
Random Grids: Fast Approximate Nearest Neighbors and Range
Searching for Image Search

Dror Aiger, Efi Kokiopoulou, Ehud Rivlin
Google Inc.

aigerd@google.com, kokiopou@google.com, ehud@google.com

Abstract

We propose two solutions for both nearest neigh-
bors and range search problems. For the nearest
neighbors problem, we propose a c-approximate so-
lution for the restricted version of the decision prob-
lem with bounded radius which is then reduced to
the nearest neighbors by a known reduction. For
range searching we propose a scheme that learns
the parameters in a learning stage adopting them to
the case of a set of points with low intrinsic dimen-
sion that are embedded in high dimensional space
(common scenario for image point descriptors). We
compare our algorithms to the best known methods
for these problems, i.e. LSH, ANN and FLANN. We
show analytically and experimentally that we can
do better for moderate approximation factor. Our
algorithms are trivial to parallelize. In the experi-
ments conducted, running on couple of million im-
ages, our algorithms show meaningful speed-ups
when compared with the above mentioned methods.

1. Introduction

Proximity problems in high dimensional spaces

find many applications in computer vision. Im-

age structures are commonly described by points

in space and one is searching for similar struc-

tures by applying proximity searching in this space.

A considerably larger effort has been invested in

preprocessing-and-query problems, where the goal

is to construct some data structure on the input point

set which supports proximity queries of a certain

kind. The most common of this kind of problems

is nearest neighbor searching, where we are given

a set P of n points in a high-dimensional space R
d,

and wish to construct a data structure that, given a

query point q, finds the point(s) in P closest to q.

Extensive research on this problem has led to a va-

riety of interesting solutions, both exact and approx-

imate. The dependence on d of the performance of

the resulting algorithms is at least exponential.

Many of the known exact and approximate near-

est neighbor searching data structures can be modi-

fied to report all (or most) points of P that are within

a certain given distance r from a query point q. We

give a brief review of the state-of-the-art approx-

imate nearest neighbor data structures. For more

information and related references see Har-Peled’s

recent book [7]. These approximate nearest neigh-

bor data structures return, for any query point q, a

point p whose distance from q is at most (1 + ε)
times the distance between q and its nearest neigh-

bor. A data structure based on Box-Decomposition

Trees, partitioning space into axis-aligned boxes,

was given by Arya et al. [4]. This structure takes

O(n) space, can be constructed in O(n logn) time,

and answers a query in O( 1
εd

logn) time. To date,

many trade-offs between query time and space have

been achieved, and in all of the more efficient ones

the product of the term depending on ε in the stor-

age and the square of the term depending on ε in the

query time is roughly 1
εd

[5].

To overcome the exponential dependence on d
of the performance of all these data structures, In-

dyk and Motwani introduced a different technique

called Locally Sensitive Hashing (LSH) [9]. The

first component in this method is a reduction from

the problem of approximate nearest neighbor search

to the problem of finding a neighbor at distance

≤ (1 + ε)r if there exists a neighbor at distance r,

for some pre-specified r > 0. Then the latter prob-

lem is solved using a family of hash functions that

tend to map close points to the same bin (an LSH

family in short). The solution of Indyk and Mot-

wani answers a query in O(n
1

1+ε ) time and takes

O(n1+ 1
1+ε ) preprocessing time and storage. This

was later improved, using more complex hash func-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.431

3464

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.431

3471



tions, to O(n
1

(1+ε)2 ) query time and O(n
1+ 1

(1+ε)2 )
preprocessing and storage [3, 6].

From the more practical point of view in com-

puter vision, finding the best matches for local im-

age features in large datasets was considered by

[14]. Nister and Stewenius [13] presented a fast

method for nearest-neighbor feature search in very

large databases. Their method is based on access-

ing a single leaf node of a hierarchical k-means tree.

FLANN is a method proposed in [12] for automati-

cally selecting the best method and its parameters

for a given training set. It was shown to be fast

in practice and is part of the OpenCV library. The

C++ library of Arya and Mount [4] contains an im-

plementation of their BBD-trees and kd-trees. For

LSH, we also mention the E2LSH library by An-

doni and Indyk [3]. We have used all these three for

comparison with our new method.

