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Abstract

The subject of this paper is the visual object tracking in
infrared (IR) videos. Our contribution is twofold. First, the
performance behaviour of the state-of-the-art trackers is in-
vestigated via a comparative study using IR-visible band
video conjugates, i.e., video pairs captured observing the
same scene simultaneously, to identify the IR specific chal-
lenges. Second, we propose a novel ensemble based track-
ing method that is tuned to IR data. The proposed algorithm
sequentially constructs and maintains a dynamical ensem-
ble of simple correlators and produces tracking decisions
by switching among the ensemble correlators depending on
the target appearance in a computationally highly efficient
manner. We empirically show that our algorithm signifi-
cantly outperforms the state-of-the-art trackers in our ex-
tensive set of experiments with IR imagery.

1. Introduction
Until recently, the cost of infrared (IR) sensors has been

quite high such that they were mainly utilized in defense ap-
plications. However, due to the recent declining trend in the
cost of IR sensors, system solutions for surveillance appli-
cations started to include IR cameras to their sensor suites.
This recent ubiquity of IR cameras provided another type
of data for video processing systems, acquired in an alterna-
tive spectrum. However, since the video processing systems
have generally been researched for only visible band data,
efficient exploitations of IR cameras as a valuable new tool
of passive light/night imaging has remained largely unex-
plored. To that end, we study one of the major components
in systems that utilize IR cameras: visual object tracking.
Most object tracking methods [23], regardless of their ap-
proach, attempt to increase the performance of the tracker
by addressing the issues such as occlusion, and fast changes
in appearance and illumination. While some of these issues,
such as occlusion, is common regardless of the spectrum in
which the camera is capable of imaging, others, such as il-

lumination, affect the images in rather different fashions.
Thus, the optimal methods for videos acquired in one spec-
trum might turn out to be suboptimal for the others.

In this paper, we investigate the performance of the
state-of-the-art object trackers and identify the IR specific
challenges. There is a growing interest on comparing the
characteristics of different imaging techniques in both the
application level, (such as recognition [20], registration
[8, 13, 22]) as well as the signal level [16]. For instance,
a direct application of image processing techniques, which
are specifically designed based on the visible spectrum, to
the IR data is reported in [13, 14] to be non-optimal and
results in performance losses. We emphasize that the pre-
sented study is the first to conduct such a comparative analy-
sis in terms of the state-of-the-art trackers that are explicitly
run on IR-visible video conjugates, i.e., video pairs captured
through the same exact scene simultaneously. Based on the
presented comparative study, we also propose a novel track-
ing method geared towards superior IR performance.

1.1. Related Work and the Comparison Bases

Visual object tracking is an extensively studied computer
vision problem, however, mostly with visible imagery. A
comprehensive benchmark study is reported in [23] for the-
state-of-the-art as well as the most recently proposed track-
ing techniques. In feature based discriminative approaches,
the problem is treated as a binary classification problem,
cf. the pioneer studies [1, 7]. In this approach, positive
and negative samples are bagged to discriminate the tar-
get from background by using descriptors such as Haar-like
features [2, 9]. An example is the MILTrack algorithm [2],
which combines weak classifiers to develop a strong one
by exploiting the ideas from the multiple instance learning
framework. In [25], a feature selector is further incorpo-
rated into the MILTrack method to obtain relatively more
efficient implementations. FCT [24] uses the random pro-
jection idea of compressive sensing, where the track-by-



classification approach is applied after projecting the tar-
get image to a compressed domain. On the other hand,
STRUCK [9] utilizes a kernelized structured output support
vector machine (SVM). This method essentially incorpo-
rates the large margin theory into the tracking framework at
the cost of a high computational load. As opposed to the
standard SVM for binary classification, it uses continuous
label information as in the case of regression and jointly ker-
nelizes the label and the regressor, i.e., features. TLD [11]
is also a discriminative approach, but it differs from other
learning based approaches by its detection block. In Con-
text tracker [6], context information is exploited using the
regions called distracters and supporters. Distracters are re-
gions whose target appearance are similar to target, whereas
supporters are local keypoints around the target and have
similar motion pattern.

