object from image. Wang [26] uses saliency

to compute highly discriminative local descriptor. In an

image recognition context, Parikhn, Shabaz and Moosman

[14, 15, 16, 21] define sparse sampling strategies to detect

local features. Our motivation significantly differs from

those approaches. We do not use saliency information to

sample features but to pool them. We identify prominent

regions in a video through saliency to model the space-time

context while preserving the space-time robustness.

In the remainder of this paper, we start by introduc-

ing our space-time invariant pooling. We then present our

WSVM. An evaluation of our proposal is finally performed.

3. Space-Time Robust Representation
Figure 3 compares two pooling schemes using 2 × 2

static grid segmentation or a dynamic segmentation based

on motion saliency. Due to its localization variance, the

action falls in different cells of the static grids leading to

two spatial BoFs having low-similarity despite depicting the

same action. By segmenting the video dynamically, the sec-

ond pooling scheme remains robust to the action space-time

variance while still taking advantage of the local feature

space-time context. This motivate us to propose a novel

pooling algorithm using video content information.

3.1. Content Driven Pooling

In the following, we first reformulate the spatial pooling

problem and then extend this formulation to take advantage

of video content information.

Let D = {d1, ...,dM} be a set of local features extracted

from a video. We denote by G = {G1, ...,Gn} a set of grid

cells. Each Gi is a binary matrix indicating which video

voxels are active, Gi ∈ {0, 1}sx×sy×st , (sx, sy, st) being

the video dimension. Based on those definitions, we express

the max spatial pooling operation as (1).

Xi = max
(x,y,t)

Gi
x,j,t × code(dω(x,y,t)) (1)

ω : R3 → [1,M ] is function indexing the descriptors D
based on their positions. The function code : D → R

K

is a local feature coding scheme such as sparse-coding or
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Figure 4: Illustration of the space-time invariant pooling and the WSVM algorithm.

locality coding. (1) relies on max pooling since it improves

the class separation [1].

Traditional spatial pooling uses a set of pre-defined pyra-

midal grids segmenting the video in increasingly finer cells.

Recent pooling works [22, 5, 7] learn G directly from data

achieving task-specific segmentation. Both approaches pool

local features in the space-time domain.

Differently, we aim at modeling the space-time context

while remaining robust to the space-time variance. To do so,

we identify prominent regions using saliency. As shown in

Figure 4a, we (i) extract saliency information from a video,

then, (ii) order local features in rank lists according to each

saliency and (iii) capture local feature statistics in various

rank list sub-regions. As a result, our pooling scheme does

not require space-time information to compute video re-

gions, and, it performs video-specific segmentation based

on their structural cues. Since our pooling uses ranks to

group features instead of absolute values, it remains invari-

ant to global translation in the saliency space.

To formulate our content driven pooling, we modify the

indexing function ω in (1) to include video structural cues.

Let P = {p1, ..., pM} be the saliency values for each lo-

cal feature. φ : [1,M ] → [1,M ] is a ranking func-

tion ordering the local features according to P. To in-

fer Φ = {φ(1), . . . , φ(M)}, we minimize the functional

minΦ
∑M

i=1 ipφ(i), dφ(1) is the local features having the

highest saliency while dφ(M) correspond to the lowest one.

Our content-based pooling becomes:

Xi,k = max
j∈[1,M ]

Gi,k
j × code(dφ(j)) (2)

With (2), the pooling is performed in the saliency in-

stead of the space-time domain. G is defined as a pyra-

midal tiling. We consider sequence of segmentation grids

S0 . . .SL−1 such as each grid Si is composed by 2i equally

sized cells: G = {Gi,1, ...,Gi,2i} where Gi,k ∈ {0, 1}M .

Gi,k coefficients are equal to 0 except on the interval Gi,k
[s,e]

where s = k−1
2i M and e = k

2iM .

Xi,k captures the distribution of local features over a

saliency sub-region. It defines a structural primitive. The

structural primitives are ‖.‖2 normalized and concatenated

to obtain the signature X = [X1,1, ...,XL−1,2L−1 ]. When

using several saliency functions, we repeat this pooling op-

eration for each measure and concatenate all the resulting

structural primitives.

