
Randomized Ensemble Tracking

Qinxun Bai1, Zheng Wu1, Stan Sclaroff1, Margrit Betke1, Camille Monnier2
1 Boston University, Boston, MA 02215, USA

2 Charles River Analytics, Cambridge, MA 02138, USA

Abstract

We propose a randomized ensemble algorithm to model
the time-varying appearance of an object for visual track-
ing. In contrast with previous online methods for updat-
ing classifier ensembles in tracking-by-detection, the weight
vector that combines weak classifiers is treated as a ran-
dom variable and the posterior distribution for the weight
vector is estimated in a Bayesian manner. In essence, the
weight vector is treated as a distribution that reflects the
confidence among the weak classifiers used to construct
and adapt the classifier ensemble. The resulting formula-
tion models the time-varying discriminative ability among
weak classifiers so that the ensembled strong classifier can
adapt to the varying appearance, backgrounds, and occlu-
sions. The formulation is tested in a tracking-by-detection
implementation. Experiments on 28 challenging benchmark
videos demonstrate that the proposed method can achieve
results comparable to and often better than those of state-
of-the-art approaches.

1. Introduction
Many tracking-by-detection methods have been devel-

oped for visual tracking applications [2, 3, 8, 17, 20, 21].

The motivation to treat tracking as a detection problem is

to avoid having to model object dynamics especially when

abrupt motion and occlusions can occur.

Tracking-by-detection requires training of a classifier for

detecting the object in each frame. One common approach

for detector training is to use a detector ensemble frame-

work that linearly combines the weak classifiers with differ-

ent associated weights, e.g., [2, 8]. A larger weight implies

that the corresponding weak classifier is more discrimina-

tive and thus more useful. To date, most previous efforts

have focused on adapting offline ensemble algorithms into

online mode. This strategy, despite its success in many on-

line visual learning tasks, has limitations in the visual track-

ing domain.

First, the common assumption that the observed data, ex-

amples and their labels, have an unknown but fixed joint dis-

Figure 1. The proposed method can track a target person (green

box) during partial occlusion and in the presence of distractors (red

boxes). It weights the “reliability” of the weak classifiers within

the box (green means high weight; blue means low weight). In the

left image, the person is unoccluded; therefore, high weights are

associated with weak classifiers that cover the body. In the right

image, the person is partially occluded; consequently, “reliability”

weights for the occluded portion decrease while weights for the

unoccluded portion are reinforced. Thus, the ensemble tracker can

distinguish the tracked person from the distractors.

tribution does not apply in tracking scenarios where the ap-

pearance of an object can undergo such significant changes

that a negative example in the current frame looks more sim-

ilar to the positive example identified in the past (Fig. 1).

Given the uncertainty in the appearance changes that may

occur over time and the difficulty of estimating the non-

stationary distribution of this observed data directly, we pro-

pose a method that models how the classifier weights evolve

according to a non-stationary distribution.

Second, many online self-learning methods update the

weights of their classifiers by first computing the impor-

tance weights of the incoming data. As noted by Grabner

and Bischof [8], however, there are difficulties in computing

these weights. This becomes even more challenging when it

is recognized that the distribution that generated the data is

non-stationary. We suggest that this is an inherent challenge

for online self-learning methods and propose an approach

for estimating the ensemble weights that is Bayesian and

ensures that the update of the ensemble weights is smooth.

Our method models the weights of the classifier ensem-

ble with a non-stationary distribution, where the weight vec-

tor is a random variable whose instantiation can be inter-

preted as a representation of the “hidden state” of the com-

bined strong classifier. Our method detects an object of in-

terest by inferring the posterior distribution of the ensemble

2013 IEEE International Conference on Computer Vision

1550-5499 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICCV.2013.255

2040

weights and computing the expected output of the ensemble

classifier with respect to this “hidden state”. This strategy is

similar to the technique of filtering used by non-stationary

systems described in the tracking literature. Our method

differs, however, by its focus on estimating the state of the

classifier, not the state of the object (position, velocity, etc).

In summary, our contributions are:

1. We propose a classifier ensemble framework for

tracking-by-detection that uses Bayesian estimation

theory to estimate the non-stationary distribution of

classifier weights.

2. Our randomized classifier encodes the “relative reli-

ability” among a pool of weak classifiers, which pro-

vides a probabilistic interpretation of which features of

the object are relatively more discriminative.

3. By integrating a performance measure of the weak

classifiers with a fine-grained object representation,

our ensemble tracker is able to identify the most in-

formative local patches of the object and successfully

interpret partial occlusion and detect ambiguities due

to distractors.

We evaluate the implementation of our method on 28 chal-

lenging benchmark video sequences. Our experiments

demonstrate that the method can detect an object in track-

ing scenarios where the object undergoes strong appear-

ance changes, where it moves and deforms, where the back-

ground changes significantly, and where distracting objects

appear and interact with the object of interest. Our method

attains results that are comparable to and often better than

state-of-the-art tracking approaches.

