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Abstract

We present a novel method to auto-calibrate gaze esti-
mators based on gaze patterns obtained from other viewers.
Our method is based on the observation that the gaze pat-
terns of humans are indicative of where a new viewer will
look at [12]. When a new viewer is looking at a stimu-
lus, we first estimate a topology of gaze points (initial gaze
points). Next, these points are transformed so that they
match the gaze patterns of other humans to find the correct
gaze points.

In a flexible uncalibrated setup with a web camera and
no chin rest, the proposed method was tested on ten sub-
jects and ten images. The method estimates the gaze points
after looking at a stimulus for a few seconds with an aver-
age accuracy of 4.3◦. Although the reported performance
is lower than what could be achieved with dedicated hard-
ware or calibrated setup, the proposed method still provides
a sufficient accuracy to trace the viewer attention. This is
promising considering the fact that auto-calibration is done
in a flexible setup , without the use of a chin rest, and based
only on a few seconds of gaze initialization data. To the best
of our knowledge, this is the first work to use human gaze
patterns in order to auto-calibrate gaze estimators.

1. Introduction
Gaze estimation is the process of determining where a

person is looking at in a predefined plane. It is important

for many applications such as human-computer interaction,

marketing and advertisement [1], and human behavior anal-

ysis. The applications go beyond that to help disabled users

(e.g. eye typing) [2].

In general, gaze estimation methods fall into two cate-

gories: 1) appearance-based methods [5, 6, 7] and 2) 3D-

eye-model-based methods [8, 9, 10, 14]. The former ex-

tracts features from images of the eyes and map them to

points on the gaze plane (i.e. gaze points). The latter tries

to construct a 3D model of the eye and estimates the visual

axis. The intersection of the axis and the gaze plane de-

termines the gaze point. Regardless of the gaze estimation

method, a calibration procedure is needed to set some pa-

rameters. The calibration can be camera-based (estimating

the camera parameters), geometric calibration (estimating

the relations between the scene components like the camera,

the gaze plane, and the user), personal calibration (deter-

mining the angle between visual and optical axes), or gaze

mapping correlation [11]. An extensive overview of the dif-

ferent approaches of gaze estimation can be found in [11].

3D-eye models require special equipment like cameras

with multiple light sources and infrared. The costs and

the strict requirements for their use (infrared, for example,

is not reliable when used outdoors) limit their widespread

applicability. On the other hand, appearance-based ap-

proaches are less accurate than 3D-eye-models and less in-

variant to head pose changes. Yet, low-cost cameras are

common and sufficient for appearance-based approaches

which makes them suitable for applications where high ac-

curacy is not required. Consider for example an applica-

tion of people looking at advertisements for marketing re-

search. Asking each participant to buy dedicated cameras or

to do the experiment in the lab is time and money consum-

ing, while low-cost cameras are integrated in almost every

laptop or tablet nowadays. Appearance-based methods are

more suitable in such a situation.

Besides the choice of the recording equipment, the ap-

proach allows for a certain level of flexibility of the setup

and the calibration. During calibration, users are usually

asked to fixate their gaze on certain points while images

of their eyes are captured. This procedure is cumbersome

and sometimes impractical. In case of, for example, tracing

costumers attention in shops, estimating the gaze points or

regions should be done passively. Hence, some approaches

suggest methods to reduce the number of calibration points.

However, in case of passive gaze estimation, the calibration

should be done completely automatically without a calibra-

tion procedure enforced on the user.

Some recent studies focus on visual saliency information
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in images and videos to avoid applying active human cali-

bration. Sugano et al. [4, 3] treat saliency maps extracted

from videos as probability distributions for gaze points.

Gaussian process regression is used to learn the mapping

between the images of the eyes and the gaze points. Chen

and Ji [14] use 3D models of the eye and incrementally es-

timate the angle between the visual and the optical axes by

combining the image saliency with the 3D model. The rea-

son behind the use of saliency is that people look at salient

regions with higher probability than other regions. How-

ever, as shown in [12], the computational saliency models

do not frequently match the actual human saccades (Figure

1). In this paper, we claim that the gaze patterns of several

viewers provide important cues for the auto-calibration of

new viewers. This is based on the assumption that humans

produce similar gaze patterns when they look at a stimulus.

The assumption is supported by Judd et al. [12], where the

authors show that fixation locations of several humans are

strongly indicative, in general, of where a new viewer will

look at. To the best of our knowledge, our work is the first

to use human gaze patterns in order to auto-calibrate gaze

estimators.

