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Abstract

In this paper, we evaluate the generalization power of
deep features (ConvNets) in two new scenarios: aerial and
remote sensing image classification. We evaluate experi-
mentally ConvNets trained for recognizing everyday objects
for the classification of aerial and remote sensing images.
ConvNets obtained the best results for aerial images, while
for remote sensing, they performed well but were outper-
formed by low-level color descriptors, such as BIC. We also
present a correlation analysis, showing the potential for
combining/fusing different ConvNets with other descriptors
or even for combining multiple ConvNets. A preliminary
set of experiments fusing ConvNets obtains state-of-the-art
results for the well-known UCMerced dataset.

1. Introduction

The recent impressive results of methods based on deep
learning for computer vision applications brought fresh air
to the research and industrial community. We could ob-
serve real improvements in several applications such as im-
age classification, object and scene recognition, face recog-
nition, image retrieval, and many others.

Deep learning for computer vision is usually associ-
ated with the learning of features using an architecture of
connected layers and neural networks. They are usually
called Convolutional (Neural) Networks or ConvNets. Be-
fore deep learning has attracted the attention of the commu-
nity in the latest years, the most common feature descrip-
tors were shallow without involving machine learning dur-
ing feature extraction. Common visual descriptors, which
are still interesting alternatives for feature extraction, are
mid-level (bags of visual words – BoVW) and global low-
level color and texture descriptors (e.g., GIST [24], color
histograms, and BIC [9]). BoVW descriptors are somewhat
a step in the direction of feature learning, as the visual code-

book is usually learned for dataset of interest. Global de-
scriptors, however, have a pre-defined algorithm for extract-
ing the image feature vector, independently of the dataset to
be processed. They tend to be less precise, but they are usu-
ally fast to compute.

ConvNets have shown astounding results even in
datasets with different characteristics from which they were
trained, feeding the theory that deep features are able to gen-
eralize from one dataset to another. Successful ConvNets
freely available in the literature are OverFeat and Caffe,
which were originally trained to recognize the 1,000 object
categories of ImageNet [28, 18]. OverFeat, for instance, has
already shown that it works remarkably well in applications
like flower categorization, human attribute detection, bird
sub-categorization, and scene retrieval. In [28], Razavian et
al. suggest that features obtained from deep learning should
be the primary candidate in most visual recognition tasks.

The use of deep learning for remote sensing is rapidly
growing. A considerable number of works appeared very
recently proposing deep strategies for spatial and spectral
feature learning. Even though, to the best of our knowl-
edge, there is still no evaluation of pre-trained ConvNets in
the aerial and remote sensing domain. Therefore, this pa-
per adds two more domains in which pre-trained ConvNets,
like OverFeat and Caffe, are evaluated and compared with
existing image descriptors.

In this paper, besides evaluating ConvNets in a different
domain, we also perform an evaluation of several other im-
age descriptors, including simple low-level descriptors and
mid-level representations. The evaluation is based on the
classification of aerial image scenes and on remote sens-
ing images aiming at differentiating coffee and non-coffee
crop tiles. We also conduct a correlation analysis in order to
identify the most promising descriptors for selection/fusion.
The correlation analysis includes even different ConvNets.

We can summarize the main contributions of this paper
as follows:
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• evaluation of the generalization power of ConvNets
from everyday objects to the aerial and remote sens-
ing domain,

• comparative evaluation of global descriptors, BoVW
descriptors, and ConvNets,

• correlation analysis among different ConvNets and
among different descriptors.

On top of that, we performed preliminary experiments
for fusing ConvNets and obtained state-of-the-art results
for the classification of aerial images using the UCMerced
dataset. For the remote sensing domain, we created a new
dataset, which is publicly released.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work. The ConvNets and the descrip-
tors evaluated in this paper are presented in Section 3. The
experimental setup and datasets are presented in Section 4.
In Section 5, we present and discuss the results obtained.
Finally, Section 6 concludes the paper.

