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Abstract

We consider the problem of estimating the extrinsic pa-
rameters (pose) of a camera with respect to a reference 3D
object without a direct view. Since the camera does not view
the object directly, previous approaches have utilized reflec-
tions in a planar mirror to solve this problem. However, a
planar mirror based approach requires a minimum of three
reflections and has degenerate configurations where esti-
mation fails. In this paper, we show that the pose can be
obtained using a single reflection in a spherical mirror of
known radius. This makes our approach simpler and easier
in practice. In addition, unlike planar mirrors, the spher-
ical mirror based approach does not have any degenerate
configurations, leading to a robust algorithm.

While a planar mirror reflection results in a virtual per-
spective camera, a spherical mirror reflection results in a
non-perspective axial camera. The axial nature of rays al-
lows us to compute the axis (direction of sphere center) and
few pose parameters in a linear fashion. We then derive an
analytical solution to obtain the distance to the sphere cen-
ter and remaining pose parameters and show that it corre-
sponds to solving a 16th degree equation. We present com-
parisons with a recent method that use planar mirrors and
show that our approach recovers more accurate pose in the
presence of noise. Extensive simulations and results on real
data validate our algorithm.

1. Introduction
The external calibration of a camera with a reference

3D object is a fundamental pose estimation procedure in
computer vision. If 2D projections of three 3D points are
visible, the extrinsic parameters (or pose), namely rotation
and translation can be obtained from the three 2D-3D corre-
spondences. This is known as the P3P problem [11, 21, 12]
and is a basic building block in several applications such as
3D reconstruction, navigation, localization, etc. In this pa-
per, we consider the case where the camera does not view

the 3D points directly. This is a natural setting when consid-
ering multiple cameras with non-overlapping field of view
(FOV) [18], calibrating a camera with a display for human-
computer interaction [25] or when reconstructing specu-
lar/shiny objects requiring a calibrated camera and refer-
ence 3D points.

Previous approaches to solve this problem have used pla-
nar mirrors to observe the reflections of the reference ob-
ject. The extrinsic parameters along with the location and
orientation of planar mirrors can be obtained using the re-
flections. This is referred to as mirror-based extrinsic cali-
bration.

As shown in Sturm and Bonfort [28], at least three re-
flections of the reference object are required to uniquely de-
termine the extrinsic parameters using a planar mirror. The
three reflections should be obtained using different orien-
tations of the mirror. Even when using three views, there
exist degenerate/singular configurations. The singular con-
figuration occurs if all the mirror planes intersect in a single
line. This happens if the mirror is rotated around a fixed
axis, or if all mirror planes are parallel (intersection line is
at infinity) [27]. Moreover, a particular algorithm can have
specific degenerate cases depending on its implementation.
For example, consider the algorithm proposed in [31]. If the
intersection of any two mirrors lie on the plane defined by
the reference 3D points, it results in a degenerate configura-
tion. In practice, a configuration close to a singular configu-
ration will be unstable and will not be robust in the presence
of noise. Previous approaches either assume that the mirror
configuration is non-singular or use heuristics to detect the
presence of such configurations. If a singular configuration
is detected, more images need to be captured.

Thus, we believe that previous methods to solve this
problem are lacking in several respects. In this paper, we
overcome the limitations of the previous methods. We show
that the mirror-based extrinsic calibration can be done using
a single reflection from a spherical mirror with known ra-
dius. The location of the spherical mirror is not required to
be known and is estimated simultaneously with the extrinsic
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Method Mirror Shape Mirrors 3D Points Total 2D Degenerate Mirror
projections Configurations

Sturm and Bonfort [28] Planar 3 4 12 Yes
Rodorigues et al. [27] Planar 3 4 12 Yes

Kumar et al. [18] Planar 5 4 20 Yes
Hesch et al. [14] Planar 3 3 9 Yes

Takahashi et al. [31] Planar 3 3 9 Yes
Ours Spherical 1 8 8 No

Table 1. Ours is the first approach that uses a single reflection from a spherical mirror for mirror-based extrinsic calibration. Unlike previous
approaches, our approach does not have any degenerate mirror configurations. In addition, we show in Section 6 that it outperforms the
planar mirror based method [31].

parameters. Our approach does not require the boundary of
the sphere to be visible in the image, which is commonly
used to estimate the sphere center [16, 6, 7] and only uses
the projection of reference 3D points. This makes our ap-
proach simple and practical to use. Moreover, no degener-
ate mirror configurations exist when using a spherical mir-
ror, since we require only one view. In addition, we show
that our approach outperforms the planar mirrors based ap-
proach [31] and recovers more accurate pose in the presence
of noise. Our contributions are as follows

1.1. Contributions

• We demonstrate that mirror based extrinsic calibration
can be done from a single reflection using a non-planar
spherical mirror.