In this paper we consider the problems of near-

est neighbors and range searching for the applica-

tion of image matching. We focus on the decision

problem called the (c, r)-NN where we only inter-

ested in the neighbors if they are close enough to the

query. While there is a known reduction (increasing

the query time by a factor logn) from the general

nearest neihgbors to this problem, it seems that for

practical applications, one can usually use this when

r is specified in the input. We also present an algo-

rithm for the range searching problem where we are

interested in reporting all points at distance at most

r from the query. Here we allow randomization and

we obtain a randomized algorithm that is guaran-

teed to report points having pre-specified high prob-

ability. In many applications the input set P has a

restricted structure, in the sense that its points have

much fewer “degrees of freedom” than the ambient

dimension d. For example, all the points of P might

lie on, or near, some manifold of much smaller di-

mension. Low doubling dimension was exploited

before for fast algorithms for approximate nearest

neighbor searching [8, 11].

Our algorithms are based on recent results by the

first author et al. [1]. In that work, a different prob-

lem is investigated where there is no index. The set

of points, P , is given along with a pre-specified ra-

dius r > 0, and one wants to report all pairs in P at

distance at most r. We show that the analysis is ap-

plicable for the problems we investigate in this pa-

per and we show experimentally that the good prac-

tical results obtained there can be repeated also for

the problems discussed in this paper.

2. The Problems

We give first a formal description of the prob-

lems:

(c, r)-NN The (c, r)-approximate near neighbor

problem (or (c, r)-NN) with failure probability δ is

to construct a data structure over a set of points

P in metric space (X,D) supporting the follow-

ing query: given any fixed query point q ∈ X , if

Dp(q) ≤ r, then report some p ∈ P ∩ B(q, cr),
with probability 1−δ where B(q, r) is the ball with

radius r around q.

r-RRS The r-Randomized Range Searching (or

r-RRS) problem with failure probability δ is to con-

struct a data structure over a set of points P in met-

ric space (X,D) supporting the following query:

given any fixed query point q ∈ X , report all points

p ∈ P ∩B(q, r) where every such point is reported

with probability 1− δ.

By scaling, we will assume r = 1 for both prob-

lem. Our results from [1] have implications on both.

3. Proposed Algorithms

Next we describe the theory that covers the foun-

dations for the proposed algorithms. We analyze

the worst case scenario and compute the worse case

running time. We then compare the proposed algo-

rithm with the LSH scheme. We then describe the

practical implementation of these algorithms and

add remarks on the applicability to image search as

to the way to parallelize the algorithms.

3.1. Theory

An important result from [1] states that if p
and q are two points at distance at most 1 in d-

dimensional Euclidean space and we impose a ran-

domly rotated and shifted grid of cell size w on this

space, then the probability of capturing both p and

q in the same cell is at least e−
√
d/w for sufficiently

large w. We use this result to construct an efficient

index for fast query.

We impose a grid of cell size w = c√
d

on P .

Based on the result above, a random unit vector in

Rd will be captured in one cell with probability at

least e−
√
d/w = e−

d
c . We create e

d
c copies of P ,

randomly rotated and shifted, and store them in the

grid cells where each non empty cell contains a list

of the points contained in it for every rotated/shifted

copy. For each random translation/rotation, we use

34653472



Figure 1: Randomized Grids indexing process: Fea-
ture descriptors are extracted from the key points of
the dataset of images and represented as a set of
points in Rd, where a series of random grids is ap-
plied. For each random grid, the points falling in the
same bin hash to the same value.

a hash table for indexing, where points falling in the

same bin hash to the same value (see Fig. 1 for an

illustration). For a given query point q, we rotate

and shift q, e
d
c times by the corresponding transfor-

mations and report the first point found in the cor-

responding grid cells. With positive constant prob-

ability, if there is a point at distance at most 1 from

q, it will be found in one of the grids cells. On the

other hand, the reported point is at distance at most

c from q. The space is O(de
d
c n) and the preprocess-

ing time is O(d2e
d
c n) (in computational model with

floor function) and the query time is O(d2e
d
c ). The

probability of success can be amplified to 1 − δ by

repeating the process (increasing the data structure,

space and query time) ln(1/δ) times.