2. Related Work
A tracking-by-detection method usually has two major

components: object representation and model update. Pre-

vious methods employ various object representations [21,

20, 1, 4, 7, 16], and our approach is most related to meth-

ods that use local patches [1, 4]. However, instead of sam-

pling local patches either randomly [1] or in a controlled

way [4], our representation exploits local patches according

to a fine grid of the object template. This makes the en-

semble weights for weak classifiers informative, indicating

the spatial spread of “discriminative ability” over the object

template.

The model update scheme for tracking-by-detection has

also been widely studied in literature. An online feature se-

lection mechanism was proposed by Collins et al. [5] who

evaluated feature discriminability during tracking. Avi-

dan [2], who was the first to explicitly apply ensemble meth-

ods to tracking-by-detection, extended the work of [5] by

adopting the Adaboost algorithm to combine a set of weak

classifiers maintained with an online update strategy. Along

this thread, a boosting process by Grabner et al. [8] was

extended from the online boosting algorithm [15] by in-

troducing feature selection from a maintained pool of fea-

tures for weak classifiers. Several other extensions to online

boosting also exist, including the work by Saffari et al. [17]

who proposed an online multi-class boosting model, and by

Babenko et al. [3] who adopted Multiple Instance Learning

in designing weak classifiers. In a different approach [18],

Random Forests undergo online update to grow and/or dis-

card decision trees during tracking.

Our online ensemble method is most related with online

boosting scheme, in the sense that we adopt weighted com-

bination of weak classifiers. However, we characterize the

ensemble weight vector as a random variable and evolve its

distribution with recursive Bayesian estimation. As a result,

the final strong classifier is an expectation of the ensemble

with respect to the weight vector, which is approximated by

an average of instantiations of the randomized ensemble.

To the best of our knowledge, in the context of tracking-by-

detection, we are the first to present such an online learning

scheme that characterizes the uncertainty of a self-learning

algorithm and enables a Bayesian update of the classifier.

3. Randomized Ensemble Tracker

Figure 2. Overview of our method.

We now give an overview of our tracking system

(diagram shown in Fig. 2). At each time step, our

method starts with the pool of weak classifiers C =
{c1, c2, · · · , cN}, a distribution Dir(D) over the weight

vector D and input data x. Our method divides the in-

put x into a regular grid of small patches, and sends the

feature extracted from each small patch to its correspond-

ing weak classifier. At the same time, our method also

samples the distribution Dir(D) to obtain M instantia-

tions D(1), D(2), · · · , D(M) of the weight vector D (color

maps in Fig. 2) and combines them with the output of

weak classifiers to yield M ensembles of weak classifiers

fD(1) , fD(2) , · · · , fD(M) . These M ensembles can be inter-

preted as M instantiations of the randomized classifier fD
and are used to compute the approximation F of the ex-

pected output of the randomized classifier fD. The approx-

2041

Table 1. Notation for our classification method
ci Weak classifier

D N-dimensional weight vector

di Component of weight vector associated with ci
α Concentration parameter for the Dirichlet distribution

H Base distribution of the Dirichlet distribution

fD Randomized classifier that depends on a weight vector D

F Final strong classifier

gi Performance measure of weak classifier ci

imation F is considered the output of the strong classifier

created by our ensemble scheme for input data x. To evalu-

ate new input data from the next frame, our method updates

the distribution Dir(D) in a Bayesian manner by observing

the agreement of each weak classifier with the strong clas-

sifier ensemble. The method also updates the pool of weak

classifiers according to the output of the strong classifier.

The weight vector D is a distribution over a finite dis-

crete space, here the index space I = {1, . . . , N} of our

classifier pool. We chose to model the distribution over the

weight vector D as a Dirichlet distribution Dir(D). The

Dirichlet-multinomial conjugacy [14] makes the Bayesian

posterior update of D simple and evolvable. Initialization

of the model is performed in the first frame of the image se-

quence, where the pool of weak classifiers is initialized with

the given ground truth and the Dirichlet prior for weight

vector D is initialized uniformly.

3.1. Classification by Voting

We now describe our classification method, which is

summarized in Algorithm-1. Our notation is listed in Ta-

ble 1. Each weak classifier ci of the pool C is a binary clas-

sifier and outputs a label 1 or 0 for each input data.

Given a weight vector D, we obtain an ensemble binary

classifier fD of the pool by thresholding the linear combi-

nation of outputs ci(x) of all weak classifiers:

fD(x) =

⎧⎨
⎩

1 if
N∑
i=1

dici(x) ≥ τ

0 otherwise,

(1)

where x denotes the input data and threshold τ is a model

parameter. Notice that fD is a function of a draw of the

random variable D and is therefore a randomized classifier.