• We derive analytical solutions for estimating the spher-
ical mirror location and pose of the reference object
using a single reflection.

2. Related Work
Mirror based extrinsic calibration: Previous ap-

proaches either attach markers to planar mirrors to estimate
the mirror poses [15, 20] or estimate the mirror poses along
with the extrinsic calibration [28, 27, 18, 14, 31]. As dis-
cussed, a minimum of three reflections are required using
planar mirror and degenerate configurations exists. Table 1
compares our approach with previous approaches.

Catadioptric Cameras: Both planar and spherical mir-
rors have been used with perspective camera as a catadiop-
tric imaging system. Mirror reflections of a scene allow
capture of multiple viewpoints using a single camera. This
is referred to as planar catadioptric stereo [23, 10, 32, 9].
The epipolar geometry in this case is well-studied in litera-
ture and such systems have been used for 3D reconstruction.
Recently, Reshetouski et al. [26] used three planar mirrors
to obtain hundreds of views of an object for visual hull re-
construction.

Spherical Mirrors: Spherical mirror based catadiop-
tric cameras have also been used for wide-angle 3D recon-
struction [22, 5, 3, 16, 19], for obtaining wide-angle light

fields [29] and navigation [17]. These approaches typically
attach multiple spherical mirrors on a planar surface along
with markers [5, 19] and use the markers to estimate the
initial location of spheres or utilize the sphere boundary
(contour) in the image. For example, Francken et al. [6]
require several images of a moving sphere along with the
sphere boundary to be visible in all images for extrinsic
calibration. Similarly, Nitschkea et al. [25] used multiple
eye reflections along with the cornea contour (limbus) in-
formation for display-camera calibration. In contrast, our
approach does not require the sphere boundary to be visible
and uses a single reflection.

Perhaps the closest work to ours is the recent work of
Agrawal et al. [1], where multiple spherical mirrors based
catadioptric system is calibrated using a planar checker-
board. The pose of the checkerboard is also recovered dur-
ing calibration. Thus, calibration of such systems is similar
to our problem of extrinsic mirror based calibration. The
approach in [1] utilizes the fact that by using rays from two
or more spherical mirrors, the pose can be obtained using
a linear algorithm. For a single mirror, the linear system
of [1] is degenerate and thus cannot be applied to our case.

Thus, if we use two spherical mirrors (in a single view)
or take two views of a spherical mirror, we can apply the
algorithm of [1] to perform extrinsic calibration. However,
in this paper our goal is to achieve it using a single view of
a single spherical mirror. For a spherical mirror, using two
views results in a degenerate configuration when the sphere
location is same in both views. In practice, if the sphere
locations are close by, the pose estimate will not be robust
in presence of noise. Thus, to completely avoid degenerate
mirror configurations, we need a solution involving single
view/mirror. In addition, [1] clearly states that they were
unable to find an analytical solution for calibration using a
single spherical mirror, which is our key contribution.

3. Extrinsic Camera Calibration
We consider a perspective camera and a reference 3D

object which is not viewed directly by the camera. We work
in the camera coordinate system with its center of projection
(COP) at origin. The camera is assumed to be internally
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calibrated off-line using standard approaches. Let P(i)Ki=1

denote K 3D points which are known in the reference object
coordinate system. Our goal is to estimate the unknown
pose (rotation R and translation t) of these points in the
camera coordinate system.

To perform the calibration, we place a spherical mirror
of radius r at an unknown location C in-front of the camera
and observe the reflection of the 3D points. Let p(i)Ki=1

be
the 2D projection of the 3D points after reflection. Since
the camera is calibrated, we know the camera rays v(i)Ki=1

corresponding to the projected 2D points. The goal is to
then recover the desired pose [R, t] along with the unknown
sphere location C using K 3D-2D correspondences.

Axial Geometry: It is well-known that a perspective
camera looking into a spherical mirror corresponds to an
axial imaging system [3]. Let d =‖ C ‖ be the distance of
the sphere center from the COP. The axis A is defined as
A = C/d and corresponds to the normalized vector joining
the COP and the sphere center.