We present a novel approach to auto-calibrate gaze esti-

mators based on the similarity of human gaze patterns. In

addition, we make use of the topology of the gaze points.

Consider, in a fully uncalibrated setting, a person who fol-

lows a stimulus from left to right. It would be difficult to

indicate where the gaze points are on the gaze plane. How-

ever, their relative locations can still be inferred and used

for auto-calibration. In a fully uncalibrated setting, when

a new subject looks at a stimulus, initial gaze points are

inferred. Then, a transformation is computed to map the

initial gaze points to match the gaze patterns of other users.

In this way, we use all the initial gaze points to match the

human gaze patterns instead of using each gaze point at the

time. Consequently, the transformed points represent the

auto-calibrated estimated gaze points.

The rest of the paper is organized as follows: the pro-

posed method is explained is Section 2. Next, we describe

the experimental setup and evaluation in Section 3. The re-

sults are discussed in Section 4. Finally, the conclusions are

given in Section 5.

2. Calibration-free gaze estimation using hu-
man gaze patterns

We build upon the observation that gaze patterns of in-

dividuals are similar for a certain stimulus [12]. Although,

there is no guarantee that people always look at the same

regions, human gaze patterns provide important cues about

the locations of the gaze points of a new observer. The

pipeline of the proposed method is as follows: when a new

user is looking at a stimulus, the initial gaze points are com-

puted first. Then, a transformation is inferred which maps

Figure 1. (Taken from [12]). Examples where saliency models do

not match the human fixations. Bright spots indicate the saliency

model predictions and the red dots refer to the human gaze points.

the initial gaze points to gaze patterns of other individu-

als. Here, we consider a transformation with translation and

scaling (per dimension). Other transformations like rotation

or shearing might provide better mapping. Yet, for simplic-

ity, we focus on translation and scaling which are the most

common transformations for gaze estimation. Figure 2 il-

lustrates the pipeline.

2.1. Initial gaze points

The final gaze points should eventually match the human

gaze patterns. However, we need to start from an initial
estimation of the gaze points. Hereafter, we present two

methods to achieve this: estimation of initial gaze points

from eye templates and estimation based on 2D-manifold.

2.1.1 Eye templates

In this approach, the eye images of a person are captured

(templates) while fixating the eyes on points on a gaze

plane. The images of the eyes of a new user are captured

and compared with the template eye images. The idea is to

reconstruct the eye image at hand based on the eye image

templates. Note that here the eye templates are captured

once from a single subject. When a new subject uses the

gaze estimator, his or her eye images are compared with the

already-collected eye templates. This is different from the

traditional calibration-based gaze estimator where the eye

templates are captured and stored for each subject. This

process can be performed at the raw intensity level or at

the feature level. We will refer to both eye image repre-

sentations as feature vectors. Consider {ti} to be the tem-

plate feature vectors, and {pi} denotes the corresponding
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Figure 2. Graphical illustration of the proposed method. Template gaze patterns refer to the gaze points of other individuals for the same

gaze plane (display). When a new user looks at the stimulus, his or her initial gaze points are first estimated which preserves the relative

locations between the gaze points. These points are transformed so that they match the template gaze patterns.

gaze points. Furthermore, {wi} corresponds to the com-

puted weights to reconstruct a new eye image feature vector

t̂:

t̂ =
∑

i

witi s.t.
∑

i

wi = 1. (1)

Then the corresponding gaze point p̂ for t̂ is calculated

as follows:

p̂ =
∑

i

wipi. (2)

To find the weights {wi} values, Tan et al. [13] suggest

to first select a subset of {ti} where the first and the sec-

ond neighbors of the sample are selected for training. The

weight values are then computed as in [15]. Lu et al. [6]

select only the direct neighbors as a training subset. Here,

we select only the direct neighbors as in [6].

For a new user in a different unknown scene setup, the

initial gaze points will be incorrect (without calibration).

However, the relative locations between the gaze points are

preserved.

Figure 3. The projection of features of 9 eye images on a 2-D man-

ifold (red, left) and the positions of the corresponding gaze points

on the gaze plane (blue, right). The 2D manifold is computed us-

ing 800 eye images corresponding to various locations on the gaze

plane.

