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Abstract

We report on the use of a CMOS Contrast-based Binary
Vision Sensor (CBVS), with embedded contrast extraction,
for gesture detection applications. The first advantage of
using this sensor over commercial imagers is a dynamic
range of 120dB, made possible by a pixel design that ef-
fectively performs auto-exposure control. Another benefit is
that, by only delivering the pixels detecting a contrast, the
sensor requires a very limited bandwidth.

We leverage the sensor’s fast 150µs readout speed, to
perform multiple reads during a single exposure; this al-
lows us to estimate gray-level information from the other-
wise binary pixels. As a use case for this novel readout
strategy, we selected in-car gesture detection, for which we
carried out preliminary tests showing encouraging results.

1. Introduction
Several vision-based applications share similar low-level

image processing stages; rather than allocating time and
power for an external processor to perform them, one can
design a sensor that embeds some of these transforma-
tions. Contrast, for instance, represents one of the most use-
ful low-level features in computer vision for detection and
recognition tasks. In addition, high-dynamic-range (HDR)
capabilities are essential for virtually any application that
needs to be deployed in outdoors scenarios: strong, direct
illumination and hard shadows may affect the robustness
of gesture detection algorithms. Combining these require-
ments in a single imager is challenging.

Commonly, HDR capabilities are achieved by capturing
multiple, differently exposed pictures, which takes time and
computing resources: it would be beneficial to the frame-
rate of the system to perform HDR capture directly at the
sensor level, as well as to compress data; this can minimize
latency, the amount of data transferred, and the off-chip pro-
cessing power required.

There exists a number of sensors that can perform some
form of visual processing on chip [1, 2], or extract salient
features from the scene [3, 4, 5, 6].

Figure 1. We modify an HDR, binary contrast sensor to enable the
extraction of gray-level information. We then use this information
to detect gestures in a car’s cockpit. The setup for the proposed
system is shown in the left column. The center column shows
three typical gestures (see Sec. 4). The rightmost column shows
backgrounds, where the hand is either making a fist or is absent
altogether.

Several implementations of vision sensors have been
proposed, that are targeted to contrast extraction. Some rely
on temporal contrast, implemented through frame differenc-
ing [6, 5, 7], or frame-free light intensity change [3]; others
focus on spatial contrast, either using some flavor of pixel-
level connectivity [8, 9], or by performing spatial-temporal
operations [1, 10]. In our work, we focus on spatial contrast,
an essential cue in the context of image and video analysis.

We propose to use the contrast-based binary vision sen-
sor (CBVS) originally proposed by Gottardi et al. [9]. This
is a 128×64-pixel vision sensor that extracts and binarizes
the spatial contrast of the acquired image directly in the
pixel through a charge-sharing technique, and with no DC
power consumption (see Sec. 2). The CBVS can achieve a
dynamic range of over 100dB thanks to a pixel-level auto-
exposure control. It then only delivers the addresses of the
active pixels in bursts of data at a rate of ∼ 80MB/s, thus
minimizing the power it requires.

Our contribution lies in (a) the extension of the CBVS to
output gray-level information from the binary pixels’ val-
ues, and (b) a system for in-car gesture detection. We imple-
ment and test the system on challenging images representa-
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tive of real-case scenarios (Fig. 1) and report preliminary
results. Note that the extension of the sensor’s capabilities
does not require modifications to the original sensor’s hard-
ware: a firmware upgrade suffices.