If we denote the series of sequentially arriving data sets

as S(0),S(1),S(2), · · · (where S(i) in our application is the

set of all scanning windows in the i-th frame), at time step t,
given input data x ∈ S(t), our prediction of its probabilistic

ALGORITHM-1:CLASSIFICATION BY CLASSIFIER ENSEMBLE

Given input x, weak classifier pool C, distribution Dir(D;α,H):

• Step 1: Draw D(1), D(2), · · · , D(M) independently from

Dir(D;α,H); Each draw is a N dimensional weight vector.

• Step 2: For each draw, compute fD(i)(x) using Eq. 1.

• Step 3: Compute ensemble output F (x) by voting (Eq. 7).

label value y∗ is computed as follows:

y∗ = E[y|x] =
∫

y p(y|x,S(0) · · ·S(t−1))dy

=

∫
y

∫
p(y|x, D) p(D|S(0) · · ·S(t−1))dDdy

=

∫
p(D|S(0) · · ·S(t−1))(

∫
y p(y|x, D)dy)dD

(2)

where
∫
y p(y|x, D)dy is the expectation E(y|x, D) of y

conditioned on a given weight vector D. Given that y takes

discrete values from {0, 1}, this conditional expectation is:

E(y|x, D) = p(y = 1|x, D)

= p(
N∑
i=1

ci(x)di ≥ τ |x, D)

= fD(x).

(3)

Applying this to Eq. 2 yields the expectation

y∗ =
∫

fD(x) p(D|S(0) · · ·S(t−1))dD, (4)

where p(D|S(0) · · ·S(t−1)) follows the Dirichlet distribu-

tion Dir(D;α,H).
Since fD(x) is nonlinear, Eq. 4 does not have a closed-

form solution and we approximate it by sampling the

Dirichlet distribution Dir(D;α,H). In particular, an in-

stantiation (d1, d2, · · · , dN) of the random variable D is

drawn from a Dirichlet distribution,

(d1, d2, · · · , dN) ∼ Dir(D;α,H), (5)

Dir(D;α,H)=
Γ(α)∏N

i=1 Γ(αhi)

N∏
i=1

dαhi−1
i . (6)

The parameter H = (h1, h2, · · · , hN) is the base distribu-

tion, which is the expectation of vector D. Scalar α is the

concentration parameter, which characterizes how closely a

sample from the Dirichlet distribution is related to H . Both

H and α are updated online for incoming data.

Our method computes M i.i.d. samples from Dir, i.e.,

D(1), D(2), · · · , D(M). To obtain the final ensemble classi-

fier for input x, our method approximates Eq. 4 by voting

fD(1) , fD(2) , · · · , fD(M) and thresholding as follows:

F (x) =

⎧⎨
⎩

1 if 1
M

M∑
j=1

fD(j)(x) ≥ 0.5

0 otherwise.

(7)

2042

When multiple positive predictions are presented, our

method selects the one with the highest real-valued score

produced by voting before thresholding (0.5).

3.2. Model Update

Our method updates both the Dirichlet distribution of

weight vectors and the pool of weak classifiers after the

classification stage in each time step, so that the model can

evolve. It updates the Dirichlet parameters α and H in a

Bayesian manner. In fact, our online ensemble method as

well as its update scheme does not enforce any constraints

on the form of the weak classifiers, as long as each weak

classifier is able to cast a vote for every input sample. The

construction of weak classifiers and the mechanism of up-

dating them can be chosen in an application-specific way.

For each step, after performing the classification, our

method obtains the labels of data predicted by our strong

classifier F and the observation of performance of weak

classifiers, that is, the prediction consistency of weak clas-

sifiers with respect to the strong classifier. Throughout this

paper, we use the terms “consistency” or “consistent” to in-

dicate agreement with the strong classifier F .

We formulate our observation model as a multinomial-

like distribution, which enables a simple posterior update

due to multinomial-Dirichlet conjugacy. Since the weight

vector D is a measure of the “relative reliability” over the

pool of classifiers, its posterior is a function of the “ob-

servation of relative reliability of each classifier.” To for-

mally represent it, we consider a performance measure
of each weak classifier ci, which we denote as gi, while

(g1, g2, ..., gN) forms an observation of D. Given a weight

vector D, gi should have an expectation proportional to the

weight value di. Recall that the expectation of occurrence

rate of a particular outcome in a multinomial distribution

is just the distribution parameter for that outcome. Hence,

if we regard a given weight vector D as multinomial pa-

rameter, gi could be regarded as the “rate of being a reliable

classifier” as analogous to occurrence rate. For ease of com-

putation, if we further multiply gi by the total number of

observations, then it becomes the “number of occurrences

that are reliable classifiers,” which leads to the following

multinomial-like distribution for the observation model

p(g1 · · · gN |D) = k
N∏
i=1

(di)
gi , (8)

where k is a normalization constant. Then the posterior dis-

tribution of D can be obtained by Bayes rule

p(D|α,H, g1:N) ∝ p(g1 · · · gN |D)p(D|α,H)

∝
N∏
i=1

(di)
αhi+gi−1

=Dir(D;α′, H ′).