Worst case analysis We derive below the theoret-

ical upper bound on the running time for the worst

case scenario. We also compare it with state-of-the-

art methods from the literature. If the dimension d
is high, we can reduce the query/space bound using

the Johnson-Lindenstrauss (JL) lemma [10] follow-

ing the same direction as in [3]. We reduce d to

t = O(loga n) for some fixed small a < 1. For any

p, q such that ‖p− q‖ = 1, the distortion of the pro-

jection to dimension t, is consider to be high when

it is either greater than 1+ε or smaller than 1−ε, for

some ε. The probability of high distortion is upper

bounded by f = e−Ω(ε2t), using standard bound on

distortion under random projections [10, 3, 9]. As

in [3], we use ε = t−1/4 and then we obtain that

with high probability the distortion is smaller than

ε. We have to tune the grid size accordingly to still

have c-approximation with high probability when

we first project P to dimension t. For this we de-

crease the grid cell size by a factor of 1 + t−1/4 to

c/((1 + t−1/4)
√
t). Then the query time becomes

O(tdet(1+t−1/4)/c). The projection time can be im-

proved to O(d log d) instead of O(td) by the FJLT

Figure 2: Numerical comparison to the p-stable LSH
schemes for c = 2, a = 2/3. This is a plot of the
query time bound we obtained and the p-stable LSH
that has query time O(n1/c).

[2]. Setting t = O(loga n) we get that with high

probability, a c-approximation near neighbor is ob-

tained in time

O((d loga n)e
(loga n)(1+log−a/4 n)

c )

In general, one can compute the best a that min-

imizes this expression. Even better, one can set t to

the value that minimizes the query expression.

We compare now with LSH. Our algorithms are

essentially Locality Sensitive Hashing and share

many aspects with both the p-stable LSH [6] and

[3]. The goal of LSH is to remove the exponential

dependency in the dimension, while still allowing

sub-linear query time and good dependency on the

approximation factor, c. Indeed, [3] was shown to

be close to optimal with respect to the dependency

on c. However, for a certain application, one usu-

ally determines c and is interested in the best de-

pendency on the size of the dataset. This is exactly

our goal and we show analytically and experimen-

tally that we can do better for these applications.

Our scheme can be thought of as a combination be-

tween [3] and [6]. The multiple random projection

to a line is conceptually similar to the regular ro-

tated and shifted grids and like [3] we use a grid in

some smaller dimension t to which we project the

dataset. Based on our analysis in [1], we show that

one can get better dependency in the dataset size for

moderate approximation factor.

The analysis above is worst case analysis. In

practice, we learn the best t for random projection

from a sample of the data as we do for the other

two parameters, the cell size and the number of

random grids. We conduct experiments that show

our results in practice for image search application.

Figure 2 shows numerical comparison to p-stable

LSH1 for c = 2 which is realistic in our applica-

tion (as shown in experiments). For example, for

1For c = 2 the near optimal LSH is far slower and was omit-

ted for better visualization

34663473



t = log2/3 n and c = 2 below is numerical compar-

ison of the number of hash access for our proposal

and the p-stable LSH where n = |P | goes up to

106. The real query runtime (for both range search

and 1-NN) of course depends also on the number

of points in the dataset near the query at distance at

most 1. For this reason, the query time cannot be

bounded theoretically. Experimental comparison is

given in Section 4.

3.2. Practical algorithms

As mentioned above the theoretical analysis cov-

ered the worst case scenario. In real applications

this is not usually the case and this makes the worst

case analysis less relevant. Next we describe prac-

tical ways to implement our solutions. For practical

applications, we propose a more realistic scheme.

More specifically, we propose to learn the best pa-

rameters from a sample of a training set. Note that

this is a common strategy and the same approach

is used in FLANN [12] and E2LSH [3]. We con-

vert the approximation formulation to a randomized

one. We again use (by scaling) 1 as the radius to

simplify the presentation (r should be specified in

advanced). Our scheme is essentially a kind of LSH

and the techniques bellow are quite similar in any

LSH scheme. The difference is the hashing being

used. Details on theoretical aspects can be found in

[9].

