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Abstract

This paper considers the problem of detecting causal in-
teractions in video clips. Specifically, the goal is to detect
whether the actions of a given target can be explained in
terms of the past actions of a collection of other agents. We
propose to solve this problem by recasting it into a directed
graph topology identification, where each node corresponds
to the observed motion of a given target, and each link in-
dicates the presence of a causal correlation. As shown in
the paper, this leads to a block-sparsification problem that
can be efficiently solved using a modified Group-Lasso type
approach, capable of handling missing data and outliers
(due for instance to occlusion and mis-identified correspon-
dences). Moreover, this approach also identifies time in-
stants where the interactions between agents change, thus
providing event detection capabilities. These results are il-
lustrated with several examples involving non–trivial inter-
actions amongst several human subjects.

1. Introduction and Motivation
The problem of identifying causal interactions amongst

targets in a video sequence has been the focus of consider-

able attention in the past few years. A large portion of the

existing body of work in this field uses human annotated

video to build a storyline that includes both recognizing

the activities involved and the causal relationships between

them (see for instance [10] and references therein). While

these methods are powerful and work well when suitably

annotated data is available, annotating video clips is expen-

sive and parsing relevant actions requires domain knowl-

edge which may not be readily available. Indeed, in many

situations, unveiling potentially hidden causal relationships

is a first step towards building such knowledge.

In this paper we consider the problem of identifying

causal interactions amongst targets, not necessarily human,
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from unannotated video sequences and without prior do-

main knowledge. Our approach exploits the concept of

“Granger Causality” [9], that formalizes the intuitive idea

that if a time series {x(t)} is causally related to a second one

{y(t)}, then knowledge of the past values of {y}t1 should

lead to a better prediction of future values of {x}t+k
t . In

[14], Prabhakar et. al. successfully used a frequency do-

main reformulation of this concept to uncover pairwise in-

teractions in scenarios involving repeating events, such as

social games. This technique was later extended in [17]

to model causal correlations between human joints and ap-

plied to the problem of activity classification. However,

since this approach is based upon estimating the cross-

covariance density function between events, it cannot han-

dle situations where these events are non repeating, are too

rare to provide an accurate estimate, or where these esti-

mates are biased by outliers or missing data. Further, esti-

mating a pairwise measure of causal correlation requires a

spectral factorization of the cross-covariance, followed by

numerical integration and statistical thresholding, limiting

the approach to moderately large problems.

To circumvent these problems, in this paper we propose

an alternative approach based upon recasting the problem

into that of identifying the topology of a sparse (directed)

graph, where each node corresponds to the time traces of

relevant features of a target, and each link corresponds to a

regressor. The situation is illustrated in Fig. 1 using as an

example the problem of finding causal relations amongst 4

tennis players, leading to a graph with 4 nodes, and poten-

tially 12 (directed) links. Note that in general, the problem

of identifying causal relationships is ill posed (unless one

wants to identify the set of all individuals that could possi-

bly have causal connections), due to the existence of sec-

ondary interactions. To illustrate this point, consider a very

simplistic scenario with three actors A, B, and C, where A

copies (with some delay) the actions of B, which in turn

mimics C, also with some delay. In this situation, the ac-

tions of A can be explained in terms of either those of B de-

layed one time sample, or those of C delayed by two sam-

ples. Thus, an algorithm based upon a statistical analysis
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would identify a causal connection between A and C, even

though there is no direct link between them. Further, if the

actions of C can be explained by some simple autoregres-

sive model of the form:

C(t) =
∑

aiC(t− i)

then it follows that the actions of A can be explained by the

same model, e.g.

A(t) =
∑

aiA(t− i)

Hence, multiple graphs topologies, some of which include

self-loops, can explain the same set of time-series. On the

other hand, note that in this situation, the sparsest graph (in

the sense of having the fewest links) is the one that cor-

rectly captures the causality relations: the most direct cause

of A is B and that of B is C, with C potentially being ex-

plained by a self-loop. To capture this feature and regularize

the problem, in the sequel we will seek to find the sparsest

graph, in the sense of having the least number of intercon-

nections, that explains the observed data, reflecting the fact

that, when alternative models are possible, often the most

parsimonious is the correct one. Our main result shows that

the problem of identifying sparse graph structures from ob-

served noisy data can be reduced to a convex optimization

problem (via the use of Group Lasso type arguments) that

can be efficiently solved. The advantages of the proposed

methods are:

• Its ability to handle complex scenarios involving non-

repeating events, environmental changes, collections

of targets that do not necessarily split into well defined

groups, outliers and missing data.