3.2. Saliency Measures

To complete the definition our pooling, we need to de-

fine the values P = {p1, ..., pM}. We take advantage of

the video visual data through saliency measures to identify

prominent or salient areas: pi = s(di). s : D → [0 − 1]
is a local measure that describes how much a feature dif-

fers relatively to its immediate neighborhoods [6]. We fo-

cus on 3 different saliency functions : “cornerness”, “light”

and “motion”. The cornerness saliency highlights visually

distinctive features, which are repeatable under geometric

transformation. Feature cornerness is estimated with the

Harris-Laplace transform [14]. The light provides coarse

object segmentation. A RGB frame is transformed into the

Lab color space. The L (Light) component of the color

space is divided in 60 equal-sized bins and the light saliency

is computed by an efficient center-surround operation us-

ing sliding windows [17]. Motion saliency considers the

video optical flow computed for each video frame through

the Farneback algorithm [3]. Flow magnitude is quantized

into 16 uniform bins. The motion saliency is then com-

puted with the same sliding windows approach as the light

saliency [17].

4. Weighting Structural Primitives

As shown in Figure 5, the saliency measures empha-

size different areas of the video space-time volume. The

discriminative power of those regions is non-uniform and

tend to be action dependent, i.e. the saliency measures are

not equally discriminative for the different actions. For

instance, motion saliency emphasizes foreground as well

2706
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Figure 5: Illustration of prominent areas detected with the different saliency measures. The most discriminative saliency

measure for each action is indicated by the red contour.

as background area for an action subject to strong camera

movement while light saliency remains robust to this phe-

nomena. By focusing on only a few structural primitives
at classification, we could take advantage of saliency func-

tions which fit best the action of interest while discarding

area containing irrelevant or noisy information.

In this section, we introduce SVM algorithm with a

sparse feature weigthing regularizer, illustrated in Fig-

ure 4b, that determines the optimal structural primitives lay-

out given an action.

4.1. Weighted SVM Model
Let X ∈ R

N×d be N training video signatures and
Y ∈ {0, 1}N their corresponding binary labels. Each video
signature Xi is the concatenation of the structural primi-
tives i.e., Xi = [Xi,1, . . . ,Xi,G]. Linear SVM combined
to max-pooling has demonstrated encouraging results in
the context of image classification while limiting the train-
ing complexity to O(n) [27]. We consider a linear model
W = [W1, . . . ,WG] ∈ R

d with its bias term b ∈ R. Wg

is the group of W coefficients correlating with the struc-
tural primitive Xi,g . A linear SVM primal learning formu-
lation has the following form:

E(W, b) =

N∑

i=1

L(Yi,XiW + b) + λΩ(W ) (3)

L(Yi,XiW + b) = max(0,Yi(XiW + b))2. (4)

L is the square hinge loss and Ω is the regularizing term.

The SVM model uses a ‖.‖2 norm as regularizer [27]. This

norm attaches the same importance to each coefficient in

W, i.e., each group Wg contributes equally. To leverage

the non-uniform discriminative power of structural prim-
itives, we propose to prioritize only the most substantial

groups Wg for an action while discarding the irrelevant one

by adding a sparsity constraint on W.
Sparsity is induced through the use of a ‖.‖p norm with

p < 2. This method implicitly assumes that each individ-
ual coefficient in W is independent of the all others. It only
guarantees sparsity at the W individual coefficient level and
does not assure that a few groups Wg are prioritized for
an action. Group sparsity, on the other hand, uses a ‖.‖2,p
norm, a combination of a ‖.‖p norm at the groups level and
a ‖.‖2 norm at the individual coefficient level. While se-
lecting only a few groups with the ‖.‖p norm, it considers

Algorithm 1 Weighted SVM learning

Input: Input data X ∈ R
N×d and labels Y ∈ {0, 1}N .

Regularization parameters λ, p

Output: W ∈ R
d, b ∈ R

1: Initialize W ∈ R
d and b at random;

2: repeat

3: D =

⎛
⎜⎜⎝
( 2p‖W1‖2−p

2 )I1
. . .

( 2p‖WG‖2−p
2 )IG

⎞
⎟⎟⎠

4: [W, b]← L-BFGS(E, ∂E
∂W , ∂E

∂b );
5: until Convergence

the coefficient inside a group as a whole through the ‖.‖2,
taking advantage of their implicit relation. Hence, a ‖.‖2,p
regularization term is used our learning formulation in (4),
shrinking the number of groups selected.