In generative approaches, a model is built for the target
appearance and, best candidate is searched for each frame
via a search mechanism. IVT [21] is a method which learns
an appearance based model using eigenbasis representation
within a particle filter framework. The main contribution
of this work is the proposed incremental PCA algorithm in
which, as the appearance changes, the eigenbasis vectors
are updated incrementally. In [15], multiple appearance and
motion models are combined to model the status of object.
Sparse principal component analysis is utilized to model the
different realizations of the object.

Despite the recent popularity of discriminative ap-
proaches, correlation based approaches are also significant
due to their high computational efficiency. MOSSE [4] is an
adaptive correlation based tracking method where the con-
volution theorem is exploited and an optimum filter is de-
signed using a set of target image samples. This algorithm
is the most efficient algorithm among the aforementioned
methods in terms of computational burden. In [10], a hy-
brid approach is proposed. Random samples in track-by-
classification algorithms are replaced with dense samples
designed to induce a circulant structure.

More recently, target object is sparsely represented with
trivial and target templates in [19], where the sparse rep-
resentation is obtained by solving L1-norm related mini-
mization problem. In [17], a two-stage optimization is used
to reconstruct candidate sample from templates. In [3],
the method [19] is improved by introducing a new L1-
norm related minimization model and utilizing proximal al-
gorithms to efficiently minimize introduced cost function.
Most sparse representation based approaches [3, 17, 19] ex-
ploit particle filtering to propagate sample distributions over
time causing a significant growth in the computation time.

Depending on the system design, tracking algorithms
can be run either on the imaging system, especially if the
bandwidth is limited for data transfer, or on a central com-
puter. The former case is especially important for IR videos.

Placing the IR camera in a gimbal so that the tracked object
is kept at the center of the acquired image is an important
and common application in defense systems. To achieve
this, trackers has to run real-time on the embedded platform
whose computational and memory resources are somewhat
limited. In such cases, the ability to run real-time at high
frame rates becomes a crucial property for the tracker. Thus,
our main concerns about tracking with IR imagery are not
only the tracking performance but also the computational
efficiency. For this reason, template based correlator track-
ers [4,10] are included in our comparative study due to their
impressively efficient implementations. In addition, the fea-
ture based discriminative approaches [2, 24, 25] provide a
comparison basis to our study, since the extraction of the
Haar-like features in these approaches allows the use of effi-
cient integral images. We omit the complex features such as
HOG [5] and SIFT [18] since the extraction of them hardly
satisfies our processing efficiency requirements. Never-
theless, we also consider the method [9], which also uses
Haar-like features but in a more sophisticated classification
framework via the max margin theory. Lastly, two represen-
tatives [3, 21] from other template based methods that are
not correlators but generative are chosen as another com-
parison basis.

1.2. Toward Trackers with Superior IR Perfor-
mance

In the presented comparative study, we perform experi-
ments with the state-of-the-art tracking algorithms [2–4, 9,
10, 21, 24, 25] on IR as well as visible spectrum video pairs
that are simultaneously acquired observing the same scene.
Our aim is to investigate the performance behaviour of each
compared method when the imaging spectrum is switched
from visible to IR and identify the IR specific challenges.
Afterwards, based on our findings, we develop a tracker to
satisfy both performance and computational complexity re-
quirements in IR data.

In our experiments, we observe a dramatic performance
loss associated with feature based discriminative tracking
approaches, whereas template based simpler correlators
turned out to be less sensitive to the imaging spectrum. Sev-
eral properties of the IR images are the reason for this be-
haviour. IR images, especially as the imaging wavelength
gets longer, are dominated by the blackbody radiation of the
observed objects, rather than the reflective component (it is
the opposite for images in visible spectrum). The emissivity
and the temperature of the objects are the factors that deter-
mine the amount of the blackbody radiation and these fac-
tors, in general, change smoothly across the objects. Thus,
IR images are less textured compared to their visible coun-
terparts (An object with a strong heat source, such as an
engine, might be seen as an exception. However, even in
that case, its bright spots that correspond to the heat sources



(a) IR band image (b) Visible band image (c) IR band edge map (d) Visible band edge map

Figure 1. Edge strength for an IR/visible band image pair.