Randomized-NN The goal is to build a data

structure that for a given query point q, if there is a

point in P at distance at most 1 from q, returns one

such point with pre specified probability ρ. Note

that the data structure does not necessarily return

the nearest neighbour, it rather returns some point

in the given range. We impose a grid of cell size

w and use m randomly shifted and rotated grids

to store the points in P . All non empty cells are

hashed. For a query point q, we compute the m grid

cells it falls into (for each of these m grids). Then

we pick from the set of points in every such cell, a

random set of k points where k is a parameter. We

report the first point in this set that has distance at

most 1 from q and stop when such point has been

found. The three parameters, w,m, k are learned

from a sample of a given training set by standard

optimization. For a given pre-specified probability

ρ we optimize the runtime, provided that for over-

all sampled query points we report at least ρN near

neighbors where N is the true exact near neighbors

(computed using a standard kd-tree).

Figure 3: Samples of matched images.

Randomized Range Searching The construction

is almost the same as for the Randomized-NN. We

impose a grid of cell size w as before. For a given

w,m, we construct m copies of the data structure.

For given query point q, we rotate and shift q, m
times by the corresponding transformations and re-

port all points found in the corresponding grid cells

that have distance at most 1 to q . We have to ex-

plicitly compute the distance from q for all points

found in the cells and filter only the ones we need. If

w,m are set correctly, with sufficiently large prob-

ability, every point at distance at most 1 from q will

be found in one of the grid cells. Here, the run-

time is determined by the number of ”redundant”

points we have to examine in all cells. In contrast

to the analysis in [1] we cannot guarantee the run-

time for arbitrary query. We rather want to learn

the best value of w,m from the data in a learning

stage. The analysis in [1] suggests that if the set P
has small ”intrinsic dimension” it is expected that

the parameters m and w will be set such that the

overall runtime will be smaller.

For learning, we have two sets of points P and

Q where P is considered to be the index and Q is

a set of queries (we can simply set Q = P ). We

sample a fixed fraction of the points from P and Q
with uniform distribution getting P ′ and Q′. For

a given probability ρ we seek w,m such that the

overall number of reported points (when we query

all points in Q′ against the index built from P ′) is

at least ρN where N is the exact number of neigh-

bours (computed by e.g. a standard kd-tree). For

all w,m satisfying this, we pick the one with the

smallest runtime. For the optimization we can use a

simple brute force grid scheme or we can apply any

standard local optimization starting from a guess.

Application to image search The application of

these tools to Image Search is straight forward. For

a given set I of images, and a given distance radius

34673474



r, we first compute the local features by any appro-

priate method (e.g. SIFT, SURF). Each descriptor

is considered as a point in high (64 in this case) di-

mensional space. We index all these points, the set

P , in our structure (any of the above) along with

the information on the image they come from. For

a query image, we compute the same features set

using the same method we used for the index. Let

Q be the set of features that we extract from the

query image. Then we query for each point in Q,

all points in P that are closer than r to it. For every

reported point we also record the image it comes

from. For these images that have sufficient number

of reporting points, we apply geometric verification

by a robust (RANSAC) feature matching under per-

spective transformation or by finding all points con-

sistent with the same fundamental matrix. We then

report all images in I that has large support. Fig. 3

shows examples of matched images obtained with

our algorithm when it is applied to a photo collec-

tion from a tourist trip to Europe (see Section 4 for

more details). The matched descriptors (correspon-

dences) are also illustrated.

Parallelization Our algorithm is straightforward

to parallelize in contrast to other (e.g., tree-based)

approximate nearest neighbors approaches. We pro-

pose below a simple parallelization based on the

MapReduce framework. We assume that each map

worker has access to the whole query set, which is

typically much smaller than the training set. When

the training set grows very large and does not fit

into the memory of a single machine, one usually

distributes the data in order to make the algorithm

scalable. Hence, we assume that the training set of

points is partitioned and distributed across the map

workers.

• Map phase. Each map worker does the index-

ing using the partition of the data assigned to it

and then queries each point from the query set

using its (local) index set. The matched pairs

are output to the reducer using the query point

id as the key.