4. Estimation of Axis

As described in [1, 2], the so called coplanarity con-
straint holds for axial systems, which allow estimation of
axis using 8 3D-2D correspondences. In addition, the co-
planarity constraints can also recover the rotation R and
translation orthogonal to the axis (two degrees of transla-
tion). The translation along the axis cannot be recovered by
the coplanarity constraints. For completeness, we re-derive
the constraint below in this section and the derivation fol-
lows [2, 1]. In the next section, we derive an analytical so-
lution for remaining parameters, namely, distance d to the
sphere center and translation along the axis, which is a key
contribution of this paper.

Let π be the plane of reflection given by the axis and a
camera ray v(i). From Snell’s law, the reflected ray should
lie on π. Thus, the transformed 3D point RP(i) + t should
also lie on π. Therefore, the 3-vectors A, v(i) and RP(i)+ t
are co-planar, resulting in the following co-planarity con-
straint

v(i)T (A× (RP(i) + t)) = 0, (1)

where× denotes cross-product. Let [A]× be the 3×3 skew-
symmetric matrix obtained from the 3-vector A. The above
equation can be written as

v(i)TEP(i) + v(i)T s = 0, (2)

where E = [A]×R and s = A× t. Since AT s = 0, the com-
ponent of translation t along the axis, tA, cannot be recov-
ered using the co-planarity constraints. Notice that the form
of the E matrix is similar to the essential matrix for relative
pose estimation between two perspective views [13].

Using 8 correspondences, one can write a linear system

as ⎡
⎢⎣

(P(1)T ⊗ v(1)T ) v(1)T

...
...

(P(8)T ⊗ v(8)T ) v(8)T

⎤
⎥⎦

︸ ︷︷ ︸
B

[
E(:)

s

]
= 0, (3)

where ⊗ denotes Kronecker product and B is an 8 × 12
matrix.

Non-Planar Reference 3D points: If the reference 3D
points P(i) do not lie on a plane, the rank of B is 8. As de-
scribed in [2] (8-point algorithm), a four dimensional sub-
space solution can be obtained by SVD. The subspace co-
efficients are then obtained by using Nister’s 5-point algo-
rithm [24]. This results in solution(s) for the E matrix and
the s vector. For each E matrix, four rotation matrices can
be obtained [13].

Planar Reference 3D points: Suppose the reference 3D
points P(i) lie on a plane. This is a common scenario when
a checkerboard is used for calibration. Without loss of gen-
erality, we can align the checkerboard with the xy plane and
set the zth component of P(i), Pz(i), to zero. In that case,
the columns 7, 8 and 9 of B goes to zero. As described
in [1], let e1, e2 and e3 be the columns of E. Removing the
zero columns, the above linear system can be written as

Br

⎡
⎣ e1

e2
s

⎤
⎦ = 0, (4)

where Br is the reduced 8 × 9 matrix of rank 8. Let
Br = UΣV T be the SVD of Br. The standard SVD based
solution is given by the last column of V . Thus, e1, e2
and s can be computed using 8 correspondences. Since
ATE = 0, A is orthogonal to e1 and e2. The axis A is
then given by

A = (e1 × e2)/ ‖ (e1 × e2) ‖ . (5)

There are various ways to recover the rotation matrix R
from only the first two columns of the E matrix. One way
is described in [2], where the last column of E matrix, e3, is
obtained using Demazure constraints [4]. As shown in [2],
there are two solutions for e3, which only differ in sign.
Thus, the solutions for E are given by

[
e1 e2 e3

]
and[

e1 e2 −e3
]
. Since each E matrix corresponds to four

rotation matrices, a total of eight rotation matrices are ob-
tained. However, only four of these are proper rotation ma-
trices. The other four corresponds to reflection matrices and
have determinant −1 instead of 1. These can be easily dis-
carded by checking the determinant value.

To summarize, for planar reference 3D points, we obtain
a solution for axis and four solutions for rotation R and vec-
tor s. In the next section, we describe an analytical solution
to obtain d and tA for a given solution of R and s.
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Figure 1. Estimation of unknown d and α on the plane of reflection
π.

5. Analytical solution for d and tA
In this section, we describe an analytical solution to ob-

tain the sphere distance d and translation along axis tA as-
suming known axis, rotation R and vector s. We again em-
phasise that in [1], authors state that finding an analytical
solution for a single mirror is extremely difficult and they
were unable to find such a solution. In [1], the full pose was
recovered linearly using rays from two or more spheres. In
contrast, since we assume a single view (single spherical
mirror), the linear pose estimation algorithm of [1] cannot
be applied.