make it easy to correlate in between frames). Moreover,
the edge responses in an IR image are typically more noisy
and hence background clutter strongly conceals the target
features that are already not very strong in the IR image.
In Figure 1, it is illustrated that IR generates edges both
on the foreground and the background (i.e. contamination
by clutter), whereas in the visible image, the contours of
the target can be easily segmented. On such a scene, fea-
ture based tracking methods are adversely affected in the IR
spectrum. To overcome this issue of scarcity of discrimina-
tive features, overly dense HOG features are used in another
context of object recognition [12] with IR images. Such
densely sampled HOG features might also be a solution for
object tracking, but it would violate the real-time processing
requirements of the security and defense applications. In-
stead, the template based correlator trackers utilize the full
image representations -in line with the over sampling idea-
and also allow fast FFT algorithms in generating track deci-
sions that are robust to changes in imaging spectrum. Nev-
ertheless, template based correlators have limited modelling
power compared to the sophisticated classification schemes
of feature based discriminative approaches. For instance,
while the correlation filter in [4] utilizes only one projection
onto the template, the structured SVM method in [9] pro-
duces a kernel expansion enjoying projections as many as
desired. Therefore, for object tracking in IR videos, either
features specifically tuned to IR signal characteristics are
to be efficiently designed or the modelling power of simple
correlators is to be boosted with controllable computational
complexity.

We opt to concentrate on the simple template based cor-
relators and propose a novel ensemble method for tracking
in IR. The proposed method is an adaptive switching mech-
anism in an ensemble of base correlators, i.e., base trackers,
each of which utilizes a certain target template and registers
a certain target appearance. At each time in the course of
the tracking, our algorithm chooses the right base tracker
depending on the active appearance mode of the target, up-
dates only the chosen base tracker and produces a tracking
decision by mainly using that of the trained tracker. As a
result, the proposed framework is not only as computation-

Algorithm 1 Proposed TBOOST Algorithm

Input: Video: vt, Budget: M , Number of frames: N
1: Initialize tracker and template sets T← ∅,D← ∅
2: Get the user input x1

3: Add first tracker T1 and the template D1:
4: T← {T1},D← {D1}
5: for t = 2→ N do
6: Obtain the image patch xt

7: Map xt onto D using 1
8: i = argmax

j
aT(j)

9: Calculate appearance change score s = f(Di, xt)
10: if s is sufficiently large then
11: Update tracker Ti

12: else if |T| < M then
13: l ← |T |+ 1
14: Add new tracker and the template
15: T← T ∪ {Tl},D← D ∪ {Dl}
16: else
17: i = argmin

j
aT(j)

18: and replace Ti by a new tracker and template
19: end if
20: Perform tracking using the combined tracker
21: end for
Return:Target Locations

ally efficient as the individual base trackers but significantly
boosts the modelling power of one single correlator while
exploiting its representational superiority over feature based
approaches. In our experiments, we empirically show that
our algorithm significantly outperforms the state-of-the-art
trackers in IR videos.

We explain the details of the proposed method in the fol-
lowing Section 2. Then, we present our comparative study
and experiments in Section 3. The paper concludes with
final remarks in Section 4.
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Figure 2. Illustration of the proposed TBOOST algorithm. TBOOST sequentially constructs and maintains a dynamical ensemble of base
trackers, each of which is specialized on a different target appearance, such that a complete history of tracking experiences is registered in
the course of the video stream. The proposed algorithm, TBOOST, implements a non-smooth, highly adaptive and time varying learning
rate by continuously switching in the ensemble to choose the right base tracker. This switching mechanism is in accordance with the target
appearance dynamics. At each frame t, only the active (chosen) base tracker is updated with only the informative part of the received image
patch (the noise or occluded part is subtracted) and the final tracking decision by TBOOST is collectively based on the ensemble. See the
text for details.

2. Proposed Method

A tracker is generally designed to adaptively learn the
target appearance at usually a user specified learning rate.
The specification of this adaptation rate must ideally be in
accordance with the actual rate of the appearance change in
the scene, which -however- cannot be foreseen and is not
necessarily constant. Namely, the appearance change can
realize at various rates depending on the scene dynamics
and there exists no one optimal adaptation rate that a tracker
can choose a priori. Therefore, a time varying adaptation
must be incorporated and we implement such an approach
using an ensemble method.