• The ability to identify the sparsest interaction structure

that explains the observed data (thus avoiding labeling

as causal connections those indirect correlations medi-

ated only by an intermediary), together with a sparse

“indicator” function whose support set indicates time

instants where the interactions between agents change.

• Since the approach is not based on semantic analysis,

it can be applied to the motion of arbitrary targets, not

necessarily humans (indeed, it applies to arbitrary time

series including for instance economic or genetic data).

• From a computational standpoint, the resulting opti-

mization problems have a specific form amenable to

be solved by a class of iterative algorithms [5, 3], that

require at each step only a combination of thresholding

and least-squares approximations. These algorithms

have been shown to substantially outperform conven-

tional convex-optimization solvers both in terms of

memory and computation time requirements.

The remainder of the paper is organized as follows. In sec-

tion 2 we provide a formal reformulation of the problem

of finding causal relationships between agents as a sparse

graph identification problem. In section 3, we show that

this problem can be efficiently solved using a re-weighted

Group Lasso approach. Moreover, as shown there, the re-

sulting problem can be solved one node at a time using first

order methods, which allows for handling situations involv-

ing a large number of agents. Finally, the effectiveness of

the proposed method is illustrated in section 4 using both

simple scenarios (for which ground truth is readily avail-

able) and video clips of sports, involving complex, non-

repeating interactions amongst many agents.

Figure 1. Finding causal interactions as a graph identification prob-

lem. Top: sample frame from a doubles tennis sequence. Bottom:

Representation of this sequence as a graph, where each node rep-

resents the time series associated with the position of each player

and the links are vector regressive models. Causal interactions ex-

ist when one of the time series can be explained as a combination

of past values of the others.

2. Preliminaries
For ease of reference, in this section we summarize the

notation used in the paper and give a formal definition of

the problem under consideration.

2.1. Notation
σi(M) ith largest singular value of the matrix M.

‖M‖∗ nuclear norm: ‖M‖∗ .
=

∑
i σi(M).

‖M‖F Frobenious norm: ‖M‖2F .
=

∑
i,j M

2
ij

‖M‖1 �1 norm: ‖M‖1 .
=

∑
i,j |Mij |.

‖M‖o �o quasi-norm: ‖M‖o .
=

number of non-zero elements in M.

◦ Hadamard product of matrices: (A ◦
B)i,j = Ai,jBi,j .
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2.2. Statement of the Problem

Next, we formalize the problem under consideration.

Consider a scenario with P moving agents, and denote by

Q̃p(t) the 3D homogenous coordinates of the pth individ-

ual at time t. Motivated by the idea of Granger Causality,

we will say that the actions of this agent depend causally

from those in a set Ip (which can possibly contain p itself),

if Q̃p(t) can be written as:

Q̃p(t) =
∑
j∈Ip

N∑
n=0

ajp(n)Q̃j(t− n) + η̃p(t) + ũp(t) (1)

Here ajp are unknown coefficients, and η̃p(t) and ũp(t) rep-

resent measurement noise and a piecewise constant signal

that is intended to account for relatively rare events that

cannot be explained by the (past) actions of other agents.

Examples include interactions of an agent with the environ-

ment, for instance to avoid obstacles, or changes in the inter-

actions between agents. Since these events are infrequent,

we will model ũ as a signal that has (component-wise) a

sparse derivative. Note in passing that since (1) involves ho-

mogeneous coordinates, the coefficients aj,p(.) satisfy the

following constraint1

∑
j∈Ip

N∑
n=0

ajp(n) = 1 (2)

Our goal is to identify causal relationships using as data

2D measurements qp(t) in F frames of the affine projec-

tions of the 3D coordinates Q̃p(t) of the targets. Note that,

under the affine camera assumption, the 2D coordinates are

related exactly by the same regressor parameters [2]. Thus,

(1) holds if and only if:

qp(t) =
∑
j∈Ip

N∑
n=0

ajp(n)qj(t− n) + ũp(t) + ηp(t) (3)

In this context, the problem can be precisely stated as:

Given qp(t) (in F number of frames) and some a-priori

bound N on the order of the regressors (that is the “mem-

ory” of the interactions), find the sparsest set of equations

of the form (3) that explains the data, that is:

min
aj,p,ηp,up

∑
nIp (4)

subject to (2) and:

qp(t) =
∑
j∈Ip

N∑
n=0

ajp(n)qj(t− n) +

up(t) + ηp(t), p = 1 . . . , P and t = 1, ..F (5)