We first transform the reference 3D points using known
pose parameters. The translation orthogonal to the axis A,
tA⊥ is obtained as s × A. Let Q(i) = RP(i) + tA⊥ be the
transformed points. Let tA = αA be the unknown transla-
tion along axis, where α is a scalar.

When the axis is known, the analysis can be done on
the plane of reflection π (Figure 1). Let [z1, z2] denote an
ortho-normal coordinate system on π, where z2 is along the
axis. For a given camera ray v(i), let z1 = z2 × (z2 × v(i))
be the orthogonal direction. The projection of Q(i) on π
is given by u = [ux, uy], where ux = zT

1
Q(i) and uy =

zT
2

Q(i). Since the translation along axis is unknown, the
reflected camera ray should pass through u1 = [ux, uy+α].
Similarly, the camera ray v(i) can be represented by the
2D vector w = [wx, wy] on π, where wx = zT

1
v(i) and

wy = zT
2

v(i). w is normalized so that wT w = 1.
The spherical mirror is represented as a circle on π with

center at C = [0, d] and radius r. Let M = kw be the
common point on the mirror and the camera ray for some
scalar k. Since M lies on the circle, (M−C)T (M−C) = r2.
Hence,

(kwx)
2 + (kwy − d)2 = k2 − 2kwyd+ d2 = r2. (6)

The normal at M is given by n = M−C. The reflected ray
v1 is given by the Snell’s law as v1 = w − 2n(nT w)/r2.
The reflected ray should pass through u1. Therefore,

0 = v1 × (u1 −M). (7)

After substituting all the terms, the above equation simpli-
fies to

K1k
2 +K2k +K3 = 0, (8)

where

K1 = 2wx(d− α− uy) + 2uxwy,

K2 = 2d(αwxwy − uxw
2

y − dwxwy

−ux + uywxwy),

K3 = 2uxwyd
2 + r2(αwx − uxwy + uywx).

By eliminating k between (6) and (8), we obtain a single
equation in d and α, which is 6th degree in d and quadratic
in α. Since we have two unknowns (d and α), we need two
equations from two correspondences. These can be written
as

EQ1 : k11α
2 + k12α+ k13 = 0,

EQ2 : k21α
2 + k22α+ k23 = 0,

where the coefficients kij depend on known values and the
unknown parameter d. Eliminating α2 between the equa-
tions, we get

α =
k11k23 − k21k13
k21k12 − k11k22

. (9)

Substituting α back in either EQ1 or EQ2 and simplifying,
we obtain a 16th degree equation1 in the single unknown d.
Solving this equation give 16 solutions for d. We remove
imaginary solutions and enforce d > r to get valid real so-
lutions. Finally, the correct solution is obtained by checking
with remaining 8 − 2 = 6 correspondences. In particular,
we choose the solution that minimizes the re-projection er-
ror over all eight correspondences. The translation along
axis is then obtained as tA = αA.

Note that the axis computation requires 8 correspon-
dences, while estimating d and tA only requires two. In
practice, one can choose any two correspondences out of 8
or test all possible 8C2 = 28 choices.

5.1. Non-linear refinement

Once the initial estimate of pose and sphere location is
obtained, the parameters can be refined by minimizing the
image re-projection error for all K points. For a spherical
mirror, the image projection of a 3D point can be obtained
by solving a 4th degree equation [3]. Let x denote the es-
timated pose and sphere location and let p̂(i) be the the 2D

1Details are provided in the supplementary materials.
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projection of P(i) using x. We use lsqnonlin in Matlab
to refine x by minimizing the root mean squared (RMS) re-

projection error J =
√

1

K

∑K

i=1
(p(i)− p̂(i))2. For our ap-

proach there are a total of 9 parameters (6 for pose and 3 for
sphere center). For comparison with planar mirror based ap-
proach, we also implemented the corresponding non-linear
refinement procedure, which involves 6 + 3 × 3 = 15 pa-
rameters (6 for pose and 3 for each mirror position). Our
approach is summarized in Algorithm 1.

Input: Eight 2D-3D correspondences v(i)↔ P(i)
Output: Sphere Location C, Rotation R, Translation t

Using eight correspondences, compute the axis A and
solutions for rotation R and vector s.
for each solution of R and s do

Compute tA⊥ = s× A.
Choose two correspondences.
Solve for d and tA. Remove invalid solutions.
for each valid solution of d and tA do

Compute C = dA .
Compute t = tA + tA⊥ .
Compute the RMS re-projection error using C,
R and t over all eight correspondences.

end
end
Find solution that has minimum re-projection error
over all eight correspondences.
Perform non-linear refinement to refine C, R and t.