2. Related Work

As far as the remote sensing (RS) community, moti-
vated by the accessibility to high spatial resolution data,
started using more than pixel information for classification,
the study of algorithms for spatial extraction information
has been a hot research topic. Although many descrip-
tors have been proposed or successfully used for RS im-
age processing [42, 11, 3], some applications require more
specific description techniques. As an example, very suc-
cessful low-level descriptors in computer vision applica-
tions do not yield suitable results for coffee crop classifi-
cation, as shown in [12]. Anyway, the general conclusion
is that ordinary descriptors can achieve suitable results in
most of applications. However, higher accuracy rates are
yielded by the combination of complementary descriptors
that exploits late fusion learning techniques. In this con-
text, frameworks have been proposed for selection of spa-
tial descriptors in order to learn the best algorithms for each
application [10, 7, 14, 35]. In [10], the authors analyzed
the effectiveness and the correlation of different low-level
descriptors in multiple segmentation scales. They also pro-
posed a methodology to select a subset of complementary
descriptors for combination. In [14], Faria et al. proposed a
new method for selecting descriptors and pattern classifiers
based on rank aggregation approaches. Cheriyadat [7] pro-
posed a feature learning strategy based on Sparse Coding.
The strategy learns features in well-known datasets from the
literature and uses for detection of buildings in larger image
sets. Tokarczyk et al. [35] proposed a boosting-based ap-
proach for the selection of low-level features for very-high
resolution semantic classification.

Artificial Neural Networks have been used for RS clas-
sification for a long time [2]. But, similarly to the computer
vision community, its massive use is recent and chiefly mo-
tivated by the study on deep learning-based approaches that
aims at the development of powerful application-oriented
descriptors. Many works have been proposed to learn spa-
tial feature descriptors [15, 17, 45]. Firat et al. [15] pro-
posed a method based on ConvNets for object detection in
high-resolution remote sensing images. Hung et al. [17] ap-
plied ConvNets to learn features and detect invasive weed.
Zhang et al. [45] proposed a deep feature learning strategy
that exploits a pre-processing salience filtering. In [41], the
authors presented an approach to learn features in Synthetic
Aperture Radar (SAR) images. Moreover, the “deep learn-
ing boom” has been seen as the golden opportunity for de-
veloping effective hyperspectral and spatio-spectral feature
descriptors [29, 23, 6, 36].

In the computer vision community, with the release of
pre-trained ConvNets, like OverFeat [31] and Caffe [18],
they started being evaluated in different applications than
the ones they were trained for. In [28], for instance, a Con-
vNet trained for recognizing 1,000 object categories has
shown very good results even in applications like bird sub-
categorization, scene retrieval, human attribute detection
and others, which are considerably different than everyday
object recognition. Those facts raised the issue about the
generality of the features computer by ConvNets.

In this paper, we go in this direction of evaluating pre-
trained ConvNets in different domains. It is worth to men-
tion that, to the best of our knowledge, there is no other
work in literature that evaluate the feasibility of using deep
features from general computer vision datasets in remote
sensing applications. In addition, no other work in the lit-
erature has evaluated the complementarity of deep features
aiming at fusion or classifier ensemble.

3. Feature Descriptors

In this section, we describe the ConvNets, low-level
(global), and mid-level (BoVW) descriptors we have used.
The descriptors we have selected for evaluation were mainly
based on previous works [42, 11, 37, 26, 44, 12], in which
they were evaluated for remote sensing image classification,
texture and color image retrieval/classification, and web im-
age retrieval. Besides the evaluation of ConvNets, we also
selected a set of other types of descriptors. Our selection in-
cludes simple global descriptors, like descriptors based on
color histograms and variations, and also descriptors based
on bags of visual words (BoVW).

3.1. Convolutional Networks

In this section, we provide details about the ConvNets
used in this work, which are OverFeat [31] and Caffe [18].



OverFeat [31] is a deep learning framework focused on
ConvNets. It is implemented in C++ and trained with the
Torch7 package1. OverFeat was trained on the ImageNet
2012 training set [30], which has 1.2 million images and
1,000 classes, and it can be used to extract features and/or
to classify images.

OverFeat has two models available. A small (fast
– OverFeatS) and a larger one (accurate – OverFeatL),
both having similarities with the network of Krizhevsky et
al. [19]. The main differences to the Krizhevsky’s network
are: (i) no response normalization and (ii) non-overlapping
pooling regions. OverFeatL differs in some details, includ-
ing: (i) one more convolutional layer and, (ii) the number
and size of feature maps, since different number of kernels
and stride were used for the convolutional and the pooling
layers. OverFeatS is more similar to the Krizhevsky’s net-
work, differing only in the number and size of feature maps.

The main differences between the two OverFeat net-
works are the stride of the first convolution, the number of
stages and the number of feature maps [31]. When using the
feature extractor of OverFeat, we obtain a feature vector of
4,096 dimensions, which directly corresponds to the output
of layers 19 for OverFeatS and 22 for OverFeatL. They are
the last fully-connected layer, which is composed, in both
networks, of 4,096 kernels (one dimension per kernel).