• Reduce phase. In the reduce phase all matches

corresponding to the same query point will be

collected in the same reduce worker. The job

of the reducer is to collect together all matches

of the query coming from the whole training

set.

4. Experimental Results

We show results comparing our methods to ANN

(Arya and Mount), FLANN (with its many algo-

rithms including LSH) and the p-stable LSH.

Random projection is an option for our algo-

rithm.2 Our comparisons to ANN and FLANN did

not use random projection and the results are still

good. We observed that the improvement is increas-

ing for large size and we did use random projection

in our larger scale comparison to E2LSH. For the

same reason, we observed that rotating the grid for

small sets does not help and we therefore did not

use rotation in practice. Note that the overhead is

still some constant for fixed d thus for sufficiently

large n it would be better to use rotation and/or pro-

jection.

4.1. Range Searching

The first experiment is for the randomized range

searching problem. The data set consists of 1M

SURF descriptors (of dimension 64) extracted from

a large set of 4000 images. The radius was 0.08
which was found to match the best the application

of image matching. We measure the accuracy of

the methods by comparing the total number of re-

ported neighbors (across all query points) for each

method with the exact number of neighbors (ob-

tained using an exact method). In order to have a

fair comparison, we set the parameters of the meth-

ods such that they return (about) the same number

of reported neighbors. More specifically, FLANN

was autotuned to select the best algorithm and pa-

rameters for this dataset (it selected kmeans as the

best) with target precision set to 0.98. ANN was set

with an error bound epsilon equal to 2.0. Impos-

ing that index set and query set are of the same size,

we randomly sample from the original data set and

perform several measurements with different data

sizes. The runtime comparison along with the accu-

racy is shown in Figs (a) and (b) respectively. Our

method is much faster than both FLANN and ANN.

Further comparison to FLANN. We also experi-

mented with FLANN using lower precision values.

The index data set consists of 100K points and the

query set contains 1K points. First, the precision

was set to 0.8 (which is according to the litera-

ture the typical value used in vision applications).

2For small size, the need to project any query vector from

dimension d to dimension t requires O(dt) time with naive im-

plementation. This can be further improved to O(d log d) by the

FJLT [2]. We found this questionable in practice.

34683475



 0

 5

 10

 15

 20

 25

 30

 20000  40000  60000  80000  100000  120000

ru
n
ti

m
e 

(s
ec

o
n
d
s)

#points

Runtime Comparison

Randomized Grids (ours, 2013)
ANN (Arya, Mount, Netanyahu, 1998)

FLANN (auto tuned) (Muja, Lowe, 2009)

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000  40000  60000  80000  100000  120000

#
re

p
o
rt

ed
 p

ai
rs

#points

Number of reported neighbors

Randomized Grids (ours, 2013)
ANN (Arya, Mount, Netanyahu, 1998)

FLANN (auto tuned) (Muja, Lowe, 2009)
Exact number of pairs

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 50000  100000  150000  200000

ru
n
ti

m
e 

(s
ec

o
n
d
s)

#index points

E2LSH runtime comparison - increasing index and query

Randomized Grids (ours, 2013)
LSH (auto tuned, Andoni, Indyk, 2006)

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 0  500000  1e+06

ru
n
ti

m
e 

(s
ec

o
n
d
s)

#index points

E2LSH runtime comparison - 1000 query points

Randomized Grids (ours, 2013)
LSH (auto tuned, Andoni, Indyk, 2006)

(d)

FLANN took 0.26 sec and reported 1104 neigh-

bors, while our algorithm took 0.06 secs and re-

ported 1112 neighbors. We also tried FLANN with

0.7 precision which resulted in 1102 reported neigh-

bors with 0.2 secs query time. In both cases, the

FLANN runtimes are still much higher than ours for

a comparable number of reported neighbors. The

exact number of points in the neighbourhood (for

all queries) in this case was 1113.