Algorithm 1: Extrinsic calibration using spherical mir-
ror.

6. Simulations

In this section, we present simulations on our approach
along with comparisons with the planar mirror based ap-
proach [31]. We employ a realistic scenario using a cam-
era with resolution of 1500 × 1500 pixels and focal length
2000 pixels (FOV of 41◦). A planar checkerboard with
9 × 6 squares, each of size 30 mm is used as a refer-
ence object. The ground truth rotation angles and trans-
lation of checkerboard in the camera coordinate system are
θ = [2.2;−73.4; 5.3] degrees and t = [183.4; 134.6; 35]
mm. We place a spherical mirror of radius 25.4 mm (1
inch) at the location C = [−11.5;−3.6; 55.0] in the camera-
coordinate system and compute the ground truth projection
of checkerboard corners using [3]. To evaluate performance
with noise, we add different amount of Gaussian noise with
standard deviation σ varying from 0 to 1 pixel in 2D pro-
jections. For each σ, we run 100 trials and average the error
in the estimated rotation and translation. Translation error
is computed as the norm of the translation error vector, nor-
malized with the true translation magnitude. Rotation error

is computed as the minimum angle of rotation between the
estimated and the true rotation. For each σ and each trial,
the input 8 points were randomly chosen.

Comparison with [31]: For comparison with [31], we
observe the reflection of checkerboard corners using three
planar mirrors. The location and orientation of planar mir-
rors used is similar to that in the demo example given
at [30] (mirror distances are 351.8, 318.1 and 377.7 mm
respectively.). For fair comparison, we made sure that the
ground truth 2D projection of checkerboard corners using
both spherical and planar mirrors occupy similar pixel area
in the image. Figure 2 shows the 2D projections using
spherical mirror (black) and using planar mirrors (red, green
and blue). Notice that the spherical mirror projections are
in-fact confined to a smaller pixel area.

Our algorithm uses 8 points while [31] requires only
3 points. Again for fair comparisons, we use the same
8 3D points for the planar mirror based approach in each
trial. Notice that this results in 8 × 3 = 24 2D projec-
tions for [31], whereas our approach uses only 8 2D projec-
tions. As shown in [31], using 3 points give 4 solutions for
each P3P problem, leading to a potential of 64 solutions.
However, we use all 8 correspondences to obtain a single
least squares solution for each mirror2. In addition, we also
use all 8 correspondences for computing the mirror orienta-
tions and checkerboard pose in the least square framework
of [31]. For implementation, we used the matlab code pro-
vided at [30].

Simulation Results: Figure 2 compares the error in ro-
tation and translation for the initial estimates (without non-
linear refinement) obtained using [31] and by using our al-
gorithm. Notice that the translation error is much smaller
using our approach compared to [31] (11.9% versus 55.3%
for σ = 1). However, our initial rotation estimate has a
slightly larger average error (4.3◦ versus 2.1◦ for σ = 1).
Figure 3 shows the final error in rotation and translation
after non-linear refinement. Notice that after non-linear
refinement, the rotation error for our algorithm is similar
to [31]. However, our approach provides a significantly
smaller translation error compared to [31] (2.4% versus
6.0% for σ = 1). Thus, these simulations clearly demon-
strate that our approach outperforms the planar mirror based
approach.

7. Analysis
Mirror Size: Intuitively, calibration using spherical mir-

ror is possible using only a single view since a spherical mir-
ror results in a non-central (non-perspective) camera. The
degree of non-centrality depends on the radius of the mirror.
Thus, it is expected that a larger mirror (with larger radius)
will perform better than a smaller mirror. In practice, the de-
viations of camera rays from a perspective (central) model

2Better than using 3 points since we assume no outliers.
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Figure 2. (Left) 2D projections of reference 3D points using planar mirrors (red, green, blue) and spherical mirror (black) used in simulation.
(Middle and Right) Error in rotation and translation with noise for initial estimates.
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Figure 3. (Left and Middle) Error in rotation and translation with noise for final estimates after non-linear refinement. (Right) Percentage
error in estimated sphere location before and after non-linear refinement.

should be significantly larger than the deviations caused by
imaging noise. We analyze the effect of mirror size on cal-
ibration accuracy using the same simulation scenario as in
Section 6. Figures 4 and 5 show the errors in translation and
rotation for different mirror radii but for the same location
of spherical mirror. Notice that larger mirror size provides
smaller error both for initial estimates and estimates after
non-linear refinement.