Caffe or Convolutional Architecture for Fast Feature
Embedding [18] is a fully open-source framework that af-
fords clear and easy implementations of deep architectures.
It is implemented using C++ with support to CUDA R⃝,
a NVidia R⃝ parallel programming based on graphics pro-
cessing units (GPU). Caffe uses Protocol Buffer language,
which makes it easier to create new architectures. It also has
several other functionalities, such as fine-tuning strategy,
layer visualization and feature extraction. Just like Over-
Feat, we are interested in extracting features using a pre-
trained network, which is, in this case, almost the same of
Krizhevsky’s network [19], proposed for the ILSVRC 2012
competition [30], with two differences: (i) during the train-
ing no data-augmentation was used (to increase the number
of training examples) and, (ii) the order of pooling and nor-
malization was switched, since Caffe does pooling before
normalization. The pre-trained model of Caffe was obtained
using the same dataset of the competition and basically the
same parameters of the Krizhevsky’s network [19]. There-
fore, Caffe was also trained to recognize 1,000 categories of
everyday objects. This framework allows feature extraction
for any layer of the network. In our experiments, features
from the last layer were extracted, which results in a vec-
tor of 4,096 features, one for each kernel of the last fully-
connected layer, just like OverFeat.

According to [31], the number of parameters for each

1Torch is a scientific computing framework with wide support for ma-
chine learning algorithms freely available at http://www.torch.ch.

ConvNet are (in millions): 60, 145, and 144 (Krizhevsky,
OverFeatS , and OverFeatL, respectively). The number of
connections are (in millions): 2,810 and 5,369 (OverFeatS
and OverFeatL, respectively).

3.2. LowLevel descriptors

The Color Autocorrelogram (ACC) descriptor [16] is a
color descriptor which aims to encode spatial color distri-
bution in the image. Such information is extracted by com-
puting the probabilities of having two pixels of color ci in a
distance d from each other. ACC performed well in previ-
ous works for natural image representation [26].

Border-Interior Pixel Classification (BIC) [9] is a simple
color descriptor which computes two color histograms for
an image: one for border pixels and other for interior pix-
els. BIC obtained good results in previous works for web
image retrieval [26] and for remote sensing image classifi-
cation [11].

Local Color Histogram (LCH) [33] computes a color
histogram for an image divided into tiles. An independent
histogram is computed for each tile and then, they are con-
catenated to form the image feature vector.

Statistical Analysis of Structural Information (SASI) [5]
is based on a set of sliding windows, which are covered in
different ways. SASI was very effective for texture discrim-
ination in previous works [26].

Local Activity Spectrum (LAS) [34] captures the spatial
activity of a texture in the horizontal, vertical, diagonal, and
anti-diagonal directions separately. According to [26], LAS
achieved good results for texture discrimination in terms of
both effectiveness and efficiency.

GIST [24] provides a global holistic description repre-
senting the dominant spatial structure of a scene. GIST is
popularly used for scene representation [13].

Histogram of Oriented Gradients (HOG) [8] computes
histograms of gradient orientations in each position of a
sliding window. We used HOG in different configurations,
varying the cell size in 20× 20, 40× 40 and 80× 80 pixels,
but keeping the orientation binning in 9 bins.

3.3. MidLevel descriptors

Bags of visual words (BoVW) and their variations [32,
39, 4, 21, 25, 1, 27] are mid-level representation based on
a codebook of visual discriminating patches (visual words).
They compute statistics about the visual word occurrences
in the image. BoVW descriptors have been the state of the
art for several years in the Computer Vision community and
are still important candidates to perform well in many tasks.

We used BoVW in several different configurations:
sparse sampling (Harris-Laplace detector) or dense sam-
pling (grid of circles with 6 pixels of radius); SIFT and Opp-
ponentSIFT as descriptors [37]; visual codebooks of sizes
100, 1000, 5000, and 10000; hard or soft assignment (with



σ = 90 or 150); and average, max pooling or WSA pool-
ing [25].

To differentiate them in the experiments, we used the fol-
lowing naming: BXw

cp, where X is S (sparse sampling) or
D (dense sampling); w is the codebook size; c refers to the
coding scheme used, h (hard), s (soft); p refers to the pool-
ing technique used, a (average), m (max), or W (WSA).

