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Abstract
Dormant pruning is one of the most costly and labor-

intensive operations in specialty crop production. During
winter, a large crew of trained seasonal workers has to care-
fully remove the branches from hundreds of trees using a
set of pre-defined rules. The goal of automatic pruning is
to reduce this dependence on a large workforce that is cur-
rently needed for the job. Automatically applying the prun-
ing “rules” entails construction of 3D models of the trees in
their dormant condition (that is, without foliage) and accu-
rate estimation of the pruning points on the branches.

This paper investigates the use of Skeleton-based Ge-
ometric (SbG) features in a 3D reconstruction scheme.
The results obtained demonstrate the effectiveness of the
SbG features for automatic reconstruction using only two
views — the front and the back. Our results show that
our proposed scheme locates the pruning points on the tree
branches with an accuracy of 96.0%. The algorithm that
locates the pruning points is based on a new adaptive circle-
based-layer-aware modeling scheme for the trunks and the
primary branches “PBs” of the trees. Its three main steps
are detection, segmentation, and modeling. Localization of
the pruning points on the tree branches is a part of the mod-
eling step. Both qualitative and quantitative evaluation are
performed on a new challenging apple-trees dataset that is
collected for the purpose of evaluating our approach.

1. Introduction
Dormant pruning, which involves cutting off certain pri-

mary branches (i.e., the branches which are connected di-
rectly with the trunk of a tree), is a critical component
in the specialty crop production. Without pruning, fruit
quality and the efficacy of pest and disease control decline
precipitously, which ultimately results in significantly re-
duced orchard profitability. However, it is a very costly and
labor-intensive practice. To mitigate the need for a large
skilled seasonal workforce, there is currently much interest
amongst specialty crop producers in mechanized and auto-

matic pruning techniques.
The objective of automatic dormant pruning is to deter-

mine the locations of potential pruning points of the tree
and measure relevant parameters of the PBs, such as the di-
ameter, angle between the trunk and the PBs, etc. These
parameters are used to decide whether each pruning candi-
date should be pruned indeed. Several factors, such as the
complexity of the tree structures in modern high-density or-
chards, illumination variations, background clutter, and par-
tial occlusions, complicate the task and make it a challeng-
ing computer vision problem. In this paper, we investigate
to what extent the usage of the proposed reconstruction and
modeling framework can alleviate some of these issues.

Most state-of-the-art work in automatic pruning relies on
depth sensors or cameras [1, 16, 9, 10, 12, 5, 6] to cap-
ture the range images of a target tree from multiple views
and reconstruct its 3D model. There exist two recent ap-
proaches to extract tree models from depth information.
The first approach employs generative branching-structure
models [12, 2, 7, 11], which provide hypotheses on the lo-
cation of the branching points and extract key features from
the measured data to confirm or reject these hypotheses.
The problems with this approach arise when the tree struc-
tures are complex (i.e., a large number of hypotheses are re-
quired in order to maintain the same level of accuracy). The
second approach, analyzes patterns of connecting points,
finds either a minimum spanning tree [10] or a shortest path
tree [17, 4], and applies cylindrical modeling on segmented
point clouds of the trunk and PBs. However, incorrect seg-
mentations are very difficult to avoid using these connection
analysis methods and robustness is always an issue. In ad-
dition, it is hard to accurately model complex tree structures
with sharp curvatures using those cylindrical models.

The work cited above for reconstructing a tree model
from 2D and 3D sensory information does not lend itself
well to the automatic calculation of pruning point. There
are two reasons for this: the first is related to the lack of im-
portant detailed data [1, 16, 14, 15, 13], that is required for
creating algorithmic implementations of the pruning heuris-
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tics used in manual pruning. The manual pruning heuristics
are based on considerations such as how thick the branches
are and/or what angle the PBs are making with respect to
the trunk of the tree. The second issue is related to the fact
that modern orchards tend to be dense, with very limited
spacing between the trees. Therefore, it is not feasible to
perform 3D reconstructions as in [1, 16] due to the high
proximity of the trees.

The research reported in this paper is based on the sen-
sory data collected with the KinectFusion (KF) software [8]
that is provided with the Kinect 2 sensor in order to pro-
duce the 3D reconstruction of the scene/object in real-time.
In our case, KF generates either the front or the back point
cloud “PC” of the dormant apple tree, while simply mov-
ing the sensor around it. To obtain the final 3D reconstruc-
tion of the tree, we evaluate the use of geometric features
in order to merge these front and back PCs automatically.
Exploiting geometric attributes, which are robust to varia-
tions in illuminant, shadows, shading, and tree geometry, is
a difficult challenge. Therefore, we investigate the use of
geometric features for the automatic reconstruction task.