2. Contrast-based Vision Sensor
The CBVS embeds a pixel-level processing that esti-

mates the spatial contrast across triplets of pixels, and bi-
narizes it before delivering it off chip [9]. The basic op-
erating principle is shown in Fig. 2. The sensor is based
on kernels of three photodiodes; let us assume that, for a
given scene, PE is the darkest pixel and PO the brightest
one. After reset, all the photodiodes start discharging from
the reset voltage VR, at a rate proportional to the impinging
irradiance. Moreover, it can be shown1 that the maximum
voltage difference among the three photodiodes, VC , is lin-
early proportional to the Weber contrast:

VC = VPE(t1)− VPO(t1) = VR
IPO − IPE

IPO
, (1)

where IPE ans IPO are the photo-generated currents of pix-
els PE and PO respectively, and t1 is the time at which the
most illuminated pixel reaches a given voltage threshold.
By definition, the contrast is insensitive to the absolute irra-
diance value, and so is the binary value obtained by apply-
ing a global threshold, VT , to the contrast VC of each pixel
in the sensor. This is roughly equivalent to performing auto-
exposure at the pixel-level, thus enabling the sensor’s HDR
capabilities.

Figure 3 shows a block diagram of the pixels’ kernel.
The analog contrast voltage VC is the output of the CON-
TRAST BLOCK, while Vcurr is the binarized value in the
current frame. A 1-BIT MEM is also embedded in the pixel,
which allows storing the past binary value of the contrast,
and executing frame difference at the column-level (BIT
LINES).

Another interesting feature of the sensor is the output
data encoding. The chip only delivers the addresses of the
active pixels, discarding the others. This is an efficient way
to compress sparse data; indeed, in a typical scenario, the
number of active pixels is smaller than 25% of the total pixel
count.

3. Gray-Level Operating Mode
Leveraging the fast readout speed allowed by the sen-

sor’s architecture, we propose a strategy to extract gray-
level information from the otherwise binary sensor.

To describe the proposed technique, it is worth returning
to the pixel’s operating principle. Note that, in the inter-
est of clarity, in Sec. 2 we made the simplifying assump-
tion that the voltage VC is read when one of the pixels is

1This can be proved by looking at the similarity between the triangles
in Fig. 2.
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Figure 2. Basic operating principle for the pixel-level contrast es-
timation. Each pixel’s voltage is compared against that of the
two neighboring pixels PN and PE. When the pixel exposed to
the highest irradiance—PO in this example—reaches a threshold
voltage, here set to 0 for simplicity, it is compared with the least
illuminated pixel in the kernel—PE in this example. The voltage
difference VC is proportional to the contrast between the two pix-
els. If VC is larger than a threshold VT , the output of the triplet of
pixels will be 1.

completely discharged; however, the sensor’s architecture
allows for this reading to be performed when the most il-
luminated pixel reaches a certain threshold VTH . Figure 4
shows the voltages of two pixel kernels that are exposed to
different irradiance levels during the exposure of the same
frame—PN, the third pixel of each kernel, is omitted for
clarity. Pixel PO1 sees the most incoming light, while PE2

sees the least. In this case, only PO1 and PO2 can detect
a contrast, being the ones exposed to the strongest irradi-
ance for each kernel; however, PO1 reaches VTH at time t1,
soon after the start of the integration time, while PO2 takes
a longer time t2, as shown in Fig. 4. In the mode of op-
eration described by Gottardi et al. [9], the sensor’s data is
read at the end of the frame (i.e., at the end of the exposure
time); since the voltage difference between the brightest and

Figure 3. Block diagram of the pixel PO together with the two
neighbors (PN and PE).



darkest pixel of the kernel is binarized before it is read, the
information that PO1 is brighter than PO2, as reflected by
the fact that the former becomes active much sooner than
the latter, is lost. However, we observe that the sensor read-
out takes only TR = 150µs regardless of the amount of
active pixels in the image. Moreover, within the exposure
time of a frame, pixels that are below threshold can con-
tinue to integrate light, even after the active pixels are read
out. Therefore, it is possible to read out the sensor’s active
pixels multiple times during the same exposure.

In the example in Fig. 4, the sensor is read out N = 4
times, at T{1,2,3,4}; we can then extract a gray-level image
by assigning to pixels that are read out at time Ti the gray
level L = N − i+1 (recall that bright pixels become active
sooner).