E(W, b) =

N∑

i=1

L(Yi,XiW + b) + λ||W||2,p (5)

p controls the group selection sparsity. The smaller p is,

the fewer groups are selected by the WSVM. If p = 2, we

obtain a classic ‖.‖2 regularizer term. In this sense, our

WSVM model (5) generalizes the classic SVM (4).

4.2. Optimization
We want to minimize with respect to W and b, our ob-

jective function E:

argmin
W,b

∑

i

L(Yi,XiW + b) + λ(

G∑

g=1

‖Wg‖p2)
1
p (6)

Due to the ‖.‖2,p regularizer, (6) is a non smooth optimiza-
tion problem. To transform this problem, we rewrite it as
(7).

argmin
W,b

∑

i

L(Yi,XiW + b) + λ

G∑

g=1

‖Wg‖22
2
p
‖Wg‖2−p

2

(7)

We define the diagonal block matrix D (see algorithm 1)1:

1In practice we add a small ε to each diagonal coefficient of D for

numerical stability.
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D is a semi-definite positive matrix. Ig is the identity
matrix corresponding to the group Wg . We deduce that

(
∑G

g=1 ‖Wg‖p2)
1
p = tr(WTD−1W) = ‖UTW‖22 where

UT is the D−1 Cholesky decomposition (D−1 = UUT ).
Therefore, by fixing D, we obtain now a smooth optimiza-
tion problem (8) which can be optimized directly.

argmin
W,b

∑

i

L(Yi,XiW + b) + λtr(WTD−1W) (8)

To optimize (8), we adopt a direct gradient descent.
Such approaches applied of the primal SVM formulation
has demonstrated good performance in large scale learning
setting [27]. A Quasi-Newtown LBFGS algorithm is used
in this work. Compared to a classic SVM, we only need
to change the definition of the derivative ∂E

∂W to include the
sparsity constraints.

∂E

∂W
= 2

∑

i

(XiW + b−Yi)Xi + 2λD−1W (9)

Here, D is an unknown variable which is dependent on

W that also needs to be determined. We therefore use a

concave-convex procedure to optimize jointly D and W in

algorithm 1. Proof of algorithm 1 convergence is provided

as a supplementary material due to the limitation of space.

5. Experiments
In this section we evaluate the performance of the con-

tent based pooling and WSVM model. Our approach is

evaluated on three standard human action datasets: KTH,

UCF50, and HMDB. Average accuracies is reported for all

three datasets.

KTH [20] is composed by 6 classes of 25 human ac-

tions. The videos are subject to different zoom rates and

have mostly non-cluttered static backgrounds. For the eval-

uation, we used the training/testing division of Schuldt [20].

UCF50 [18] is composed by 6681 video sequences dis-

tributed in 50 different human actions. Videos composing

the dataset are subject to large camera motion, viewpoint

change and cluttered backgrounds. In the literature two

main experiment settings are used: 5 or 25 folds leave-one-

out group-wise crossvalidation. To have a complete com-

parison with previous works, we evaluate our approach us-

ing both settings. HMDB [10] is composed by 6849 video

clips divided into 51 action categories. They are collected

from various sources, mostly from movies, and from public

website. The different actions have large appearance varia-

tion. We adopt the default training and testing splits [10].

5.1. Experimental Setting

Dense trajectories have recently shows state-of-the-art

performance for human action recognition [25]. They are

therefore used as the building block of our video signature.

KTH UCF50 UCF50 HMDB

5 folds 25 folds

BoF 93.7 86.7 85.3 37.1

Co 94.0 88.0 87.3 40.8

Li 93.8 90.2 89.6 40.5

Mo 94.2 90.8 89.7 41.5

Spa 94.0 91.2 89.3 45.1

Mo + Li 94.2 91.7 90.6 45.9

Mo + Li + Co 94.4 92.5 91.3 48.5

Mo + Li + Co + Spa 94.6 94.1 92.8 51.8

Table 1: Average accuracies of BoF, Structural-BoFs,

Spatial-BoF and their combinations. Mo, Li, Co and Spa

correspond respectively to Motion, Light, Cornerness and

Spatial.