2.1.2 2D manifold

Lu et al. [6] find that the template eye features correspond to

a 2D manifold while retaining most of the important infor-

mation. The reason is that the eyes move, in the appearance-

based representation, in two degrees of freedom. Figure 3

shows the projection of features of 9 eye images on a 2D

manifold and their corresponding 9 gaze points on the gaze

plane. It can be derived that the feature projections preserve

the relative locations of the corresponding gaze points.

The 2D manifold can be obtained by projecting the tem-
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plate features on the first two principal components. How-

ever, the locations on the 2D manifold might be inter-

changed, transposed, or rotated when compared with the

corresponding gaze points. For example, when the eyes

move mainly vertically, the first principal component repre-

sents the pupil changes on the Y dimension and the second

principal component represents the X dimension. Hence,

the projected locations need to be transposed. As this

step is performed once offline, the projected locations are

checked once and transformed to match the corresponding

gaze points locations. As in the eye templates method, this

procedure is followed once with a single (template) subject.

When a new user looks at a stimulus, the eye features are

projected on the offline-learned 2D manifold and the pro-

jected values are treated as initial gaze points.

The previous two methods (eye templates and 2D man-

ifold) provide a way to find the initial gaze points. In the

next section we explain how to map these points to match

the template (human) gaze patterns.

2.2. Gaze points mapping

Judd et al. [12] show that the fixation points of several

humans correspond strongly with the gaze points of a new

user. We aim to exploit this observation to perform cali-

bration without any active user participation. To this end,

we transform the initial (uncalibrated) gaze points so they

match the template gaze patterns for a stimulus. By apply-

ing the aforementioned transformation, we aim to transfer

the gaze points to their correct positions without explicit

calibration. We present two different methods to find the

best transformation. Let P = {p1,p2, ....pM} denotes the

gaze patterns of M users (hereafter, we call them template
gaze patterns) where pu = {pu1 , pu2 , ....puSu} consists of the

gaze points of user u, and Su is different for each user. Let

p = {p1, p2, ....pS} be the initial gaze point set for a new

user. The following two methods aim to transform p so it

can match the template gaze patterns P.

2.2.1 K-closest points

This methods tries to find the best mapping which mini-

mizes the sum of distances of each point pj ∈ p to its K
closest neighbors of P. Consider Φ is the set of all map-

pings. The method tries to find a mapping φ̄ ∈ Φ which

satisfies:

φ̄ = argmin
φ
Γ(p,P, φ), (3)

where:

Γ(p,P, φ) =

S∑

j=1

K∑

k=1

‖φ(pj)−N(pj ,P, k)‖. (4)

N(pj ,P, k) is the k closest point from P to pj . φ̄ is

the computed mapping and p̄ = φ̄(p) represents the auto-

calibrated gaze points. Note that we try to match the ini-

tial gaze points with all the gaze patterns in P simultane-

ously. To find p̄ and φ̄, a greedy approach is taken. At each

step, we apply translation in eight directions with different

scales. Then, we adopt the translation and scale which gives

the best outcome according to 4. If none of the explored

transformations is better than the current one, we reduce

the translation step. The process is repeated until no bet-

ter transformation is found i.e. reaching a local minimum.

Since our matching measure is biased to smaller scales of

the initial gaze points, the minimum scale is set to the aver-

age scale of the gaze patterns. To improve the search effi-

ciency, we set the scale and the location of the initial gaze

points to the average scale and location of the template gaze

patterns.

2.2.2 Mixture model

To find the best mapping, this method models the fixations

of the template gaze patterns P by a Gaussian mixture and

transforms the initial gaze points to maximize the proba-

bility density function of the transformed points. While

looking at a stimulus, viewers tend to fixate on some re-

gions. The concept is that the means of the mixture model

components are fit to represent the fixation centers while

the covariance matrices represent the size of the fixations.

Specifically, the method searches for a mapping φ̄ ∈ Φ so

that:

φ̄ = argmax
φ

S∑

j=1

pdf(φ(pj)), (5)

where:

pdf(p) =
K∑

k=1

πkN (p|μk,Σk). (6)

K is the number of model components, πk is the mixing co-

efficient of the kth Gaussian component N (p|μk,Σk) with

μk mean and Σk covariance matrix. Finding φ̄ is done by

the same greedy method described in 2.2.1.

3. Experimental results
In this section, we describe the experimental setup and

the data used to evaluate the performance of our method.