Note that the power consumption associated with read-
ing out the sensor is proportional to the number of ac-
tive pixels, since only their address is extracted from the
sensor—their value is, after all, binary. It could therefore
seem that performing multiple readouts would require sig-
nificantly more power. However, in the proposed imple-
mentation, active pixels are delivered only once during the
readout process. For instance, referring to Fig. 4, pixel PO1,
which detects a contrast at t1, is delivered only in the read-
out phase T1.

We can achieve this thanks to the 1-BIT
MEM that equips each pixel, as shown in Fig. 3.

Figure 5. Our pro-
totype.

Specifically, at the beginning of the
exposure time, this memory is reset;
when the output of the pixel, VC ,
goes above threshold, the memory
is set to 1 and stays at 1 until the end
of the exposure. At each readout Ti,
the address of the pixel is delivered
only if its binarized value, Vcurr,
is different from the state stored in
1-BIT MEM. This avoids multiple
transfers of the same pixel, leaving
the total amount of transferred data
as with the original sensor’s readout
strategy [9]. We implemented the
proposed readout strategy on the FPGA board on the back
of the sensor shown in Fig. 5.

The FPGA board we used is an Opal Kelly XEM3001v2,
equipped with a Xilinx Spartan-3 XC3S400-4.The firmware
temporarily stores the readout index and addresses of the
rows and columns of the active pixels into the FPGA RAM
before transferring the data to a host PC via USB. Note that,
since a pixel can become active only once within the ex-
posure time, the maximum size of the frame is the sensor
resolution. The current implementation requires 8 16-Kbit
blocks of RAM to fully store a frame, corresponding to 50%
of the total RAM blocks available. The remaining logic

occupies 944 (26%) slices and 54 (37.5%) I/O blocks, of
which 27 are dedicated to the sensor. The finite state ma-
chine within the FPGA operates at 100 MHz, while the sen-
sor output data transfer rate is 80 MHz (limited by the sen-
sor itself). Such a configuration achieves a frame rate of
64 fps, limited by the USB poll rate. Higher rates could be
obtained by buffering and transferring multiple frames at a
time, at the cost of a larger memory requirement.

3.1. Power analysis

Although the sensor’s power consumption is not cen-
tral to our application, especially for such a low resolu-
tion, things can change drastically for imagers with a larger
pixel count, such as VGA or WVGA formats. Two main
components contribute to the CBVS’s power consumption:
the pixel array scanning and the data delivering. Figure 6
shows the power consumption of the sensor (single gray
level mode) against the frame rate, when 25% of the pix-
els are active. In Active Mode the sensor delivers the con-
trast image; Idle Mode is a low-power mode in which the
array is scanned and the total number of pixels in the array
is counted, but no is data delivered. The total count can be
read out only upon request. Therefore, the difference be-
tween the two curves reflects only the power consumption
of the sensor during data delivery, which is the most power-
hungry activity of the sensor. To avoid a dramatic increase
of power consumption, it is important to deliver the same
amount of data as for the standard readout strategy: this
is achieved by exploiting the 1-BIT MEM as explained in
Sec. 3.

The total power consumption of the sensor can be ex-
pressed as:

PN = N · Pscan + Pdeliver, (2)

where, once again, N is the number of readout scans, i.e.,
the number of non-zero gray levels. At a typical frame rate,
the maximum number of gray levels is Nmax = 220 (see
Sec. 3.2). For a common scenario with 25% active pixels,
delivering the data costs about 40µW . The worst case in
terms of power consumption is then:

P220 = 220 · 20µW + 40µW = 4.44mW. (3)

In the case of 8 readout scans, the same used for the test
(Fig. 7), the total estimated power consumption is:

P8 = 8 · 20µW + 40µW = 200µW, (4)

which is about 3 times higher than the power burnt by the
sensor in the standard operating mode, with the same frame
rate. We believe that this is an acceptable price to pay, con-
sidering the additional information extracted.