To this end, we propose an algorithm, named
“TBOOST” presented in Algorithm 1, that adaptively
switches in an ensemble of base trackers, where -at any time
t- only one base tracker actively learns the target appear-
ance. The proposed procedure sequentially constructs and
maintains a dynamical ensemble of base trackers, each of
which is specialized on a certain target appearance. At any
time t, if the active base tracker is sensed to unable to effec-
tively adapt to the target appearance, then the proposed al-
gorithm switches to the most appropriate base tracker from
the ensemble. If none of the ensemble trackers is found
to be appropriate, a new base tracker is initialized and in-
cluded in the ensemble. We also keep the ensemble size,
i.e., budget size, fixed by using a certain add/removal strat-
egy. We point out that the introduced switching mechanism
effectively implements a non-smooth highly adaptive learn-

ing rate. Moreover, note that the proposed framework keeps
an history of tracking experience during the video stream,
and allows recalling an appearance model whenever it re-
emerges instead of completely forgetting or discarding it.

We secondly emphasize that the proposed framework
specially handles both the (additive Gaussian type of) un-
structured or structured (such as occlusion) noise that might
exist in the target appearance. Clearly, such a noise compo-
nent is detrimental on the tracking performance and not only
the switching among the base trackers but learning/updating
the active base tracker mechanisms should ideally not be
affected by this noise component. For this purpose, we
exploit the recently proposed L1 projection technique [3].
Lastly, the final tracking decision is obtained by combining
all of the base trackers in the ensemble and the computa-
tional complexity of the introduced method is not more than
that of the individual base trackers. The proposed tracking
algorithm is summarized in Algorithm 1 and illustrated in
Fig. 2; and in the following we explain the details.

We assume a video stream vt of gray scale frames.1 Let
the image patch at each frame cropped by the tracking de-
cisions be denoted by xt, where the first image patch x1

is provided (as a box covering the target object) by the
user. Given the budget size M , the first base tracker T1

is initiated with the provided image patch x1. For this base
tracker T1, we also register the image patch x1 as the corre-

1Our algorithm can be straightforwardly extended to operate on stan-
dard videos of 3-channel RGB frames.



Figure 3. Samples from SENSIAC (first three columns) and OTCBVS (last column) datasets

sponding D1 = x1 appearance model. In the course of the
tracking, we maintain a dynamical ensemble of base track-
ers T = {Ti}Mi=1 and a corresponding set D = {Di}Mi=1

of appearance models. In general, when the frame vt and
hence the image patch xt based on the previous track de-
cision arrives, we use the L1 projection method [3] to de-
cide which base tracker in the ensemble T to switch to and
update. Namely, we obtain a sparse representation for the
appearance xt in terms of the ones in the template set D via

argmin
a

{
||x−Ka||2 + λ||a||1 + μ||aI ||2

}
, s.t.a � 0,

(1)
where a = [aT ,aI ]

T and K = [D, I]. Note that with this
L1 projection, we aim to lump the noise in the currently re-
ceived appearance xt such as an occlusion in the noise im-
age aI and obtain the sparse representation xt � DaT . We
then conclude that if the appearance model with the max-
imum weight in aT is sufficiently similar to the xt

2, then
the template D∗ ∈ D is the best representing one, i.e., let
the appearance D∗ corresponds to max aT, and the corre-
sponding base tracker T ∗ ∈ T must be active and updated
with the received observation xt. Otherwise, if the bud-
get size has not yet been exceeded, a new base tracker is
initialized and its template is set as the current observation
xt. If the budget is full and we do not have a sufficiently
good representation, i.e., the appearance model with maxi-
mum weight in aT is not sufficiently similar to the current
observation xt, then the base tracker corresponding to the
lowest coefficient in aT is replaced with a newly initiated
base tracker.

In our framework, we do not restrict the choice of the
base tracker, and any tracker can be used for this purpose.
However, for its high performance and robustness on IR
images as well as its computational efficiency, we use the
MOSSE filters as our base tracker. In the following, we

2By comparing the normalized cross correlation between them to an
appropriate threshold

briefly summarize the MOSSE tracking approach and then
present our final combined tracker.