Mirror radius error: Since our algorithm assumes that
the mirror radius is known, we evaluate performance us-
ing an incorrect value of radius. Typical reflective balls
are manufactured with diameter tolerance of ±0.005” =
±0.127 mm (available at mcmaster.com). We evaluate the
performance for true radius r = 25.4 mm assuming 5%
error (= 1.27 mm), which is ten times larger than the
above tolerance. Figure 6 shows the error in estimated
pose after non-linear refinement using incorrect radius of
24.13 = 25.4 − 1.27 mm. Note that even with no noise
(σ = 0), the pose error is non-zero due to incorrect radius.
Compared to the correct radius case (Figure 3), the pose
error is slightly larger (as expected). However, even when
using incorrect radius, our estimates are better than those
obtained using [31]. Thus, our approach can easily handle
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Figure 4. As the size of spherical mirror increases, pose estimation
performance with noise improves. Plots show errors for initial
estimates using mirror of different radii at the same location.

standard manufacturing tolerance of spherical balls.

8. Real Experiments

In this section, we show real experiments on extrin-
sic calibration using our approach and compare it with
with [31]. We use a Canon Rebel XT camera with 18 − 55
mm zoom lens. The lens was set to the maximum zoom set-
ting. A checkerboard with square size 30 mm was placed
outside the FOV of the camera. We captured one photo us-
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Figure 5. Pose estimation errors with varying mirror size after non-
linear refinement of initial estimates. The errors in initial estimates
are shown in Figure 4.
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Figure 6. Pose estimation errors with 5% error in true mirror ra-
dius (r = 25.4 mm). The errors are slightly larger than shown in
Figure 3 as expected. However, the estimates are better compared
to [31].

ing a spherical ball3 of diameter 3 inches and three photos
using a planar mirror (Figure 7). Only the larger checker-
board in Figure 7 was used. The checkerboards were au-
tomatically detected using LIBCBDETECT software pro-
vided by Geiger et al. [8]. For spherical mirror, 48 corners
were detected whereas for planar mirror, 30 corners were
detected in each photo.

Table 2 compares the estimated pose and average re-
projection error using our approach with [31]. Note that
the 2D projections are confined to a significantly smaller
pixel area for the spherical mirror. Despite this, the ob-
tained pose is similar to that obtained using planar mirrors.
Figure 8 shows the detected checkerboard points (red) along
with the re-projected checkerboard points (green) using es-
timated the calibration parameters for our approach, which
overlap nicely.

9. Discussions and Conclusions
To the best of our knowledge, we have presented the

first approach for mirror-based extrinsic calibration using
a single reflection from a non-planar spherical mirror. Our
approach is automatic and does not require any user inter-
action. The spherical mirror provides a win-win situation:
(a) only a single view is required, (b) there exist no de-
generate mirror configurations, and (c) it provides better
performance than the planar mirror based approach in the
presence of noise. We showed extensive analysis of our

3available at mcmaster.com

Figure 7. Single spherical mirror photo and three planar mirror
photos used in the real experiment. The camera and the checker-
board was at the same location for all four photos.

Figure 8. Detected corner points (red) and re-projected corner
points (green) after pose estimation for our case. The RMS re-
projection error is J = 0.17 pixels.

approach with varying mirror size and assuming error in
known mirror radius.

Since spherical mirrors are easy to manufacture and are
low cost, we believe that our algorithm will be widely
adopted. Our algorithm equivalently provides a method
for calibrating spherical mirror based catadioptric sys-
tems using a single photo of a checkerboard. Techniques
for display-camera calibration [25] often utilize reflections
from an eye by modeling them as spherical mirror reflec-
tion. We believe that our approach will be useful in several
vision applications such as specular surface reconstruction,
robot navigation, catadioptric imaging, display-camera cal-
ibration and multi-camera calibration without overlapping
field of view.

23742374



Method θx, θy, θz (degree) tx, ty, tz (mm) Re-projection
error J (pixels)

Takahashi et al. [31] −79.30, 7.33,−80.48 316.45, 82.34, 435.46 1.28
Ours −79.48, 6.69,−80.34 321.40, 78.59, 440.68 0.17

Table 2. Comparison of checkerboard pose obtained using our method with [31] using real photos shown in Figure 7.
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