(9)

The updated base distribution H ′ in Eq. 9 is given by

H ′ =
αH +

∑N
i=1 δigi

α+
∑N

i=1 gi
, (10)

where δi is an unit vector where the i-th entry equals 1.

In defining the performance measure gi, there are two

concerns. First, gi should be nonnegative, since it is the out-

come of multinomial trials. Second, “positive” and “neg-

ative” weak classifiers should be evaluated symmetrically

with respect to some neutral value; neutral values account

for cases where the observations of classifier performance

may be ambiguous or missing, e.g., during occlusion. We

choose the following function:

g : {1, 2, · · · , N} → [0, 2]

gi = g(i) =
2

1 + e−siwi
,

(11)

where si and wi denote the sign and weight respectively,

whose values are determined by comparing the output of

the voting classifier F with the output of the weak classifier

ci. In particular, if ci correctly recognizes the target object,

then si is set to be 1, otherwise, it is set to be −1. The

weight wi is then set to the margin accordingly indicating

“goodness” of a positive weak classifier or “badness” of a

negative weak classifier, as described in Algorithm-2. Note

that the range of gi is a nonnegative real interval instead

of the nonnegative integers in the conventional multinomial

distribution. The scale of gi does not matter due to the nor-

malization in Eq. 10.

Parameter α is initialized as a small positive number in

the first frame. In following frames, if the distribution of the

weight vector is stationary, then the value of the concentra-

tion parameter α should be accumulated with observation

growth and we have α′ = α +
∑N

i=1 gi. However, as ex-

plained in Section 1, this distribution is non-stationary and

previous accumulation of observations does not increase

the confidence of the current estimate of the weight vec-

tor, therefore such an update is improper. For simplicity,

our method first updates H using Eq. 10 and then performs

a maximum-likelihood estimate of α based on our obser-

vations {g1, g2, · · · , gN} of the current time step, i.e., to

maximize the likelihood function p({g1, g2, · · · , gN}|α). It

is well known that a closed-form estimate is not available

for this Dirichlet-multinomial likelihood, hence, an iterative

approximation is commonly used. We use an efficient fixed

point iteration method [13] to estimate it. The details of the

Dirichlet update process are summarized in Algorithm-2.

We now describe issues about the update of weak clas-

sifiers. Once a new set of positive and negative samples is

identified, a tracking system should decide whether or not

to use it to update the classifier(s). This is commonly con-

trolled by a learning rate parameter, which depends on both

2043

ALGORITHM-2 DIRICHLET UPDATE

Given Dirichlet distribution D ∼ Dir(αt−1, Ht−1), classifica-

tion results of F and each c1, · · · , cN , detected object xL

For each i = 1, · · · , N ,

• Step 1: compute the sign si for each weak learner ci,

si =

{
1 ci(xL) = 1
−1 ci(xL) = 0

• Step 2: compute weight wi,

wi =

{
� of consistent negative outputs, si = 1
� of inconsistent positive outputs, si = −1 .

End
Step 3: update Dirichlet base distribution H via Eq. 10, where gi
is given by Eq. 11

Step 4: update Dirichlet concentration parameter α by

α′ = argmax
α

p({g1:N |α})

the rate of appearance changes and the possible occlusion

of the object. In our method, the normalized base distri-

bution H characterizes the expected “relative reliability” of

the weak classifiers. After multiplying H with the concen-

tration parameter α, which characterizes our confidence in

H , an “expected performance state” of each weak classifier

could be obtained, i.e. {αhi}. Comparing it with 1 (the

neutral value of the performance measure), we can decide

whether a weak classifier is better than a random guess, i.e.,

“good.” By default, when the proportion of “good” weak

classifiers is less than 50%, our system decides not to up-

date the weak classifiers because the detected object is very

likely occluded. This design turned out to be effective in

helping our tracker recover from long-term full occlusions

in our experiments.

4. Experiments
We tested our tracker on 28 video sequences, 27 of

which are publicly available. We used 11 of 12 sequences

from Babenko, et al. [3]1, the full dataset from Santner, et

al. [19], the full VTD dataset [12], and “ETH” from the

“Linthescher” sequence2. “Walking” is our own collected

sequence. Our code and dataset are available.3 The first two

datasets assume a fixed scale of the target, while the remain-

ing sequences show large scale variations. The rationale for

selecting these test sequences is follows. Firstly, nearly all

of these videos are widely used as benchmark sequences in

the recent literature, and this allows us to make a fair as-

sessment in comparison to state-of-the-art algorithms. Sec-

ondly, the sequences present a diverse set of challenges, in-

cluding complicated motion, illumination changes, motion

blur, a moving camera, cluttered backgrounds, the presence

of similar objects, partial or full occlusions, etc.