With regard to the specific contributions we report in this
paper, we first extend the KF’s reconstructions with geomet-
ric attributes that have yielded excellent 3D reconstruction
results due to their discriminative power and robustness.
The reconstruction scheme that comes with the KF sensor
was found to be not optimal for high-density orchards. The
KF reconstruction algorithm makes it impossible for the
person who is capturing the images to go to the back side
of the tree while capturing images on its front side, and vice
versa. When sensory data is collected from two opposite
viewpoints — as we do in our work — that invalidates the
fundamental KF assumption, which assumes that the input
images captured are extremely close to each other. To solve
this problem, we record two separate point clouds, one for
the front and the other for the back using the KF’s recon-
struction algorithm. Subsequently, we merge these PCs and
find an initial registration based on the extracted geometric
features. Finally, we refine the registration of the obtained
PC using the Iterative Closest Point (ICP) algorithm in order
to form the final 3D reconstruction of the tree. In addition,
we propose an adaptive circle-based-layer-aware modeling
technique, which accurately estimates the locations of po-
tential pruning points as well as other relevant information
of the tree model that is required for the automatic prun-
ing task. We show that this technique allows for achieving
efficient tree models on both synthetic and real data.

2. The Data Acquisition System
This research started out with performing a compara-

tive evaluation of two different sensor types, LIDAR and
Kinect 2, for constructing 3D point clouds of dormant trees.
Although the LIDAR sensors are expensive and heavy, they

Figure 1. The ground-truth of tree T1indoor is shown on the left.
The obtained reconstruction using LIDAR is shown on the middle.
The Kinect 2 reconstruction is shown on the right.

typically produce high quality data. On the other hand, the
Kinect 2 sensor is inexpensive, lightweight, and the qual-
ity of its data is comparable to that of the LIDAR as we will
show in this section. Given these advantages of the Kinect 2
sensor, we eventually settled on using the Kinect 2 sensor
along with its Kinect Fusion (KF) software.

To create a point cloud for an extended 3D object
with the Kinect 2 sensor, holding the sensor by hand, one
typically moves it around the object through overlapping
sweeps. The KF software is smart enough to fuse together
the points that are the same in the data collected from differ-
ent but adjoining views. Through this process, the KF soft-
ware can produce a very realistic looking 3D point cloud
for a scene. This process works if there is sufficient over-
lap between successive data scans recorded by the sensor.
Our main challenge with this approach to constructing a
3D point cloud for a tree is that it is NOT possible to walk
around a tree since the trees in modern orchards are planted
too close together.

In Figure 1, we show the 3D point cloud reconstruc-
tions obtained using the two aforementioned sensors. It is
clearly demonstrated that the best results are obtained using
the Kinect 2 (i.e., as shown in the upper part of the tree).
In summary, inexpensive, lightweight Kinect 2 sensors pro-
vide accurate, high-resolution data — in contrast to using
expensive, heavy-weighted LIDAR sensors. As a result, we
base our approach on the Kinect 2 sensor with the KF soft-
ware.

3. Reconstructing 3D Point Clouds using
Skeleton-based Geometric Attributes

The goal here is to merge the data collected from the
front and back of a tree into a single 3D point cloud. Note
that the trees in modern orchards are usually planted much
too close together and do not allow for collecting 3D data



Figure 2. We show the block diagram of the proposed approach for constructing a 3D point cloud of a tree. The first and second rows
show the processing of the back (B) and front (F ) sides of the target tree T , respectively. The main steps involved are: (i) obtain the
reconstruction of the F and B sides, separately, (ii) extract geometric features from the two views, (iii) perform a feature matching step to
obtain the initial registration of T . Finally, we perform a final refinement step using ICP to get the desired 3D reconstrucion.

Algorithm 1 Geometric Feature Extraction for 3D recon-
struction
Step A: Trunk Feature Extraction
1) Start from the root and for each candidate node, examine
the no. of its connections in the connectivity matrix “C”.
2) Check if

∑M
j=1 Cij > 2, where M is the total number of

skeleton nodes. Then, add the current node “i” to the trunk
feature set TRfp, and move towards the next candidate node
that forms the least angle with respect to the z-axis. Other-
wise, move to the upward node.
3) Repeat step 2 until no more nodes are found on the trunk.
The output is the set of all nodes TRfp on the trunk.
Step B: Primary Branch (PB) Feature Extraction
1) Start from a node in TRfp and move inside the PB.
2) Check if {(

∑M
j=1 Cij > 2)||(

∑M
j=1 Cij = 1)}, then add

node i to the PB feature set PBfp, and go to step 3. Other-
wise, move towards the next node along the PB. Note that,
in case a PB does not have any secondary branch connec-
tions, we use its terminating point as a feature point.
3) Repeat steps 1 & 2 for all nodes in TRfp. The output is
the set of all nodes PBfp on the PB.

for a tree through a single sweep around the tree.
We scan and reconstruct each side of a tree (T ) and then,

using the algorithm presented in this section, we merge the
two views into a single 3D point cloud.