34 

35 

36 

37 

38 

39 

40 

41 

42 

BoF C=4000 BoF C=28000 Cornerness Light Motion 

Figure 6: Impact of the dimension. C indicates the BoF

codebook size. Average accuracy is reported.

To characterize a trajectory feature, motion vectors HoG,

HoF and MbH descriptors are computed (see [25]) and con-

catenated into one vector. Since a trajectory spans on sev-

eral video frames, the average saliency value of its points

defines the saliency value associated to the feature. To ob-

tain codes from trajectories, we take advantage of locality

constrained coding (LCC) [13] by restricting the probabilis-

tic soft coding to the 10 nearest words. A codebook of size

4000 is used in this experiment. We segment the saliency

space with 1, 2 and 3 cells segmentation grids. We also

consider spatial pooling using 2x2x2 and 3x3x3 segmen-

tation grids [11]. The distribution of trajectory features in

each spatial grid cell defines a spatial primitive. To com-

bine saliency and spatial pooling, we concatenate their re-

spective spatial and structural primitives prior to the clas-

sification. When they are not specified, WSVM parameters

are set as λ = 1 and p = 1.5. Those values have empiri-

cally demonstrated robust performances across the different

datasets. We adopt a one-versus-all classification scheme.

5.2. When Do Structural Cues Help for Action
Recognition?

In a first experiment, we compare our novel pooling

scheme to a traditional BoF [23] using LCC coding and max

pooling. We denote the representation resulting from our

content-based pooling as structural BoFs.
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Figure 7: Illustration of prominent Wg groups in W. The left column contains the reference frames. The middle column

shows the extracted trajectories. The right column represents only the trajectories associated to the action most relevant

structural primitive, i.e., the trajectories associated with the group Wg having the highest ‖.‖2 norm in W. The most

relevant structural primitive can be associated with cornerness, motion or light saliency depending on the action.

Results are reported Table 1. We observe that each struc-

tural BoF always outperforms traditional pooling on each

dataset. Moreover as shown in Figure 6, the performance

improvement is not due to the increase of the signature di-

mensionality. Compared to BoF with the same dimensions,

structural BoFs still result in better performance. This con-

firms the non uniform distribution of discriminative infor-

mation in the saliency spaces. By capturing the feature dis-

tribution at different saliency levels, we preserve that infor-

mation in our final representation.

Motion has on average the best performance compared

to the other structural BoFs. However, if we consider the

accuracy per actions illustrated in Figure 10, we actually

observe that the different saliencies are complementary.

For example, cornerness obtains the best performances

for the actions Smile, Smoke, Eat. As described by

Kuehne [10], those actions are characterized by close-up

face views. Cornerness focuses on visually distinctive local

features. In this case, it highlights features located around

the noise, eye or mouth area (Figure 7). Cornerness is also

useful for actions such as Catch, Golf involving objects

with relatively small ellipsoidal shape.

Light gets the best performances for the actions Climb,

Fall Floor or Shooting Bow where an upper human body is

present [10]. Light saliency performs a coarse segmentation

which groups together the features associated to the human

body in those actions (Figure 7).

Motion achieves the best performance on actions which

are characterized by a strong motion (Chew, Run, Flic
Flac. . . ) where the local features having high motion

saliency values are likely to be part of the action of inter-

est (Figure 7).

More generally, a structural BoF achieves significant

performance improvement over a representation ignor-

ing the space-time context when the pooling of the high

saliency features only reduces the impact of the background

clutter and leads to more discriminative signature.

5.3. Are the Saliencies Complementary?

In this second experiment, we evaluate the combination

of the different structural BoFs through the WSVM.

Table 1 reports the average accuracies of the spatial BoF

and the structural BoF combination. On the HMDB dataset,

an impressive performance gain of more than 16%, from

41.5 to 48.5, is achieved by the structural BoF combination

(Co+Li+Mo) compared to the best individual structural BoF

(Mo). This demonstrates the complementarities of saliency

based representations. Furthermore, by adding spatial BoF

to our video signature, another improvement of 6% is ob-

tained. Hence, spatial and structural BoFs capture com-

plementary information. The same trend can be observed

on the UCF50 dataset. In the 25 fold setting, the combi-

nation of structural BoFs achieves an average accuracy of

91.3 compared to 89.7 for Mo. By adding spatial informa-

tion, we reach 92.8.