4. Experimental Setup
The main objective of this paper is to evaluate the gen-

eralization capacity of ConvNets. The ConvNets used here
were trained to recognize 1,000 object categories and we
evaluate their generality in an experimental scenario with
aerial and remote sensing image scenes. We also included
other image descriptors aiming at contrasting their effec-
tiveness with ConvNets and also aiming at verifying if they
can provide complementary results. The experiments are
conducted in a classification protocol, in which the dataset
is split into training and testing sets and image feature vec-
tors from the training set are used to feed a machine learning
classifier. The test set is then used for evaluating the learned
classifiers in terms of classification accuracy.

4.1. Datasets

We have chosen datasets with different properties in or-
der to better evaluate the descriptors robustness and effec-
tiveness. The first one is a multi-class land-use dataset that
contains aerial high resolution scenes in the visible spec-
trum. The second dataset has multispectral high-resolution
scenes of coffee crops and non-coffee areas.

4.1.1 UCMerced Land-use

This dataset [43] is composed of 2,100 aerial scene images
with 256 × 256 pixels divided into 21 land-use classes se-
lected from the United States Geological Survey (USGS)
National Map. Some class samples are shown in Figure 1.
These images were obtained from different US locations for
providing diversity to the dataset. The categories are: agri-
cultural, airplane, baseball diamond, beach, buildings, cha-
parral, dense residential, forest, freeway, golf course, har-
bor, intersection, medium density residential, mobile home
park, overpass, parking lot, river, runway, sparse residential,
storage tanks, and tennis courts. The dataset presents highly
overlapping classes such as “dense residential”, “medium
residential” and “sparse residential”, which mainly differ in
the density of structures. It is publicly available [43].

In the experiments, as OverFeat and Caffe have special
requirements in the resolution of input images (231 × 231
for OverFeatS , 221 × 221 for OverFeatL, and 227 × 227
for Caffe), we decided to resize all the images to 231× 231
pixels discarding the aspect ratio. Caffe implicitly crops
the center of each image to obtain the needed resolution.

(a) Dense Residential (b) Medium Residen-
tial

(c) Harbor

(d) Freeway (e) Runway (f) Airplane

Figure 1: Examples of the UCMerced Land Use Dataset.

The resized images were used also for all the descriptors
evaluated.

4.1.2 Brazilian Coffee Scenes

This dataset, publicly released with this paper2, is a com-
position of scenes taken by the SPOT sensor in 2005 over
four counties in the State of Minas Gerais, Brazil: Arce-
burgo, Guaranésia, Guaxupé, and Monte Santo. This is
a very challenging dataset since there are many intraclass
variance caused by different crop management techniques.
Also, coffee is an evergreen culture and the South of Mi-
nas Gerais is a mountainous region, which means that this
dataset includes scenes with different plant ages and/or with
spectral distortions and shadows.

The whole image set of each county was partitioned into
multiple tiles of 64× 64 pixels. For this dataset, it was con-
sidered only the green, red, and near-infrared bands, which
are the most useful and representative ones for discrimi-
nating vegetation areas. The identification of coffee crops
(i.e., ground-truth annotation) was performed manually by
agricultural researchers. The creation of the dataset is per-
formed as follows: tiles with at least 85% of coffee pixels
were assigned to the coffee class; tiles with less than 10%
of coffee pixels were assigned to the non-coffee class; the
remaining tiles were categorized as “undefined” or “mixed”
and discarded in our analysis. In summary, considering the
tiles of all the four counties, the dataset has 36,577 tiles of
non-coffee, 1,438 tiles of coffee, and 12,989 mixed tiles.

In the experiments, images were resized to 231 × 231
pixels only for OverFeat and Caffe, given their requirements
on the size of the input images. For all the other descriptors,
images were kept in the original resolution of 64×64 pixels.

4.2. Experimental protocol

We carried out experiments for both datasets with a 5-
fold cross-validation protocol using a linear SVM as clas-
sifier. Concerning the UCMerced dataset, each of the 5
folds has around 420 images and is unbalanced in terms of

2The Brazilian Coffee Scenes dataset as well as the
folds used in this paper are available for download at:
www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/



(a) Coffee (b) Non-coffee

Figure 2: Example of coffee and non-coffee samples in the
Brazilian Coffee Scenes dataset. The similarity among sam-
ples of opposite classes is notorious. The intraclass variance
is also perceptive.

the number of samples per class. For the Brazilian Coffee
Scenes dataset, 4 folds have 600 images each and the 5th

has 476 images, all folds are balanced with coffee and non-
coffee samples (50% each). Therefore, the 5 folds comprise
all the 1,438 coffee tiles explained in Section 4.1.2, but not
all the non-coffee tiles.