1We excluded “cliffbar” because the ground truth is not tight around

the object, and for many frames it only covers a portion of the object.
2http://www.vision.ee.ethz.ch/ aess/dataset/
3http://www.cs.bu.edu/groups/ivc/software/RET/

4.1. Implementation Details
In our object representation, the object bounding box is

divided into a regular grid of 8×8 small patches. Therefore,

the size of the weak classifier pool depends on the size of

the bounding box given in the first frame. For each small

patch, our method extracts its 64-bins HSV color/grayscale

histogram and standard histogram of gradients (HOG) [6],

which yields a 100-dimensional descriptor. Our method

also selects larger patches that cover different portions of

the object. Similar to the pyramid representation of [9], our

method divides the bounding box into 2×2 and 4×4 evenly

spaced regions. Including the entire bounding box itself,

21 additional weak classifiers are produced in these three

scales. The descriptor for each large patch is the concatena-

tion of descriptors from the small patches it covers.

Each weak classifier corresponding to the local patch is a

standard linear SVM, which is trained with its own buffer of

50 positive and 50 negative examples. The buffers and the

weak classifiers are initialized with the ground truth bound-

ing box and its shifted versions in the first frame. During

tracking, whenever a new example is added to the buffer,

the weak classifier is retrained.

The threshold parameter explained in Sec. 3.2 that con-

trols the learning rate of the classifier was set to be 0.5 by

default. This parameter was set to 0.6 on the VTD dataset,

because the dataset presents fast appearance variations. A

more conservative value of 0.4 was used for the “ETH” and

“lemming” sequences, where we observed long-term com-

plete occlusions. In general, values between 0.4 ∼ 0.6 of-

fer robust tracking performance. The value is fixed over

the whole sequence. Dynamic adaptation of this parameter

during tracking is an interesting topic for future work.

Given an incoming frame, our method searches for the

target of interest in a standard sliding-window fashion. For

efficiency, our method only searches in the neighborhood

around the bounding box predicted in the previous frame.

The gating radius is proportional to the size of the bounding

box. We set the ratio to be 1 on fixed-scale datasets and

0.5 on varying-scale datasets. Our method also searches

three neighboring scales with scale step±1.2. Note that the

overall performance of all published tracking-by-detection

methods is sensitive to their gating parameters, depending

on how fast the object can move.

4.2. Evaluation Protocol
For a quantitative evaluation of our method, we com-

pared with eight leading algorithms that fall into three

broad categories: i.) complete tracking systems, which in-

clude Visual Tracker Decomposition (VTD) [12], Tracking-

Learning-Detection (TLD) [11] and Parallel Robust Online

Simple Tracking (PROST) [19]; ii.) simple trackers that

focus more on object representation, which include Com-

pressive Tracker (CT) [21], Distribution Field (DF) [20] and

2044

Fragments-based tracker (Frag) [1]; iii.) online-learning

based trackers, which include the Multiple Instance Learn-

ing based tracker (MIL) [3] and Structured output tracker

(Struck) [10]. It is worth mentioning that these eight meth-

ods use a variety of different features and/or object repre-

sentations, which are chosen to be compatible with the par-

ticulars of each overall tracker design; this interdependence

makes it difficult to separately evaluate benefits of a partic-

ular tracking strategy vs. the features employed.

For detailed analysis, we developed two baseline algo-

rithms. A color/grayscale histogram and HOG feature vec-

tor are extracted for each local patch in the grid. The first

baseline (SVM) concatenates these features into a combined

vector for all local patches within the window and applies

a linear SVM to train the appearance model. The second

baseline (OB) employs the same object representation and

weak classifiers used in our tracker and the ensemble strat-

egy is online boosting [15, 8, 3].

The implementation of our randomized ensember tracker

(RET) employs 5000 samples drawn from the Dirichlet dis-

tribution. Across all datasets tested, the accuracy did not

increase substantially when more than 1000 samples were

used. Our current Matlab implementation computes fea-

tures for an entire image with 5 scales in 2 seconds, and

performs the detection and model update in 1 second for

each image frame. We also tested a deterministic version of

our tracker (DET) that replaces the sampling step by using

the mean distribution H directly (i.e. F (x) = fH(x) in-

stead of Eq. 7), and updates the model without the control

of a learning rate; thus, DET is a deterministic approxima-

tion of our RET algorithm.

In quantitative evaluation of tracker performance, we

used three widely accepted evaluation metrics from track-

ing literature [11, 20]: the successful tracking rate (TA),

the average center location errors (ACLE), and the average

bounding box overlap ratio (AOR) according to the Pascal

VOC criteria. We considered TA and AOR, with ideal val-

ues equal to 1, as more informative metrics than ACLE,

because when the tracker drifts the ACLE score can grow

arbitrarily large. When highlighting the equivalent top per-

formances on each testing sequence, we only allowed a 1%
difference in TA.