1This follows by considering the third coordinate in (1)

where nIp denotes the cardinality of the set Ip. Rewriting

(5) in matrix form yields:

[xp;yp] = [Bp, I][a
T
p u

T
xp
uT
yp
]T + ηp (6)

where

qp(t) = [xp(t)
Typ(t)

T ]T

up(t) = [uT
xp(t)

uT
yp(t)

]T

ηp(t) = [ηxp(t)
T ηyp(t)

T ]T

xp = [xp(F )xp(F − 1)...xp(1)]
T

yp = [yp(F )yp(F − 1)...yp(1)]
T

ap = [aT1p,a
T
2p, ...,a

T
Pp]

T

aip = [aip(0), aip(1), ..., aip(N)]T

uxp
= [uxp(F )uxp(F−1)...uxp(1)]

T

uyp = [uyp(F )uyp(F−1)...uyp(1)]
T

Bp = [Xp;Yp]

Xp = [hankel(x1, N), ..., hankel(xP , N)]

Yp = [hankel(y1, N), ..., hankel(yP , N)]

and where, for a sequence z(t), hankel(z, N) denotes its

associated Hankel matrix:

hankel(z, N) =⎛
⎜⎜⎜⎜⎜⎝

z(F ) z(F − 1) · · · z(F −N)
z(F − 1) z(F − 2) · · · z(F −N − 1)
z(F − 2) z(F − 3) · · · z(F −N − 2)

...
... · · · ...

z(N + 1) z(N) · · · z(1)

⎞
⎟⎟⎟⎟⎟⎠

It follows that a description of all the interactions amongst

agents (that is the complete graph structure) is captured by

a matrix equation of the form:

q = [B, I][aTuT ]T + η (7)

where

q =
[
q1

T ,q2
T ,q3

T , · · · ,qP
T
]T

u =
[
u1

T ,u2
T ,u3

T , · · · ,uP
T
]T

a =
[
a1

T ,a2
T ,a3

T , · · · ,aPT
]T

η =
[
η1

T , η2
T , η3

T , · · · , ηPT
]T

(8)

and

B =

⎡
⎢⎢⎢⎣

B1 0 · · · 0
0 B2 · · · 0
...

...
...

...

0 0 · · · BP

⎤
⎥⎥⎥⎦

Thus, in this context, the problem of interest can be for-

malized as finding the block–sparsest solution to the set of

linear equations (2) and (7).
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The problem of identifying a graph structure subject to

sparsity constraints, has been the subject of intense research

in the past few years. For instance, [1] proposed a Lasso

type algorithm to identify a sparse network where each link

corresponds to a VAR process. The main idea underlying

this method is to exploit the fact that penalizing the �1 norm

of the vector of regression coefficients tends to produce

sparse solutions. However, enforcing sparsity of the entire

vector of regressor coefficients does not necessarily result

in a sparse graph structure, since the resulting solution can

consist of many links, each with a few coefficients. This

difficulty can be circumvented by resorting to group Lasso

type approaches [18], which seek to enforce block sparsity
by using a combination of �1 and �2 norm constraints on

the coefficients of the regressor. While this approach was

shown to work well with artificial data in [11], exact re-

covery of the underlying network can be only guaranteed

when the data satisfies suitable “incoherence” type condi-

tions [4]. Finally, a different approach was pursued in [13],

based on the use of a modified Orthogonal Least Squares

algorithm, Cyclic Orthogonal Least Squares. However, this

approach requires enforcing an a-priori limit on the number

of links allowed to point to a single node, and such informa-

tion may not be readily available, specially in cases where

this number has high variability amongst nodes. To address

these difficulties, in the next section we develop a convex

optimization based approach to the problem of identify-

ing sparse graph structures from observed noisy data. This

method is closest in spirit to that in [11], in the sense that it

is also based on a group Lasso type argument. The main dif-

ferences consist in the ability to handle the unknown inputs

ũp(t), needed to model exogenous disturbances affecting

the agents, and in a reformulation of the problem, that al-

lows for using a re-weighted iterative type algorithm, lead-

ing to substantially sparser solutions, even when the condi-

tions in [4] fail.