Comparison to LSH. We also compared our algo-

rithm to the E2LSH library [3]. From the original

data set we randomly sampled smaller sets of vari-

ous sizes. The parameters for E2LSH were learned

automatically from a sample of 4000 index points

and 4000 for query points. We have used ρ = 0.9
as the probability of success. Taking the total num-

ber of returned points from all queries, we learned

the best parameters for our algorithm, requesting

the same number of returned points. The best pa-

rameters found for the random grids using this pro-

cess are w = 1.7,m = 19 and the projection di-

mension was set to 14. We conducted two different

tests: (i) the first uses increasing number of index

and query sets of the same size and (ii) the second

uses increasing number of index points, but fixed

set of query points of size 1000. The purpose of the

second experiment is to evaluate the rate of increas-

ing running time as a function of the index in this

application. Figs (c) and (d) show the results of

the first and the second experiment respectively.

4.2. Randomized NN

We implemented the randomized NN algorithm

introduced in Section 3.2. We looked for a practical

value of r such that each query gets approximately

one reported neighbor. r was found to be 0.3 for

our dataset. Once r is fixed, we need to tune the

parameters of the methods (for a fair comparison)

such that the average total number of neighbors re-

ported by each method is approximately ρN , where

N is the exact number of neighbors (in the range

r). We set the probability of success ρ to 0.9. In or-

der to achieve that, we optimized our algorithm by

selecting the parameters w (bin size), m (number

of random translations) and k (number of randomly

selected points from each bin) such that in the learn-

ing stage the probability of reporting a near neigh-

bor is at least 0.9. The computed parameters for

our algorithm were found to be w = 1.4,m = 40
and k = 100. For ANN, we had to set epsilon to

34693476



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20000  40000  60000  80000  100000

ru
n
ti

m
e 

(s
ec

o
n
d
s)

#points

Randomized Fixed Radius Near Neighbor Runtime Comparison

Randomized Grids (ours, 2013)
ANN (Arya, Mount, Netanyahu, 1998)

(e)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 20000  40000  60000  80000  100000

#
re

p
o
rt

ed
 p

ai
rs

#points

Number of reported near neighbors

Randomized Grids (ours, 2013)
ANN (Arya, Mount, Netanyahu, 1998)

Exact number of reported near neighbors

(f)

2.0. The results of the runtime comparison is shown

in Fig (e). The number of returned neighbors in

both algorithms in comparison to the exact number

is shown in Figure (f).

4.3. Image Search Experiments

We use a small photo collection, which consists

of about 3500 images from a tourist trip to Europe,

where again we extract 64-dimensional SURF de-

scriptors from each image. We perform several tests

for an increasing total number of images. More

specifically, for a given maximum number of im-

ages we randomly split half of the images in the

training set and half of them in the query set. We

index all the descriptors of the training images and

then we query each descriptor of the query images

using range searching. A query image is said to

match a training image if the number of descrip-

tor matches (filtered after geometric verification)

is higher than 20. The descriptors match is done

by different algorithms: RAND GRIDS, ANN and

FLANN. We provide in Table 1 below the timings

of each method for an increasing number of images

used. We also report the number of matched image

pairs. In order to tune the parameters of the meth-

ods for a fair comparison, we use the same process

as before (i.e., using the rule that comparable num-

ber of neighbors are reported by all methods).

Large-scale image matching We run our parallel

algorithm testing it on a large-scale image matching

application using MapReduce. We use an image set

consisting of 15M images that are collected from

public Picasa albums on which we apply our MR

parallel algorithm. The query set consists of 3357

images (randomly) sub-sampled from the original

data set. The algorithm found 2056 matches of the

3357 query images across 14,128,635 training im-

ages. Querying all descriptors from the query set

takes about 100 sec for a single partition (or 0.03s

per query image). A few samples of matched image

pairs are shown in Fig. 4.

5. Discussion and Conclusion

We considered the problems of nearest neighbors

and range searching for the application of image

matching. We focused on the (c, r)-NN problem

where we were only interested in neighbors that are

close enough to the query. For the range searching

problem we were interested in reporting all points

of distance at most r from the query. We proposed

a randomized algorithm that is guaranteed to report

points having pre-specified high probability.