4.3. Experimental Results
The quantitative results of our comparative experiments

are reported in Tables 2 and 3 . The results are grouped ac-

cording to the assumptions made on the scale of the object

in the benchmark video sequences tested. Table 2 reports

results on fixed-scale sequences, whereas Table 3 reports

results for varying scale sequences. Detecting and tracking

varying-scale objects is more challenging, and most com-

peting algorithms do not consider scale variation in their

current implementations. All randomized algorithms were

evaluated by taking the average over five runs. Our ran-

domized ensemble tracker showed top/equivalently top per-

formance on 14 out of 28 sequences. Our tracker attained

high accuracy and robustness across diverse sequences; this

is particularly good, considering that our method does not

rely on motion prediction.

The superior performance of the baseline linear SVM

on certain sequences suggests that representing the object

holistically with a high-dimensional feature is good enough

for scenarios where there are few distractors or background

clutter, and the object is less likely to be occluded. The

HOG feature itself also contributes because it is less sensi-

tive to the spatial alignment. However, we witnessed that

this baseline almost failed every time when part of the ob-

ject experienced a fast change or a misleading distractor ap-

peared, such as in the sequences, “girl,” “sylv,” “liquor,” etc.

By using a fine-grained representation and identifying the

most discriminative local patches, our tracker is less likely

to be affected by local drastic changes.

The comparison between our method and online boost-

ing (OB) suggests the advantage of our learning strategy.

The online boosting tracker evaluates the weak classifier by

its error rate on training examples; such estimation makes

sense only if the training data is generated from a fixed joint

distribution and the label for the training data is given for

sure. As a result, when there are examples with confusing

labels because the appearance looks similar to “distractors”

or is polluted by occlusion, such as in the “face,” “board,”

“liquor” sequences in the PROST dataset and many others

from VTD dataset, the error tends to have larger impact on

model update. In contrast with OB, our method evaluates

the performance of a weak classifier based upon its consis-

tency, a completely different strategy, and the strong classi-

fier is updated implicitly by Bayesian filtering the weighting

vector (“hidden state”) smoothly. Therefore, our tracker is

less vulnerable to a time-varying joint distribution.

The randomized and deterministic variants of our ensem-

ble trackers (RET, DET) are roughly comparable. Using the

mean distribution as weights already improves the perfor-

mance over OB in many sequences, and it is more efficient

than sampling. However, we found that it is still less ac-

curate than the randomized version, when the appearance

of the object changes fast or undergoes a severe partial oc-

clusion, such as in “skating2,” “ETH” and “walking”. In

addition, we would like to point out that the superior per-

formance of VTD algorithm on its own dataset partially

lies in the fact that it has a strong motion dynamics model

and carefully sets the gating parameters. Using their scale

search parameters only, we were able to improve the align-

ment of predicted bounding box significantly with DET on

several sequences, which we listed as DET∗ in Table 3 for

readers to better understand the data.

For insight into why our method is effective in challeng-

2045

Table 2. Tracking performance on datasets with fixed scale objects. Each entry in the table reports the ACLE and TA performance measure

as ACLE (TA). Underlined numbers are from the authors’ original papers or computed from the results provided by the authors (PROST

did not make their code publicly available). The baseline methods are linear SVM (SVM) and online boosting (OB). RET and DET are

the randomized and deterministic variants of our ensemble tracker formulation. Results shown in red suggest comparable top performance.

The implementation of DF does not consider color so it does not work well on the last four sequences.

TLD PROST CT DF Frag MIL Struck SVM OB DET RET

[11] [19] [21] [20] [1] [3] [10] (Baseline 1) (Baseline 2) (Ours) (Ours)

Coke 11 (.68) - 16 (.30) 7 (.76) 61 (.06) 21 (.21) 7 (.76) 12 (.24) 20 (.12) 14 (.22) 13 (.23)

David 4 (1) 15 (.80) 16 (.89) 10 (1) 46 (.47) 23 (.60) 7 (.98) 4 (1) 11 (1) 7 (1) 6 (1)

Dollar 6 (1) - 20 (.92) 5 (1) 33 (.66) 15 (.93) 14 (1) 5 (1) 7 (1) 5 (1) 4 (1)

Face1 15 (.99) 7 (1) 19 (.89) 5 (1) 7 (1) 27 (.78) 9 (1) 7 (1) 24 (.81) 8 (.99) 7 (1)

Face2 13 (.97) 17 (.82) 10 (1) 11 (.99) 45 (.48) 20 (.82) 7 (.98) 7 (1) 26 (.60) 10 (1) 9 (1)

Girl 18 (.93) 19 (.89) 21 (.78) 22 (.73) 27 (.70) 32 (.56) 10 (1) 56 (.26) 25 (.89) 34 (.72) 19 (.84)