3. Causality Identification Algorithm

In this section we present the main result of this paper,

an algorithm to search for block-sparse solutions to (7). For

each fixed p, the algorithm searches for sparse solutions

to (6) by solving (iteratively) the following problem (sug-

gested by the re-weighted heuristic proposed in [7])

min
ap,uxp ,uyp

P∑
i=1

wa
j (‖aip‖2) + λ

∥∥diag(wu)[Δuxp ; Δuyp ]
∥∥
1

subject to: ‖ηp‖∞ ≤ ε, p = 1, . . . , P.

P∑
i=1

N∑
n=0

aip(n) = 1, p = 1, . . . , P.

(9)

where [Δuxp ; Δuyp ] represents the first order differences

of the exogenous input vector [uxp
;uyp

], Wa and Wu

are weighting matrices, and λ is a Lagrange multiplier that

plays the role of a tuning parameter between graph sparsity

and event sensitivity.

Intuitively, for a fixed set of weights w, the algorithm

attempts to find a block sparse solution to (6) and a set of

sparse inputs Δuxp
; Δuyp

, by exploiting the facts that min-

imizing
∑

i ‖aip‖2 (the �2,1 norm of the vector sequence

{aip}) tends to maximize block-sparsity [18], while min-

imizing the �1 norm maximizes sparsity [16]. Once these

solutions are found, the weights w are adjusted to penal-

ize those elements of the sequences with small values, so

that in the next iteration solutions that set these elements to

zero (hence further increasing sparsity) are favored. Note

however, that proceeding in this way, requires solving at

each iteration a problem with n = P (Pnr + F ) variables,

where P and F denote the number of agents and frames, re-

spectively, and where nr is a bound on the regressor order.

On the other hand, it is easily seen that both the objective

function and the constraints in (9) can be partitioned into

P groups, with the pth group involving only the variables

related to the pth node. It follows then that problem (9) can

be solved by solving P smaller problems of the form:

min
ap,uxp ,uyp

P∑
i=1

wa
j (‖aip‖2) + λ

∥∥diag(wu)[Δuxp
; Δuyp

]
∥∥
1

subject to: ‖ηp‖∞ ≤ ε and

P∑
i=1

N∑
n=0

aip(n) = 1 (10)

leading to the algorithm given below:

Algorithm 1: REWEIGHTED CAUSALITY ALGORITHM

for each p
wa = [1, 1, ..., 1]
wu = [1, 1, ..., 1]
S > 1 (self loop weight)

s = [1, 1, ..., S, ..., 1] (p’th element is S)

while not converged do
1. solve (9)

2. wa
j = 1/(‖aip‖2 + δ)

3. wa
j = wa

j ◦ s (Penalization self loops)

4. wu = 1./(abs([Δuxp
; Δuyp

]) + δ)
end while
5. At this point ajp(.), Ip and up(t) have been identified

end for

It is worth emphasizing that, since the computational

complexity of standard interior point methods grows as n3,

solving these smaller P problems leads to roughly a O(P 2)
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reduction in computational time over solving a single, larger

optimization. Thus, this approach can handle moderately

large problems using standard, interior-point based, semi-

definite optimization solvers. Larger problems can be ac-

commodated by noting that the special form of the objec-

tive and constraints allow for using iterative Augmented La-

grangian Type Methods (ALM), based upon computing, at

each step, the closed form solution to suitable intermediate

optimization problems. While a complete derivation of such

an algorithm is beyond the scope of this paper, using results

from [12] it can be shown that each step requires only a

combination of thresholding and least-squares approxima-

tions. Moreover, it can be shown that such an algorithm

converges Q-superlinearly.

4. Handling Outliers and Missing Data

The algorithm outlined above assumes an ideal situa-

tion where the data matrix B is perfectly known. How-

ever, in practice many of its elements may be outliers (due

to misidentified correspondences) or missing (due to occlu-

sion). As we briefly show next, these situations can be effi-

ciently handled by performing a structured robust PCA step

[3] to obtain a “clean” data matrix, prior to applying Algo-

rithm 1. From equation (6) it follows that, in the absence of

exogenous inputs and noise:

[
x1 . . .xP

y1 . . .yP

]
=

[
X1 . . .XP

Y1 . . .YP

] [
a1 . . .aP

]
(11)

Since xi ∈ {col(Xj)} and yi ∈ {col(Yj}), it follows that

the sets {col(Xi)} and {col(Yi)} are self-expressive, or,

equivalently, the matrices X .
=

[
X1 . . .XN

]
and Y .