We report results in terms of average accuracy and stan-
dard deviation among the 5 folds. For a given fold, we com-
pute the accuracy for each class and then compute the av-
erage accuracy among the classes. This accuracy is used to
compute the final average accuracy among the 5 folds.

After evaluating each descriptor in both datasets inde-
pendently, we have also performed a correlation analysis. It
is based on the correlation coefficient ρ defined in [20]:

ρi,k =
N11N00 − N01N10√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)
(1)

where N11 and N00 represent the percentage of cases when
both descriptors predicted correctly or incorrectly, respec-
tively; while N10 and N01 represent cases of divergence,
the first descriptor correctly predicts the class but not the
second, and vice-versa, respectively; i and k refers to de-
scriptor i and descriptor k.

ρ varies from −1 to 1. The smaller the value, the least
correlated the descriptors and, therefore, the most promis-
ing to be combined. The opposite, i.e., higher values, mean
that descriptors are more correlated. The best scenario
for combining descriptors is the one that both descriptors
present high accuracy values and are few correlated.

After evaluating the descriptors correlation, we also
present some preliminary experiments for fusing feature
vectors of ConvNets.

Descriptor implementations The implementations of
ACC, BIC, LCH, SASI, and LAS descriptors follow the
specifications of [26]. GIST implementation is the one used
in [13] with the parameters discussed therein.3 We used
the HOG implementation of VLFeat [40]. The low-level
feature extraction of BoVW descriptors was based on the
implementation of van de Sande et al. [38]. For BoVW,
in UCMerced dataset we used SIFT [22] to describe each

3http://lear.inrialpes.fr/software (as of March 14th,
2015).

Figure 3: Average accuracy of the descriptors for the
UCMerced Land-use Dataset. ConvNets achieve the high-
est accuracy rates.

patch, but in Coffee dataset, we used OpponentSIFT [37],
as color should provide more discriminating power. The
feature vectors of OverFeat are exactly the 4,096 values cor-
responding to the outputs of the small and large networks.
The same for Caffe.

5. Results and Discussion
In this section, we present the experimental analysis,

which are divided in three phases: effectiveness evaluation,
correlation analysis, and feature fusion.

5.1. Effectiveness Evaluation

In Figure 3, we show the average accuracy of each
descriptor for the UCMerced dataset. We can observe
that ConvNets features achieve the highest accuracy rates
(≥ 90%). Caffe features have a higher average accuracy
(93.42% ± 1.00) in comparison to OverFeat (90.91 ± 1.19
for the small and 90.13 ± 1.81 for the large network). SASI
is the best global descriptor (73.88% ± 2.25), while the best
BoVW configurations are based on dense sampling, 5 or 10
thousand visual words and soft assignment with max pool-
ing (∼81%). The results illustrate the capacity of ConvNets
generalize to the aerial domain.

In Figure 4, we show the average accuracy of each de-
scriptor for the Coffee dataset. We can see that Caffe and
OverFeat features achieve high accuracies, with Caffe hav-
ing better results (84.82% ± 0.97). However, global color
descriptors like BIC and ACC achieve high accuracies, with
BIC outperforming all the other descriptors (87.03% ±
1.17). The BIC algorithm for classifying pixels in border
or interior basically separates the images into homogeneous
and textured regions. Then, a color histogram is computer
for each type of pixel. As for the Coffee dataset the differ-
ences between classes may be not only in texture but also in
color properties, BIC could encode well such differences.

The best BoVW configurations are again based on dense
sampling, 5 or 10 thousand visual words and soft assign-
ment with max pooling. They have comparable results to
OverFeat.



Figure 4: Average accuracy of the descriptors for the Brazil-
ian Coffee Scenes dataset. We can note that, although the
ConvNets perform well, some global color descriptors, like
BIC, achieve higher accuracies.

Although ConvNets were not the best descriptors for the
Coffee dataset, they could still perform well. This is in-
teresting specially because the ConvNets used here were
trained to recognize objects, which is a very different sce-
nario in relation to recognizing coffee regions. This also
shows the generalization power of ConvNets.