On the KTH dataset, structural BoFs as well as their

combination only slightly improve over the traditional and

spatial BoF. Structural BoF combination achieves a perfor-

mance of 94.6 compared to 93.7 for a traditional BoF. KTH

videos have almost static videos with no clutter. Most of the

extracted features correspond to the foreground action, i.e.

most of them are relevant to the action. It limits the need

of modeling the space-time context. It should be noticed

that spatial-BoF provides also a very limited improvement

on this dataset, 94.0 against to 93.6.

Finally, as Table 1 shows, structural-BoF combination

(Co+Li+Mo) always outperforms the spatial-BoF for each

2709
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Figure 8: Parameters evaluation on HMDB. Average ac-

curacy is reported.

p = 2
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increase

decrease

Feature Groups‖Wg‖ norm

Figure 9: Sparse feature weighting illustration.On the

left, ‖Wg‖2 are displayed, for p = 2 or 1.5. On the

right, features corresponding to Wg groups are shown.

KTH UCF50 UCF50 HMDB

5 fold 25 fold

Laptev et al. [11] 91.8 Laptev et al. reported in [19] 47.9 Kliper et al. [8] 72.6 Kuehne et al. [10] 23.0

Wang et al. [25] 94.2 Sadanand et al. [19] 57.9 Solmaz et al. [24] 73.7 Sadanand et al. [19] 26.9

Gilbert et al. [4] 94.5 Reddy et al. [18] 76.9 Cao et al. [2] 27.8

Kovashka et al. [9] 94.5 Wang et al. [25] 84.5 Wang et al. [25] 48.3

Our approach 94.6 Our approach 94.1 Our approach 92.8 Our approach 51.8

Table 2: Comparison with state-of-the-arts. Average Accuracy is reported.

dataset showing the importance of space-time robustness.

Based on WSVM, we represent visually the trajectory

features corresponding to the Wg having the most impact

for specific actions in Figure 7.

5.4. Comparison with State-of-the-Art

Table 2 compares our approach with the state-of-the-

art on each dataset. Compared to the dense trajectories

BoF [25] which obtained the best performance on UCF50

25 fold and HMDB, our combination of structural and spa-

tial BoF obtains a gains of performance of respectively 11%
and 10%. On UCF50 5 fold, a strong improvement of 62%
is obtained relatively to action bank [19] which had the pre-

vious best performance. It should be noticed that we also

outperform action bank, from 26.9 to 51.8, on the HMDB

dataset. Finally, we achieve state-of-the-art performance on

KTH with an average accuracy of 94.6 compared to 94.5.

5.5. Parameters Evaluation

Figure 8a evaluates the influence of the pyramid level

number on HMDB. Adding more levels increase the perfor-

mance up to a certain point. To limit the dimension of our

signature, we use 3 pyramidal levels in this works.

Figure 8b evaluates the impact of the sparsity parame-

ter p on the HMDB dataset. When p = 1.5, WSVM out-

performs a SVM (p = 2) from 50.7 to 51.8. While most

of the performance gain comes from the saliency pooling

(see Table 1), WSVM has a positive contribution of 2.1%
compared to a standard SVM. For p ≤ 1, we observe a per-

formance decrease. In this case, W becomes too sparse,

selecting too few structural primitives. It justifies the use

using a ‖.‖2,p regularizer, allowing to control the sparsity,

instead of a more rigid ‖.‖2,1 norm. Figure 9 illustrates

the impact of the sparsity parameter p for the HMDB “Flic

Flac” action showing that p allows discriminative features to

increase in importance while reducing the impact of noisy

feature groups.

6. Conclusion
This paper has introduced a new space-time invariant

pooling scheme that leverages the video space-time context.

It identifies prominent regions in videos content through

motion, illumination and cornerness saliencies, leading to

a “video-based” segmentation scheme. We also propose a

new weighted SVM that automatically learns the optimal

saliency layout associated to an action. We show through

an extensive experimentation that being robust to the space-

time variance helps for action recognition. Our video sig-

nature combining the motion, light, cornerness, saliency

and fixed spatial segmentation outperforms the state-of-the-

art performances on the challenging UCF50 and HMDB

datasets. In future work, we plan to investigate semantic

information embedding in the pooling operation.
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Figure 10: Per action average accuracy on HMDB.
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