The first ten images of the eye tracking dataset of Judd et

al. [12] are used as stimuli (Figure 4). The dataset has the

advantage of containing the eye tracking data of 15 subjects

for 1003 images collected from Flickr and LabelMe [18].

Hence, we can use this data as template gaze patterns. The

dataset contains landscape and portrait images. The images
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Figure 4. The 10 images used as stimuli in our experiments. The

images show landscapes and street views where multiple objects

are present in the scene.

have a resolution of 1024 × 768. The images contain mul-

tiple objects and they do not necessarily contain faces or

objects centered in the middle of the image, which repre-

sents a realistic stimuli set.

For obtaining the ground truth, the Tobii T60XL gaze es-

timator [16] is used. It uses four infra red diodes mounted

at the bottom of a 24 inch display with a resolution of

1920 × 1200 pixels. The reported accuracy of the gaze

estimator is less than 1◦.

The aim of the scene setup is to allow the subjects to

look at the stimuli without hard constrains e.g. using a chin

rest or sitting at a fixed distance from the stimuli. To collect

the eye images, a web camera is mounted above the screen

to record the subject. The eye image resolution is around

60 × 30. The coordinates and direction of the camera is

unknown with regard to the gaze plane and can change for

each new subject. Ten subjects were asked to sit where they

wanted but within the allowed range of the Tobii system.

The subject’s distance from the display ranged from 55 to

75 cm. No chin rest is used in the experiments so the heads

of the subjects may move during the experiment.

The subjects were asked to look at each image for three

seconds followed by one second of showing a gray image.

The recording of each subject is saved and later analyzed to

estimate the gaze points. We follow Lu et al. [6] approach

to extract the images of the eyes. For each one of the ten

stimuli, the first corresponding web camera frame is taken

as an input by the landmarker [17] to detect the eye cor-

ners. In [3], the eye corners are detected using the OMRON

OKAO vision library. To detect the eye corners for the sub-

sequent frames, we apply template matching using the eye

corners of the first frame (for each stimulus) as templates.

The eye images are then cropped from the corner and re-

sized to 70 × 35. Histogram equalization is later applied

to alleviate the illumination changes.

3.1. Results on artificially distorted data

Our assumption is that a collection of gaze patterns of

individuals can be used to automatically infer the calibra-

tion for the gaze estimation of a new user. In this section,

we validate the assumption on artificially distorted data. We

use the eye tracking dataset in [12] and apply a distortion in

the subject fixations. The distorted fixations are considered

as a simulation of the initial (uncalibrated) gaze points. For

each stimulus, we apply a random translation and scaling

to the fixation set of each subject. Then, the methods in

Sections 2.2.1 and 2.2.2 are used to transform the distorted

gaze points to their correct locations. The first 30 images

in the dataset are used in this experiment. For each im-

age, we tested the subjects with 10 or more fixations. We

discarded the images where the number of active subjects

(10 or more fixations) was less than 6 to ensure sufficient

gaze patterns. Using the K-closest points, the mean accu-

racy across all images is 2.9◦, while the accuracy is 4.7◦

using the mixture model fitting (the scene setup details can

be found in [12]). The same procedure is applied on the

ground truth gaze points obtained from our collected data.

For this dataset, the K-closest points and mixture model fit-

ting obtained accuracies of 2◦ and 2.7◦ respectively. The

results show the validity of the proposed methods to bring

the distorted (uncalibrated) gaze points closer to their cor-

rect locations for different sets of template gaze patterns.

Regarding the parameter setting, we set K in the K-closest

points method to 3 and the number of Gaussian components
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to 5. We examined different values of K and components

number and the performance difference was not significant.

3.2. Results on the real data

The previous section shows how artificially distorted

gaze points can be transformed to their correct locations

with sufficient accuracy using the K-closest points. In this

section, we use the aforementioned collected data to au-

tomatically calibrate the gaze estimator and find the gaze

points from the videos acquired from the web camera. We

apply the two proposed methods (Sections 2.1.1 and 2.1.2)

to find the initial gaze points. For the eye templates method,

25 eye templates were captured while a person was fixating

his eyes at 25 points on a 21.5 inch display. This process

is followed once for a single (template) subject. So recon-

structing an eye image of a new subject from the eye tem-

plates will not be ideal due to the changes in eye appearance

between the template subject and the other subjects. How-

ever, we assume that it still gives a good representation of

the topology of the gaze points. As in [6] we divide the eye

image into a 5x3 grid and sum up the intensity of the pixel

inside each grid cell. The resulting 15 values constitute the

feature vector of the eye image.