We use the MOSSE filters [4] as our base trackers with-
out loss of generality. In the tracking framework of [4], a set
of training images {fi} of the target object is assumed to be
provided beforehand3. Then, the goal is to find a correlator
h such that the correlation between any fi and the corre-
lator h yields a relatively large response. To obtain such
an optimal correlator h and the corresponding optimal fil-
ter response H (after the Fourier transform), the following
optimization is performed:

H = argmax
H∗

∑
i

| Fi 	H∗ −Gi |2, (2)

where capital case notations indicates the Fourier counter-
parts and Gi is the desired response (details can be found
in [4]). Therefore, since we use a basic MOSSE filter for
each of our base tracker, we have a corresponding set of
{Hi}i=1:M at any time t. Then we construct an average fil-
ter Havg = Σi=1:MaT(i)Hi

4 and obtain the decision of the
combined proposed ensemble tracker by locating the peak
of F−1(Havg

∗	Xt) (F−1 denotes the inverse FFT), which
basically yields the location of the target object.

The computational complexity of the localization part
of the algorithm is not more than that of the base track-
ing algorithm, i.e., MOSSE in this paper (Plog(P ) with P
template dimension). Secondly, L1 projection is performed
at each frame to find the representation coefficients of the
base trackers. For this purpose, we use the optimization
method used in [3] once at each frame. Therefore, our
method has a computational complexity of MOSSE [4] in
addition to complexity of the L1 projection per frame. Un-
like the sparse coding based visual tracking methods ful-
filling L1 norm minimization at each frame as many times

3This set of training images is typically obtained by applying random
perturbations to the initial target patch provided by the user

4By the formulation in 1, aT is non-negative, and here it is normalized
to add up to 1 for our averaging purposes.



Table 1. Overall Tracking Performance Change from Visible to IR
Sequences. The methods are listed in the descending order of the
performance loss. The methods in the first four rows are feature
based, the remaining ones are template based.

AUC TM Precision
MIL -63.91 % -54.19 % -48.79 %
ODFS -46.52 % -39.67 % -34.00 %
FCT -38.09 % -38.09 % -33.85 %
STRUCK -28.89 % -22.76 % -24.77 %
L1APG -13.76 % -13.95 % -3.31 %
TBOOST -8.82 % -3.10 % -10.95 %
MOSSE -1.67 % -12.25 % -2.69 %
CRC 15.66 % -19.07 % -5.32 %
IVT 16.51 % 11.10 % 27.74 %

as the number of particles [3, 17, 19], the proposed method
requires only one minimization procedure. We experimen-
tally observe that our technique operates at around 40 fps
(with a budget size of 10) in MATLAB environment with a
3.2 GHz Intel processor.

3. Experiments
Two groups of experiments are carried out for the perfor-

mance analysis, where we compare the proposed TBOOST
algorithm with several state-of-the-art trackers: MILTrack
[2], ODFS [25], FCT [24], STRUCK [9], L1APG [3],
MOSSE [4], CRC [10] and IVT [21], cf. Section 1 for a
discussion about these methods. We use publicly available
source codes provided in [23]. In the first set of experi-
ments, all of the compared methods are run on both the IR
and visible band sequences (captured observing the same
scene simultaneously) of SENSIAC and OTCBVS datasets
5. In the consequent set of experiments, the effect of target
sizes on the tracking performance is investigated using IR
band sequences.

3.1. Performance metrics

In our performance analysis, we use two evaluation met-
rics, i.e., success and precision rates, that are used in [23].

One of these metrics is the success rate that indicates the
percentage of frames, in which the overlap (in terms of the
bounding boxes) between the ground truth and the track-
ing result is sufficiently high with respect to an appropriate
threshold. A success rate plot demonstrates this percentage
for varying thresholds in [0, 1]. To rank the methods based
on their success rates, we use the area under curve (AUC)
and track maintenance (TM) scores, which are derived from
success plots. AUC refers to the total area under a success
rate plot, whereas TM is the ability of a tracker to maintain a
track, i.e., the success rate at the 0+ threshold (TM is given
as % percentage on the tables).

5Refer to {www.sensiac.org} and {www.vcipl.okstate.edu} for the
datasets SENSIAC and OTCBVS, respectively.