=[
Y1 . . .YN

]
are rank deficient. Consider now the case

where some elements xi, yi of X and Y are missing. From

the self-expressive property of {col(Xi)} and {col(Yi)} it

follows that these missing elements are given by:

xi = argmin
x

rank(X ), yi = argmin
y

rank(Y) (12)

Similarly, in the presence of outliers, X ,Y can be decom-

posed into the sum of a low rank matrix (the clean data) and

a sparse one (the outliers) by solving a problem of the form

min rank
(Xo

Yo

)
+ λ

∥∥∥∥EX

EY

∥∥∥∥
o

s. t.:

[Xo

Yo

]
+

[
EX

EY

]
=

[X
Y
]

From the reasoning above it follows that in the presence

of noise and exogenous outputs, the clean data record can

be recovered from the corrupted, partial measurements by

solving the following optimization problem:

min

∥∥∥∥Xo

Yo

∥∥∥∥
∗
+ λ1

∥∥∥∥MX ◦EX

MY ◦EY

∥∥∥∥
1

+ λ2

∥∥∥∥MX ◦ΔUX

MY ◦ΔUY

∥∥∥∥
1

+λ3

∥∥∥∥MX ◦ΞX

MY ◦ΞY

∥∥∥∥
F

subject to:[X
Y
]
=

[Xo

Yo

]
+

[
EX

EY

]
+

[
UX

UY

]
+

[
ΞX

ΞY

]

(13)

where we have used the standard convex relaxations of rank

and cardinality2. Here Ξ and U denote noise and piece-

wise constant exogenous matrices, ΔU denotes the matrix

obtained by taking the difference between consecutive el-

ements in U, and MX (MY ) is a “mask” matrix, with

mi,j = 0 if the element (i, j) in X ( Y) is missing, mi,j = 1
otherwise, used to avoid penalizing elements in E,Ξ,U
corresponding to missing data. Problem (13) is a structured

robust PCA problem (due to the Hankel structure of X ,Y)

that can be efficiently solved using the first order method

proposed in [3], slightly modified to handle the terms con-

taining ΔU.

5. Experimental Results
In this section we illustrate the effectiveness of the pro-

posed approach using several video clips (provided as sup-

plemental material). The results of the experiments are dis-

played using graphs embedded on the video frames: An ar-

row indicates causal correlation between agents, with the

point of the arrow indicating the agent whose actions are af-

fected by the agent at its tail. The internal parameters of the

algorithm were experimentally tuned, leading to the values

ε = 0.1, λ = 0.05, self loop weights S = 10. The algo-

rithm is fairly insensitive to the value of the regularization

parameters λ and S, which could be adjusted up or down by

an order of magnitude without affecting the structure of the

resulting graph. Finally, we used regressor order N=2 for

the first three examples and N=4 for the last one, a choice

that is consistent with the frame rate and the complexity of

the actions taking place in each clip.

5.1. Clips from the UT-Interaction Data Set

We considered two video clips from the UT Human In-

teraction Data Set [15] (sequences 6 and 16). Figures 2 and

5 compare the results obtained applying the proposed al-

gorithm versus Group Lasso (GL) [11] and Group Lasso

combined with the reweighted heuristic described in (9)

(GLRW). In all cases, the inputs to the algorithm were

the (approximate) coordinates of the heads of each of the

agents, normalized to the interval [−1, 1], artificially cor-

rupted with 10% outliers. Notably, the proposed algorithm

2As shown in [6, 8] under suitable conditions these relaxations recover

the exact minimum rank solution.
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Figure 2. Sample frames from the UT sequence 6 with the iden-

tified causal connections superimposed. Top: Proposed Method.

Center: Reweighted Group Lasso. Bottom: Group Lasso. Only

the proposed method identifies the correct connections.

was able to correctly identify the correlations between the

agents from this very limited amount of information, while

the others failed to do so. Note in passing that in both

cases none of the algorithms were directly applicable, due

to some of the individuals leaving the field of view or be-

ing occluded. As illustrated in Fig. 3, the missing data was

recovered by solving an RPCA problem prior to applying

Algorithm 1. Finally, Fig. 4 sheds more insight on the key

role played by the sparse signal u. As shown there, changes

in u correspond exactly to time instants when the behavior

of the corresponding agent deviates from the general pattern

followed during most of the clip.

Figure 3. Time traces of the individual heads in the UT sequence

6, artificially corrupted with 10 % outliers. The outliers were re-

moved and the missing data due to targets leaving the field of view

was estimated solving a modified RPCA problem.