Regarding the 2D manifold method, a template subject

was asked to look at random points on the screen while

his face was video recorded. The eye images are cropped

and their feature vectors are computed as previously ex-

plained. Then, the feature vectors are projected on the first

two principal components to constitute a 2D-manifold. The

eye images of a new subject (while looking at a stimulus)

are cropped, and then the feature vectors are extracted and

projected on the same manifold to determine their relative

locations. The distances between the initial gaze points are

much larger than the actual corresponding gaze points. Yet,

this will not affect the results as the initial gaze points will

be scaled while finding the mapping to match the initial

gaze points with the template gaze patterns.

We select the gaze template patterns in two ways: First,

we use the fixation points provided in the eye tracking

dataset [12]. Second, the ground truth of our collected data

(via the Tobii gaze estimator) is used. In this case, for each

subject, we consider the gaze points of the other subjects

as template gaze patterns. The K-closest points and fitting

the mixture model methods are applied to the initial gaze

points. Table 1 shows the results.

The results show that the K-closest points method

achieves higher accuracy than using the mixture model

while 2D manifold outperforms eye templates for both tem-

plate gaze pattern sets. The best accuracy (4.3◦) is obtained

using K-closest points and 2D manifold. Table 2 details the

results per subject/stimulus. Figure 5 shows the results for

the first four images with subject 3.

Regarding the template gaze patterns, the accuracies are

similar for both sets with a slight improvement using the

gaze patterns from [12] dataset. The template gaze pattern

sets were collected in two different experiments on two dif-

ferent groups of subjects. This is interesting as it shows the

general similarity of gaze patterns and hence suggests the

validity of using them in auto-calibration regardless of the

viewers. The gaze estimation accuracies vary for different

subjects. The relatively lower accuracies for some subjects

might be either due to errors in estimating the initial gaze

points, i.e. because of eye appearance variations with the

template subject eye templates which leads to incorrect ini-

tialization, or because of the gaze behavior of the subjects

and its variation with the template gaze patterns.

The stimuli set contains landscapes and street views im-

ages, which makes the auto-calibration more challenging

than images with clearly salient objects where humans usu-

ally focus on. Yet, the reported accuracy (4.3◦) and the re-

sults in Figure 5 show the validity of our approach.

3.3. Comparison with other methods

We compare out method with other state-of-the-art auto-

calibration approaches. The recent work of Chen and Ji [14]

uses a single camera with multiple infrared lights to recon-

struct the 3D eye model while using the saliency to esti-

mate the angle between the visual and optical axes. The au-

thors reported less than 3◦ accuracy using five images and

five subjects. Clearly, the comparison with this method is

not feasible as the authors use different equipment to recon-

struct an accurate 3D eye model.

Sugano et al. [3] adopt an appearance-based gaze esti-

mator and use visual saliency for auto-calibration. The au-

thors reported accuracy of 3.5◦. However, their experimen-

tal setup differ from ours in the following aspects: First, a

chin rest is used in [3] to fixate the head during the exper-

iment while the subjects in our experiment do not use any

tool to fixate their heads. Second, the authors in [3] ask the

subjects to look at a number of 30-second videos for train-

ing (5-20 videos), while in our method the subject needs

to look at a single image for 3 seconds. Images contain

less cues than videos in which moving objects attract the

viewers attention. However, experimenting on still images

is more natural and requiring motion in the scene limits the

applicability of the gaze estimator. Finally, Sugano et al.

analyze the performance variations with respect to different

number of training videos. When training on 5 videos (each

lasts 30 seconds), the average accuracy is about 5.2◦ (the

exact accuracy is not reported as the results are plotted on a

graph). While our method achieves an average accuracy of

4.3◦ by looking at a single image for 3 seconds.

4. Discussion
Although our method cannot obtain the accuracy of dedi-

cated hardware or calibrated setup, it still provides sufficient
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Table 1. Accuracies over different methods and template gaze pattern sets. KCP denotes K-closest points method, GMM refers to Gaussian

mixture model fitting. The best accuracy is yielded using 2D manifold and K-closest points.