3.2. Results

In this section we present images produced with the pro-
posed readout strategy, on simulated and real data.
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Figure 4. Illustration of the proposed technique. The graph shows two kernels of pixels (the third pixel for each kernel is omitted for
clarity). In both kernels PO becomes active during exposure time, since VC is larger than the threshold VT . However, pixel PO1 is exposed
to a larger irradiance than pixel PO2; to preserve this information, we can read out the sensor multiple times—four in this case. At each
readout, we only output the pixels that became active after the previous readout. This is shown in the four binary frames T1 through T4,
which were simulated from frame Iorig , image courtesy of Fairchild [11]. If we weight the four binary frames with the times at which they
were read out, we can create a single, HDR, gray-level image of the scene (see frame Result).

Figure 6. Measured power consumption versus frame rate for a
pixel activity of 25% for a single gray level. The two curves con-
verge to a static power consumption of about 3µW .

Simulated data — We use an 8MPixel, 110dB image,
IHDR, as a benchmark. We resized it to the actual vision
sensor dimensions, 128×64 pixels, and used N = 4 read-
outs, equally distributed over TEXP. We then simulated the
proposed readout strategy using IHDR as an input. Figure 4
shows the original image Iorig gamma-compressed to visu-
alize a large part of its dynamic range, the images extracted
from the sensor at the different readout times, and the final
gray-level result.

Given the sensor readout time of 150µs, the maximum
number of gray levels that can be extracted from the sensor
working at 30fps (TEXP = 33ms), is:

Nmax =
TEXP

TR
=

33ms

150µs
= 220, (5)

which yields a gray-level resolution up to 7 bits.

Real data — After this preliminary verification, we modi-
fied the firmware of the CBVS implementing the algorithm
described above. In this first prototype, we empirically
chose 8 readout phases, i.e., 9 gray levels, because of the
favorable trade-off between power consumption overhead
and quality of the resulting images. Figure 7 shows two
different scenes (top row) acquired with the proposed read-

Figure 7. Images captured with the proposed technique;
note that the LED illuminator visible in the images in the
top row was held in different positions during capture, to
simulate different HDR light distributions. The second and
third row show captures of the top left scene and top right
scene respectively, for three different positions of the illu-
minator. The eight exposure times used in this test are Ti =
{200µs, 400µs, 800µs, 1.6ms, 3.2ms, 6.4ms, 12.8ms, 25.6ms}.
To make the images more readable, a color map has been used to
encode the 9 light intensities in the scene, with red indicating the
brightest pixels and dark blue indicating pixels with no contrast
(i.e., no information on light intensity).

out strategy under different illuminations; in addition to the
room’s diffused fluorescent lighting, we used a 5W, wide-
angle (160◦), 850nm LED illuminator. Note that the LED
illuminator is by no means necessary for the sensor to work
properly, we only used it to illuminate different parts of the
scene in order to extend its dynamic range.

4. A Gesture-detection System

To verify the applicability of the CBVS for complex vi-
sual tasks, we developed a prototype system to detect hand
gestures in the context of automotive. We attached the



sensor to the ceiling of the car’s cockpit, with a field of
view roughly covering the area between the armrest and the
dashboard (see Fig. 1, leftmost column). Standard, low-
dynamic-range sensors would be hard-pressed to detect ges-
tures in such a scenario, due to the combination of direct and
indirect sunlight illumination, as well as the resulting hard
shadows.

For this use case we seek to classify the frames out-
put by the sensor in two categories: gesture, indicating the
presence of a hand with at least one open finger, and back-
ground, which covers the remaining scenarios, even that of
a hand closed into a fist, or resting on the stick-shift; note
that this is necessary for the system to be applicable to real-
world cases, but it does impact the robustness that is re-
quired of the classification algorithm (see Fig. 1, center and
rightmost column respectively). We tackled this problem by
designing a convolutional neural network trained to output
the probability that a gesture is occurring in the scene, or
the probability that the frame is just background.