Table 2. SENSIAC - Success Rate Comparison. Although
STRUCK operates well in visible data, its performance degrades
considerably in IR. On the other hand, our method TBOOST main-
tains its success when switched from visible to IR and also outper-
forms its competitors.

IR Visible
AUC TM AUC TM

TBOOST 0.327 78.73 0.360 81.47
STRUCK 0.297 63.65 0.420 82.71
MOSSE 0.211 57.79 0.215 66.07
L1APG 0.202 47.50 0.235 55.39
FCT 0.178 44.20 0.289 71.88
IVT 0.127 35.00 0.109 31.58
ODFS 0.120 33.83 0.225 56.51
CRC 0.119 27.18 0.103 33.82
MIL 0.055 16.25 0.154 35.83

Table 3. SENSIAC - Precision Comparison
IR Visible

TBOOST 66.85 74.74
L1APG 58.14 60.09
STRUCK 57.50 76.27
MOSSE 51.78 53.18
FCT 45.20 66.21
IVT 38.76 30.09
ODFS 32.89 49.10
CRC 29.24 29.81
MIL 17.08 33.03

The other evaluation metric is the precision, which de-
notes the percentage of the frames, in which the standard
Euclidean distance between estimated and actual target cen-
ters is sufficiently small with respect to an appropriate
threshold. This evaluation metric demonstrates the local-
ization accuracy of a method. To rank methods based on
their precision, a distance threshold of 20 px is used.

3.2. Datasets

The SENSIAC dataset includes simultaneously captured
visible and mid-wave IR sequences of certain scenes with
various types of target objects of different target sizes such
as walking pedestrians, pickup trucks, tanks and others. A
ground truth that contains the target bounding boxes for
each frame is also provided. In our experiments, we use
20 pairs of sequences, which contains considerable amount
of background clutter in addition to several occlusion in-
stances in case of walking pedestrians (Figure 3).

The OTCBVS dataset includes 4 indoor scenes of
human-walking patterns (similarly, captured simultane-
ously with both visible band and mid-wave IR cameras). All
images are rectified to register pixel correspondences be-
tween visible band and IR frames. This dataset is extremely
challenging in the sense that the targets often occlude each
other throughout the scenes (Figure 3). We manually gener-



Table 4. OTCBVS - Success Rate Comparison
IR Visible

AUC TM AUC TM
STRUCK 0.126 29.73 0.065 22.07
TBOOST 0.113 26.97 0.062 17.78
FCT 0.092 26.50 0.053 12.40
L1APG 0.083 20.18 0.047 13.64
MOSSE 0.082 24.64 0.063 17.25
CRC 0.077 23.78 0.062 14.50
ODFS 0.076 24.05 0.051 11.98
MIL 0.072 19.78 0.058 18.63
IVT 0.065 17.43 0.050 11.15

Table 5. OTCBVS - Precision Comparison
IR Visible

TBOOST 10.88 5.31
STRUCK 8.45 3.77
L1APG 8.26 4.94
FCT 6.92 3.87
MOSSE 6.14 4.67
IVT 5.81 4.64
MIL 5.00 4.29
ODFS 4.19 4.20
CRC 4.32 5.68

ate a precise ground truth by annotating a bounding box for
each person in the sequences.

3.3. Relative Performance between IR and Visible

We thoroughly discuss in Section 1 that the compared
methods can be studied under two main families: feature
based trackers and template based trackers. Since the domi-
nant background clutter in IR band detrimentally affects the
performance of feature based methods as a result of the sup-
pressed foreground (target) features due to the IR character-
istics (cf. Section 1), we observe a relatively large perfor-
mance variations in case of feature based trackers in Table
1. Namely, template based trackers tend to preserve the vis-
ible band performance when the imaging technique changes
to IR.

Next, we present our detailed comparisons separately for
the two datasets.