Template Gaze Patterns from [12] Template Gaze Patterns from our Data

KCP GMM KCP GMM

Eye Templates 4.7◦ 5.1◦ 5.0◦ 5.3◦

2D Manifold 4.3◦ 4.9◦ 4.6◦ 4.9◦

Table 2. Accuracies of the gaze estimation auto-calibrated using K-closest points and 2D manifold. The accuracies are shown per sub-

ject/stimulus.

Stim. 1 Stim. 2 Stim. 3 Stim. 4 Stim. 5 Stim. 6 Stim. 7 Stim. 8 Stim. 9 Stim. 10 Average
Subject 1 5.6◦ 3.1◦ 2.4◦ 2.9◦ 7.2◦ 5.2◦ 4.4◦ 6.9◦ 6.6◦ 4.7◦ 4.9◦

Subject 2 4.5◦ 2.1◦ 3.5◦ 2.2◦ 4.2◦ 3.5◦ 4.3◦ 6.2◦ 5.8◦ 5.0◦ 4.1◦

Subject 3 4.7◦ 2.8◦ 1.8◦ 2.3◦ 3.6◦ 3.6◦ 3.2◦ 5.1◦ 5.2◦ 6.9◦ 3.9◦

Subject 4 4.9◦ 2.3◦ 2.0◦ 2.7◦ 2.3◦ 2.2◦ 3.7◦ 6.5◦ 5.4◦ 6.9◦ 3.9◦

Subject 5 3.6◦ 3.0◦ 3.5◦ 5.2◦ 5.2◦ 5.3◦ 4.9◦ 5.7◦ 5.2◦ 4.3◦ 4.6◦

Subject 6 4.2◦ 3.3◦ 1.3◦ 2.9◦ 3.3◦ 3.4◦ 4.4◦ 5.3◦ 6.3◦ 6.0◦ 4.0◦

Subject 7 4.7◦ 3.6◦ 3.0◦ 3.1◦ 3.5◦ 4.7◦ 5.2◦ 6.4◦ 7.8◦ 6.3◦ 4.8◦

Subject 8 3.6◦ 3.0◦ 3.5◦ 5.2◦ 5.2◦ 5.3◦ 4.9◦ 5.7◦ 5.2◦ 4.3◦ 4.6◦

Subject 9 4.1◦ 2.5◦ 2.2◦ 3.8◦ 4.4◦ 3.6◦ 4.9◦ 6.5◦ 5.8◦ 4.4◦ 4.2◦

Subject 10 4.3◦ 3.2◦ 3.8◦ 4.2◦ 3.4◦ 4.8◦ 4.6◦ 6.1◦ 6.7◦ 4.9◦ 4.6◦

accuracy to predict the areas of attention. This is especially

important for tasks where gaze estimation is required with

no active participation from the user and using off-the-shelf

hardware. In this work, we try to simulate a flexible setup

and use low-cost publicly available web cameras. There is

a trend nowadays to use eye gaze estimation for electronic

consumer relationship marketing which aims to employ in-

formation technology to understand and fulfill consumers

needs. These applications usually collect the data passively

without user active participation. Our method is suitable for

such applications. Tracing consumers attention when shop-

ping in malls or when exploring advertisements on their lap-

tops are examples of use.

The presented method still has a couple of limitations.

Significant head movements are not addressed here. Prac-

tical gaze estimators should be invariant to such head pose

changes. The method assumes that the template gaze pat-

terns are already available which might not be always the

case. Our future research work is to make use of the initial

gaze points of the subsequent subjects to gradually auto-

calibrate the gaze estimator and to combine the saliency in-

formation with the template gaze patterns.

5. Conclusion
We presented a novel method to auto-calibrate gaze es-

timators in an uncalibrated setup. Based on the observation

that humans produce similar gaze patterns when looking at a

stimulus, we use the gaze patterns of individuals to estimate

the gaze points for new viewers without active calibration.

The proposed method was tested in a flexible setup us-

ing a web camera without a chin rest. To estimate the gaze

points, the viewer needs to look at an image for only 3 sec-

onds without any explicit participation in the calibration.

Evaluated on 10 subjects and 10 images showing landscapes

and street views, the proposed method achieves an accuracy

of 4.3◦. To the best of our knowledge, this is the first work

to use human gaze patterns in order to auto-calibrate gaze

estimators.
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Figure 5. Gaze estimation results for the first four images with

subject 3. The red traces represent the estimated gaze points while

the blue traces represent the ground truth obtained from the Tobii

gaze estimator. The results are achieved using 2D-manifold and

K-closest points.
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