To create and train the convolutional neural network, we
used Caffe, a deep-learning framework highly optimized to
run neural networks on GPUs [12]. The network comprises
several layers; the first is a convolutional layer with 32 fil-
ters of size 16×16 (with a 2-pixel stride), followed by a
rectified linear unit layer, a 2×2 max pooling layer, a local
response normalization layer, a fully connected layer with
24 outputs, and finally a softmax layer that outputs the prob-
abilities of gesture vs background. We trained the network
for 50,000 iterations on a set of roughly 5,000 images ac-
quired with the sensor and the proposed readout method.
To improve the generalization capabilities of the net, we
augmented the training set by randomly shifting and rotat-
ing the training images, obtaining a total of approximately
170,000 training samples; we also added a random gray
level noise to 2% of the image pixels. Finally, during train-
ing we performed a 50% drop-out after the rectified linear
units and fully-connected layers. Testing was performed
on a set of 1,062 images; the testing images were not used
for training, and were acquired under different illumination
conditions than the training images. Such illumination con-
ditions ranged from overcast to sunny weather; the latter, in
addition to presenting a higher dynamic range, causes very
strong shadows within the field of view of the camera.

The network detects gestures with a precision of 86%
and 88% recall (see Table 1), even in the presence of strong
light variations in the scene, such as the ones shown in the
middle column of Fig. 1 and in the left column of Fig. 8.
The background class was recognized with similar precision
and recall. Note that our system correctly classifies as back-
ground the typical—and particularly challenging—case of a
hand resting on the gearshift, as shown in the bottom right
pane of Fig. 8; this hand configuration is indeed very simi-
lar to that of the gesture shown in the bottom left image of

Figure 8. The left column shows three images correctly classified
as gestures by the proposed system; what looks like artifacts on
the arm and hands are the shadows due to the strong, direct sun-
light. The right column shows three images correctly classified as
background by the proposed system.

Predicted
Background Gesture Recall

Ground truth
Background 39% 8% 84%

Gesture 6% 47% 88%

Precision 86% 86%

Table 1. Confusion matrix (with precision and recall for each class)
of the gesture detector based on a convolutional neural network
and on the sensor described here.

the same figure. Finally, Fig. 9 shows a few examples of
incorrect classification.

5. Discussion and future work

After introducing the architecture and the operating prin-
ciple of the CBVS, we described a non-standard readout
strategy to extract gray-levels rather than binary images,
exploiting the time of arrival of the contrast pixels. Our
readout technique could inspire similar approaches for other
sensor architectures.

Because the sensor only outputs the magnitude of the

Figure 9. The left and right image are erroneously classified as
gesture and background respectively by the proposed system.



gradient, the intensity image cannot be reconstructed by in-
tegration; in this sense, our prototype, shown in Fig. 5, is
a simplified embodiment of the gradient camera proposed
and simulated by Tumblin and colleagues [13]. However,
we show that the images produced allow to perform com-
plex computer vision tasks, such as gesture detection, in
challenging scenarios.

An interesting aspect that requires further investigation
is the selection of the readout times Ti. Rather than using
an unnecessarily large number of levels, the readout strategy
can be designed to sample TEXP non-uniformly; for instance
one could iteratively change the actual values of the Ti’s
so as to equalize the histogram of the resulting image. A
strategy to optimize the choice of the readout times is left
for future work.

The low-power nature of this sensor, together with the
high dynamic range it can capture, make it a promising
candidate for several vision and computational photography
methods. For instance, the proposed gray-level sensor can
be used to perform metering for HDR imaging. In stack-
based HDR imaging, multiple pictures of the same scene are
captured with varying exposure times and then combined
into a single HDR image. To select which exposures to cap-
ture, state-of-the-art methods require several low-dynamic-
range viewfinder frames to estimate the dynamic range of
the scene before capture [14]. The same problem could be
solved with a single frame from the proposed sensor. We
leave this investigation for future work.
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