3.3.1 Performance on SENSIAC Dataset

The overall performance results on SENSIAC dataset are
depicted in Figure 4 (a - d) as well as Table 2 and Table 3.
We observe that the performance of template based meth-
ods on IR sequences is relatively higher than that of fea-
ture based methods. Some template based methods such
as MOSSE, TBOOST and CRC are limitedly affected by
the radiation spectrum. On the contrary, feature based ap-
proaches such as STRUCK, FCT, ODFS and MILTrack ex-
perience dramatical performance losses up to 60 percent
both in terms of success rate and precision. Namely, tem-

Table 6. Small vs Big Target. Our method TBOOST significantly
outperforms its nearest competitor STRUCK especially for small
targets.

Small Big
AUC TM AUC TM

TBOOST 0.241 65.88 0.349 81.94
STRUCK 0.131 27.14 0.338 72.78
MOSSE 0.148 39.86 0.227 62.28
L1APG 0.160 48.00 0.213 47.37
FCT 0.182 30.02 0.177 47.74
IVT 0.027 10.41 0.152 41.14
ODFS 0.090 14.89 0.127 38.56
CRC 0.057 15.57 0.134 30.09
MIL 0.035 5.03 0.060 19.05

plate based methods’ ability to localize and maintain a track
are considerably better in IR band (Table 2 and Table 3).

Most importantly, the proposed method TBOOST per-
forms best in the IR band in terms of success rate and preci-
sion. Although it shows a slightly lower performance than
STRUCK in visible band, its robustness to imaging tech-
nique makes TBOOST outperform its nearest competitor
STRUCK in IR in terms of both metrics.

3.3.2 Performance on OTCBVS Dataset

The performance results on OTCBVS (Figure 4 (e - h), Ta-
ble 4 and Table 5) show that the proposed method TBOOST
performs better than all of the compared methods on IR
sequences in terms of precision; and ranks in the second
place in the success rate table. However, the performances
of all methods decrease considerably on this dataset, since
the OTCBVS is a remarkably challenging and difficult one
due to its extreme amounts of occlusion. Thus, it is -in fact-
difficult to reason about the performance changes of feature
based trackers and draw concrete conclusions.

3.4. Target Size based Performance Analysis

To demonstrate the effect of target size on the tracking
performance, another group of experiments are performed
on IR sequences. The SENSIAC dataset is grouped into
two groups; one with targets smaller than 100 pixels area,
and the other with larger.

As the targets get smaller in size, the features on the tar-
get get less effective. Figure 5 shows the success and pre-
cision plots for these experiments and Table 6 shows AUC
and TM scores. As targets get smaller and hence the dis-
criminative features vanish, the proposed TBOOST algo-
rithm outperforms the compared methods even more no-
tably. Interestingly, STRUCK loses its second best position
in overall performance, once again showing the negative
correlation between the IR band and feature based tracking.
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(b) SENSIAC-Vis
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(c) SENSIAC-IR
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(d) SENSIAC-Vis

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Success Plot − IR

 

 
CRC
FCT
IVT
L1APG
MIL
MOSSE
ODFS
STRUCK
TBOOST

(e) OTCBVS-IR
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(f) OTCBVS-Vis
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(g) OTCBVS-IR
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(h) OTCBVS-Vis

Figure 4. Overall Results
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(a) smaller than 100 px-IR
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(b) smaller than 100 px-IR
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(c) bigger than 100 px-IR
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(d) bigger than 100 px-IR

Figure 5. Performance for bigger/smaller than 100 px.

4. Conclusion

We compare the infrared (IR) and visible imagery for ob-
ject tracking via extensive experiments and propose a novel
tracking algorithm that is tuned to IR data. Our develop-
ment toward the proposed tracker with superior IR perfor-
mance is based on the following observations: i) The typical
security and defense applications of IR requires high com-
putational efficiency with minimal memory usage. This sig-
nifies the simple template correlator based trackers which
allows the efficient FFT algorithms. ii) The efficiently ex-
tractable features such as the Haar-like are faded away and
cluttered by the IR cameras. Full image representations,
which the simple template based correlators depend on, mit-
igate this issue to a significant degree. iii) Despite their im-
pressive efficiency, the modelling power of these correlators
are limited in the space of target appearances and need be
boosted. To this end, the proposed algorithm adaptively and
continuously switches in a specially designed ensemble of
correlators depending on the observed target appearances in

the course of the tracking. We show that via extensive set
of experiments, our algorithm significantly outperforms the
state-of-the-art techniques with IR imagery.
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