Sylv 6 (.97) 11 (.67) 9 (.75) 16 (.67) 11 (.73) 11 (.74) 10 (.87) 22 (.60) 8 (.88) 10 (.82) 12 (.80)

Tiger1 6 (.89) 7 (.79) 10 (.78) 7 (.89) 20 (.40) 15 (.57) 7 (.85) 5 (.97) 34 (.35) 4 (.97) 4 (.92)

Tiger2 29 (.26) - 13 (.60) 7 (.82) 39 (.09) 17 (.63) 12 (.60) 5 (.90) 6 (.86) 4 (.96) 4 (.96)

Twinings 16 (.52) - 9 (.89) 11 (.77) 15 (.69) 10 (.85) 7 (.98) 24 (.45) 28 (.43) 15 (.57) 21 (.63)

Surfer 4 (.97) - 19 (.13) 5 (.95) 139 (.20) 9 (.76) 8 (.74) 3 (.97) 3 (.99) 3 (.99) 3 (.99)

Board 11 (.87) 39 (.75) 62(.53) - 90 (.68) 51 (.68) 37 (.78) 59 (.70) 244 (.11) 39 (.84) 38 (.86)

Box 17 (.92) 13 (.91) 14 (.89) - 57 (.61) 105 (.25) 140 (.37) 106 (.40) 13 (.90) 13 (.96) 10 (.97)

Lemming 16 (.86) 25 (.71) 63 (.31) - 83 (.55) 15 (84) 31 (.69) 82 (.46) 88 (.26) 80 (.47) 16 (.82)

Liquor 7 (.92) 22 (.85) 180 (.21) - 31 (.80) 165 (21) 74 (.60) 82 (.52) 26 (.24) 13 (.95) 13 (.96)

Table 3. Tracking performance (AOR (TA)) on datasets with vary-

ing, sometimes significant changes in object scales. Among the

few algorithms available, we chose VTD [12] and TLD [11] as

representative competing algorithms. Underlined numbers were

given by the authors. Results shown in red suggest comparable

top performance. We were not able to fully evaluate TLD because

it fails quickly on certain sequences.

VTD TLD SVM OB DET DET* RET

[12] [11] (B1) (B2) (Ours) (Ours) (Ours)

Animal .65 (.92) .48 (.76) .73 (1) .62 (.94) .72 (1) .7 (1) .72 (1)

Basketball .72 (.98) - .43 (.36) .51 (.50) .53 (.63) .62 (.92) .54 (.64)

Football .66 (.78) .55 (.77) .56 (.78) .69 (.93) .61 (.74) .66 (.96) .62 (.82)

Shaking .75 (.99) .12 (.16) .20 (.21) .03 (.04) .55 (.64) .60 (.80) .44 (.53)

Singer1a .82 (1) .66 (.93) .70 (.98) .46 (.37) .70 (.90) .70 (.89) .73 (.97)

Singer1b .59 (.63) .11 (.10) .20 (.12) .20 (.12) .70 (.89) .70 (.93) .69 (.93)

Singer2 .74 (.97) - .29 (.23) .69 (.93) .07 (.06) .08 (.06) .38 (.50)

Skating1a .68 (.92) .39 (.43) .48 (.39) .48 (.38) .56 (.55) .58 (.64) .48 (.52)

Skating1b .67 (.90) .42 (.58) .34 (.42) .44 (.27) .43 (.45) .54 (.58) .46 (.52)

Skating2 .57 (.68) - .54 (.63) .40 (.39) .45 (.48) .55 (.71) .61 (.75)

Soccer .39 (.32) - .15 (.17) .34 (.25) .12 (.14) .40 (.35) .27 (.30)

ETH .34 (.31) .51 (.63) .56 (.62) .57 (.61) .50 (.39) - .65 (.92)

walking .33 (.22) .19 (.20) .59 (.67) .28 (.08) .54 (.68) - .77 (1)

ing conditions, we took snapshots of our learned ensem-

ble classifier and show in Fig. 3 the base distribution H of

the Dirichlet distribution, which characterizes the relative

importance of each weak classifier. Being more important

means accumulatively higher frequency of agreement with

the strong classifier, as indicated by Eq. 10 and Eq. 11.

In Fig. 3(a), the bounding box is not tight around the cir-

cuit board object, so patches in the box corners are actually

background. After sequential learning over a few frames,

our method is able to identify the background regions within

the bounding box since they do not consistently contribute

to the detection of the object. As a result, their weights are

lowered, which is reflected in the base distribution.

In Fig. 3(b), an occlusion of the face causes the weak

classifiers that account for the occluded region of the face to

disagree with the strong classifier. This disagreement makes

them less important and reduces the weights. A similar sit-

uation happens in Fig. 3(c) where the black box is occluded.