A possible reason for the ConvNets to perform better in
aerial dataset than in the agricultural one is due to the par-
ticular intrinsic properties of each dataset. The UCMerced
have more complex scenes, composed of a lot of small ob-
jects (e.g., buildings, cars, airplanes). Many of these ob-
jects are composed of similar visual patterns in compar-
ison with the ones found in the dataset used to train the
ConvNets, with salient edges and borders. Concerning the
Brazilian Coffee Scenes dataset, it is composed of finer and
more homogeneous textures where the patterns are much
more overlapping visually and more different than every-
day objects. The color/spectral properties are also impor-
tant in this dataset, which fit with results reported in other
works [12, 14].

5.2. Correlation analysis

We carried out a correlation analysis with the results of
all the descriptors in each dataset. Figures 5 and 6 show the
correlation coefficient versus the average accuracy for each
ConvNet in relation to all the other descriptors. For bet-
ter visualization, some descriptors are not shown in the fig-
ures. The top-left located descriptors in each graph should
be more promising to combine to the ConvNets, as they are
least correlated to them and have higher accuracy.

One can observe that ConvNets tend to agree (higher cor-
relation values) with the descriptors that have better accura-
cies. This is somewhat expected given Equation 1. There-
fore, for UCMerced dataset (Figures 5), we can see that the
ConvNets are usually more correlated to other ConvNets.
However, we can notice that the correlation values are not
high, being closer to zero than to 1. This fact indicates a
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(c) Caffe × other descriptors

Figure 5: Correlation analysis of ConvNets versus all the
other descriptors in the UCMerced dataset. We can note
that the ConvNets are more correlated to each other and
less correlated to the other descriptors. Even though, the
correlation values are not high even between ConvNets.

good potential for fusing even different ConvNets. In Fig-
ure 6, ConvNets are more correlated to BIC, ACC and the
other ConvNets.

5.3. Feature fusion

We have also conducted preliminary experiments of fea-
ture fusion. Our intention was to verify the results when
combining multiple ConvNets. Our fusion strategy is a sim-
ple concatenation of the feature vectors computed by each
ConvNet, without even performing any normalization step.
The results were verified by a fold-by-fold paired test with
confidence level of 95%.

We can see in Table 1 that for the UCMerced dataset,
the combination of OverFeat and Caffe performed remark-
ably well, achieving almost 100% of average accuracy. To
the best of our knowledge, these are state-of-the-art results
for this dataset. For the coffee dataset, improvement was
observed only when combining the two OverFeat networks.

6. Conclusions
In this paper, we experimentally evaluated ConvNets

trained for recognizing everyday objects in the aerial and re-
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Figure 6: Correlation analysis of ConvNets versus all the
other descriptors in the Brazilian Coffee Scenes dataset.
ConvNets are more correlated to BIC, ACC, and the other
ConvNets, which perform better in this dataset.

mote sensing image classification task. This evaluation adds
two more scenarios in which pre-trained ConvNets general-
ize well. The results show that yes, the ConvNets generalize
well even in domains considerably different from the ones
they were trained for. We also compared ConvNets with
a set of other visual descriptors. ConvNets achieved the
highest accuracy rates for aerial images, while for coffee
scenes they perform well but do not outperform low-level
color descriptors, such as BIC. A correlation analysis of
ConvNets with other ConvNets as well as with other visual
descriptors shows that they can potentially be combined to
achieve even better results. Preliminary experiments fusing
two ConvNets obtain state-of-the-art results for the well-
known UCMerced dataset.

As future work, we intend to explore more opportunities
for fusing ConvNet features and other descriptors based on
our correlation analysis presented in this paper. We also
would like to evaluate the impact of using features from
lower layers of the ConvNets as well as to train ConvNets
with specific remote sensing data. The evaluation of Con-
vNets in other remote sensing and aerial datasets is another
interesting future work.

Table 1: Results when fusing ConvNets.

(a) UCMerced dataset

Descriptors Avg. Accuracy Improves?

OverFeatS + OverFeatL 93.05 ± 0.88 Yes
OverFeatS + Caffe 99.36 ± 0.63 Yes
OverFeatL + Caffe 99.43 ± 0.27 Yes

(b) Brazilian Coffee Scenes dataset

Descriptors Avg. Accuracy Improves?

OverFeatS + OverFeatL 83.04 ± 2.00 Yes
OverFeatS + Caffe 79.01 ± 1.53 No
OverFeatL + Caffe 79.15 ± 1.70 No
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