� �� �� �� �� �� �� 	� 
� �� ���

��


���

���

���

�

��

��

��

�

Results

Frame number

In
p

u
t 

a
p

p
lie

d

����������������

����������������

Figure 4. Sample (derivative sparse) exogenous signals in the UT

sequence 6. The changes correspond to the instants when the sec-

ond person starts moving towards the first, who remains stationary,

and when the two persons merge in an embrace.

Figure 5. Sample frames from the UT sequence 16. Top: Correct

correlations identified by the Proposed Method. Center and Bot-

tom: Reweighted Group Lasso and Group Lasso (circles indicate

self-loops).

5.2. Doubles Tennis Experiment

This experiment considers a non-staged real-life sce-

nario. The data consists of 230 frames of a video clip from

the Australian Open Tennis Doubles Final games. The goal

here is to identify causal relationships between the differ-

ent players using time traces of the respective centroid po-

sitions. Note that in this case the ground truth is not avail-

able. Nevertheless, since players from the same team usu-

ally look at their opponents and react to their motions, we

expect a strong causality connection between members of
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opposite teams. This intuition is matched by the correla-

tions unveiled by the algorithm, shown in Fig. 6. The iden-

tified sparse input corresponding to the vertical direction is

shown in Fig. 7 (similar results for the horizontal compo-

nent are omitted due to space reasons.)

Figure 6. Sample frames from the tennis sequence. Top: The

proposed method correctly identifies interactions between oppo-

site team members. Center: Reweighted Group Lasso misses

the interaction between the two rear-most individuals of opposite

teams, generating self loops instead (denoted by the disks). Bot-

tom: Group Lasso yields an almost complete graph.

Figure 7. Exogenous signal corresponding to the vertical axis for

the tennis sequence. The change in one component corresponds

to the instant when the leftmost player in the bottom team moves

from the line towards the net, remaining closer to it from then on.

5.3. Basketball Game Experiment

This experiment considers the interactions amongst play-

ers in a basketball game. As in the case of the tennis players,

since the data comes from a real life scenario, the ground

truth is not available. However, contrary to the tennis game,

this scenario involves complex interactions amongst many

players, and causality is hard to discern by inspection. Nev-

ertheless, the results shown in Fig. 8, obtained using the

position of the centroids as inputs to our algorithm, match

our intuition. Firstly, one would expect a strong cause/effect

connection between the actions of the player with the ball

and the two defending opponents facing him. These con-

nections (denoted by the yellow arrows) were indeed suc-

cessfully identified by the algorithm. The next set of causal

correlations is represented by the (blue, light green) and

(black, white) arrow pairs showing the defending and the

opponent players on the far side of the field and under the

hoop. An important, counterintuitive, connection identified

by the algorithm is represented by the magenta arrows be-

tween the right winger of the white team with two of his

teammates: the one holding the ball and the one running

behind all players. While at first sight this connection is not

as obvious as the others, it becomes apparent towards the

end of the sequence, when the right winger player is signal-

ing with a raised arm. Notably, our algorithm was able to

unveil this signaling without the need to perform a semantic

analysis (a very difficult task here, since this signaling is ap-

parent only in the last few frames). Rather, it used the fact

that the causal correlation was encapsulated in the dynamics

of the relative motions of these players.

6. Conclusions

In this paper we propose a new method for detecting
causal interactions between agents using video data. The
main idea is to recast this problem into a blind directed
graph topology identification, where each node corresponds
to the observed motion of a given target, each link indicates
the presence of a causal correlation and the unknown inputs
account for changes in the interaction patterns. In turn, this
problem can be reduced to that of finding block-sparse so-
lutions to a set of linear equations, which can be efficiently
accomplished using an iterative re-weighted Group-Lasso
approach. The ability of the algorithm to correctly iden-
tify causal correlations, even in cases where portions of the
data record are missing or corrupted by outliers, and the
key role played by the unknown exogenous input were il-
lustrated with several examples involving non–trivial inter-
actions amongst several human subjects. Remarkably, the
proposed algorithm was able to identify both the correct in-
teractions and the time instants when interactions amongst
agents changed, based on minimal motion information: in
all cases we used just a single time trace per person. This
success indicates that in many scenarios, the dynamic infor-
mation contained in the motion pattern of a single feature
associated with a target is rich enough to enable identifying
complex interaction patterns, without the need to track mul-
tiple features, perform a semantic analysis or use additional
domain knowledge.
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Figure 8. Sample frames from a Basketball game. Top: proposed method. Center: Reweighted Group Lasso misses the interaction between

the signaling player and his teammates. Bottom: Group Lasso yields an almost complete graph.
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