In Fig. 3(d), a pedestrian (shown on the top left corner) is

completely occluded by a distracter (man with beige jacket),

so the majority of the weak classifiers disagrees with the

strong classifier and the weights for the weak classifiers in

the corner of the bounding box are strengthened. This base

distribution suggests that our model is not polluted by the

distracter, and our method is able to re-identify the target in

a later frame once it is visible.

In Fig. 3(e), although the pedestrian is not occluded, the

bottom half of her body looks similar to the nearby shadow.

Therefore, the corresponding weights are successfully re-

duced to avoid the confusion.

In Fig. 3(f), we also show a representative failure case,

where our classifier produces false detection (red). The dis-

tracter in the background looks extremely similar to the ob-

ject. In this situation, identifying the correct object is diffi-

cult. We also witnessed a large variance of our RET tracker

on “singer2” and “shaking” when non-smooth environment

changes occur all the time. Although we could easily handle

these cases by using some spatial information and a motion

model in consecutive frames, we preferred not to do so in

our reported experiments in order to focus on the evaluation

of the detection strength of our formulation.

5. Discussion
We proposed a tracker that exploits a novel online ran-

domized classifier ensemble method that naturally evolves

the classifier in a Bayesian manner. Instead of trying to

2046

(a) (b) (c)

(d) (e) (f)
Figure 3. Sample images with true detections (green), false alarms (red), and ground truth (yellow) and snapshots of base distribution H of

Dirichlet distribution (greener means higher weight of the associated weak classifier and its higher discriminate ability, bluer means lower

weight). A detailed discussion of this figure is in the text.

compute deterministic optimal weights for the weak clas-

sifiers, we characterize their uncertainty by introducing the

Dirichlet distribution, and draw random samples to form

a randomized voting classifier. Our randomized ensemble

tracker was tested in experiments on numerous tracking se-

quences, demonstating the robustness of our method com-

pared to state-of-the-art approaches, even without motion

prediction.

Our framework is flexible, since our learning strategy

does not restrict the type of weak classifier that can be used.

In future work, we are interested in building a larger pool

of weak classifiers and experimenting with different fea-

tures. For visual tracking, we will explore the integration

of a strong motion prediction model [10]. Since our method

is general, we plan to apply it to other tasks where online

classifier ensembles are used.

Acknowledgments. This material is based on work sup-

ported by the US National Science Foundation under Grant

Nos. 0910908 and 0855065 and the US Army under

TARDEC STTR Contract No. W56HZV-12-C-0049.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In CVPR, 2006.

2, 6, 7

[2] S. Avidan. Ensemble tracking. PAMI, 29, 2007. 1, 2

[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking

with online multiple instance learning. CVPR, 2009. 1, 2, 5,

6, 7

[4] L. Cehovin, M. Kristan, and A. Leonardis. An adaptive

coupled-layer visual model for robust visual tracking. In

ICCV, 2011. 2

[5] R. T. Collins, Y. Liu, and M. Leordeanu. Online selection of

discriminative tracking features. PAMI, 27, 2005. 2

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 5

[7] J. Fan, X. Shen, and Y. Wu. Scribble tracker: A matting-

based approach for robust tracking. PAMI, 34, 2012. 2

[8] H. Grabner and H. Bischof. On-line boosting and vision. In

CVPR, 2006. 1, 2, 6

[9] K. Grauman. Matching Sets of Features for Efficient Re-
trieval and Recognition. PhD thesis, MIT, USA, 2006. 5

[10] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured

output tracking with kernels. In ICCV, 2011. 6, 7, 8

[11] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-

detection. PAMI, 34(7), 2012. 5, 6, 7

[12] J. Kwon and K. M. Lee. Visual tracking decomposition. In

CVPR, 2010. 5, 7

[13] T. P. Minka. Estimating a Dirichlet distribution. Technical

report, Microsoft Research, 2003. 4

[14] K. Ng, G. Tian, and M. Tang. Dirichlet and Related Distri-
butions: Theory, Methods and Applications. Wiley Series in

Probability and Statistics. John Wiley & Sons, 2011. 3

[15] N. Oza. Online bagging and boosting. In IEEE Intl’ conf. on
Systems, man and cybernetics, pages 2340–2345, 2005. 2, 6

[16] F. Pernici. Facehugger: The ALIEN tracker applied to faces.

In ECCV Workshops and Demonstrations. 2012. 2

[17] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof.

Online multi-class LPBoost. In CVPR, 2010. 1, 2

[18] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.

On-line random forests. In ICCV, 2009. 2

[19] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof.

Prost: Parallel robust online simple tracking. In CVPR, 2010.

5, 7

[20] L. Sevilla-Lara and E. G. Learned-Miller. Distribution fields

for tracking. In CVPR, 2012. 1, 2, 5, 6, 7

[21] K. Zhang, L. Zhang, and M.-H. Yang. Real-time compres-

sive tracking. In ECCV, 2012. 1, 2, 5, 7

2047