These two solutions for the nearest neighbors

and range search problems belong to the LSH fam-

ily. We compared our algorithms to LSH, ANN

and FLANN and showed analytically and experi-

mentally that we can do better for moderate ap-

proximation factor. Our proposed algorithms use a

learning phase. For range searching we proposed a

scheme that learns the parameters adopting them to

the case of a set of points with low intrinsic dimen-

sion that are embedded in high dimensional space.

We learned the best t for random projection from a

sample of the data as we do for the other two pa-

rameters, the cell size and the number of random

grids.

Our algorithms are trivial to parallelize. In the

experiments we conducted, running on couple of

million images, our algorithms show meaningful

speed-ups when compared with the above men-

tioned methods.

34703477



Num. images ANN FLANN RANDGRIDS

Time num. pairs Time num. pairs Time num. pairs

1000 7.48s 5 11.4s 5 1.75s 5

1500 17.55s 6 27.63s 6 2.84s 5

2000 29.95s 14 44.98s 13 3.86s 16

2500 45.93s 19 62.34s 16 5.25s 17

3000 67.45s 29 91.13s 25 5.93s 22

3500 80.27s 30 112.51s 22 7.13s 29

Table 1: Timings of the methods for image matching.

Figure 4: Samples of matched images from the

large-scale experiment.

References

[1] D. Aiger, H. Kaplan, M. Sharir, Report-

ing Neighbors in High-Dimensional Euclidean

Space, in Proc. Annu. ACM-SIAM Sympos. Dis-
crete Algorithms, 2013. 2, 3, 4

[2] N. Ailon, B. Chazelle, Approximate nearest

neighbors and the fast Johnson-Lindenstrauss

transform, STOC 06: Proceedings of the thirty-

eighth annual ACM symposium on Theory of

computing, pages 557-563, New York, NY,

USA, 2006. ACM. 3, 5

[3] A. Andoni and P. Indyk, Near-optimal hashing

algorithms for approximate nearest neighbor in

high dimensions, in Proc. 47th Annu. IEEE Sym-
pos. Found. Comput. Sci., 2006, 459–468. 2, 3,

4, 6

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-

verman, and A. Y. Wu, An optimal algorithm for

approximate nearest neighbor searching in fixed

dimensions, J. ACM 45(6) (1998), 891–923. 1, 2

[5] S. Arya, T. Malamatos, and D. M. Mount,

Space-time tradeoffs for approximate nearest

neighbor searching, J. ACM, 57(1) (2009), 1:1–

1:54. 1

[6] M. Datar, N. Immorlica, P. Indyk, and

V. S. Mirrokni, Locality-sensitive hashing

scheme based on p-stable distributions, in Proc.
20th Annu. Sympos. Comput. Geom., 2004, 253–

262. 2, 3

[7] S. Har-Peled, Geometric Approximation Algo-

rithms, Mathematical Surveys and Monographs,

volume 173, AMS Press, Providence, RI, 2011.

1

[8] S. Har-Peled, M. Mendel, Fast Construction of

Nets in Low-Dimensional Metrics and Their Ap-

plications. SIAM J. Comput. 35(5): 1148-1184

(2006) 2

[9] P. Indyk and R. Motwani, Approximate nearest

neighbors: Towards removing the curse of di-

mensionality, in Proc. 30th Annu. ACM Sypos.
Theory Comput., 1998, 604–613. 1, 3, 4

[10] W. B. Johnson and. J. Lindenstrauss, Exten-

sions of Lipschitz mapping into Hilbert space.

Contemporary Mathematics, 26:189206, 1984.

323, 341. 3

[11] R. Krauthgamer and J. R. Lee, Navigating

nets: Simple algorithms for proximity search, in

Proc. 15th Annu. ACM-SIAM Sympos. Discrete
Algorithms, 2004, 798–807. 2

[12] M. Muja, D. G. Lowe, Fast Approximate

Nearest Neighbors with Automatic Algorithm

Configuration, in International Conference on

Computer Vision Theory and Applications (VIS-

APP’09), 2009 2, 4

[13] D. Nister, H. Stewenius, Scalable recogni-

tion with a vocabulary tree, CVPR 2006, p.

21612168. 2

[14] J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zis-

serman, Object retrieval with large vocabularies

and fast spatial matching. CVPR 2007. 2

34713478