For this purpose, we gather the depth images from the
front (F ) and back (B) sides of T , separately, and feed the
data to the KF software to reconstruct the models separately
for the F and B views. To merge F and B views and to
build the final model of T , we extract geometric features
from the skeleton of T , and then use these features to ob-
tain the initial transformation (i.e., the rotation & translation
matrices) between the F and the B views. Subsequently,
trough the application of this transformation to the point
cloud in one of the views, we merge it with the point cloud
in the other view. Finally, we refine the overall 3D point

(a) (b)
Figure 3. We show an iIlustration of the feature points and fea-
ture descriptors used in our approach. In (a) we show the angle
descriptors (θPB and θSB), while in (b) we show the distance de-
scriptors (|AR|, |ER|, and |EA|). θPB is the angle between a
trunk feature point “TRfp” and PB originating from it. θSB is
the angle between a PB feature point “PBfp” and the secondary
branch “SB” originating from it. |AR|, |ER|, and |EA| represent
the distances between (i) the TRfp and the root “R”, (ii) the PBfp

and R, and (iii) the PBfp and the TRfp, respectively.

cloud using the ICP algorithm. Figure 2 shows the block
diagram of this scheme.

In order to obtain the geometric features, we first per-
form a Laplacian Smoothing function “f” on the entire PC
as in [3], to extract the skeleton “S” of T . Then, we divide S
into nodes connected with edges (i.e., denoted as “the con-
nectivity matrix C ” in Eq. 1). Next, we extract two main
feature point nodes “fp” on S, namely, TRfp and PBfp.
TRfp are all the nodes on the trunk “TR” with PBs con-
nected to them. On the other hand, PBfp are all the nodes
on the PBs having secondary branches “SBs” connected to
them. Algorithm 1 describes the steps for extracting TRfp

and PBfp respectively.

[S,C] = f(pc), (1)

where, f is the skeleton-extraction function and pc rep-



Figure 4. We show the 3D reconstruction process. (1) We obtain the PCs of F and B. (2) We extract geometric features from the skeleton
“S” of the tree and perform feature correspondences. (3) This results in the inital alignment of F andB, and (4) we apply ICP on the entire
PC to form the final 3D reconstruction.

resents the input point cloud and is an N × 3 matrix, where
N is the total number of points in pc. S contains the coor-
dinates of the skeleton nodes and is anM×3 matrix, where
M is the total number of nodes in the skeleton S. C repre-
sents the connectivity matrix between the nodes in S and is
an M×M matrix.

After obtaining the TRfp and PBfp feature points, the
next step is to describe them as demonstrated in Figure 3. In
particular, for each TRfp we assign the following descrip-
tors, namely, θPB and |AR|. θPB is the angle that the PB
originating from the TRfp is making with TR and |AR| is
the distance between TRfp and the root “R” of the tree. On
the other hand, we describe each PBfp using θSB , |ER|,
and |EA|. θSB is the angle that the SBs originating from
the PBfp is making with the PBfp, |ER| is the distance be-
tween the PBfp and R, and |EA| is the distance between
PBfp and TRfp. We use these descriptors to find the corre-
spondences and the initial alignment between the F and B
PCs. Lastly, we merge these initially aligned PCs using ICP
to obtain the entire 3D reconstruction of T , as illustrated in
Figure4.

3.1. A Stacked-Circle Algorithm for Fitting a 3D
Model to a 3D Point Cloud

Our algorithm is based on fitting circles recursively to the
point cloud for a tree. Fitting circles requires estimating the
best locations for the centers of the circles and their radii.
The algorithm starts by tracking the skeleton of a tree from
base up and, at each point (i.e., layer) along the skeleton,
fitting a circle to the points in the point cloud that are in a
plane parallel to the ground plane. The algorithm is adaptive
in the sense that that the candidate parameters chosen for the
circle (the coordinates of the center and the radius) at each
height above the ground plane depend on the parameters
used for two adjoining circles. This lends smoothness to
the 3D tree model that is fit to the data and, at the same
time, allows the circles to change with the changing shape
of the tree.

Figure 6. The construction of the bounding window “bwin”. We
use a circular-shaped bounding window (where its parameters “the
center and radius” are calculated dynamically from previous layers
that have been modeled) to limit the set of points within each layer
of T to be used for modeling. The centerbwin of a current layer is
the linear interpolation of the centers of the previous two layers,
while the radiusbwin is adjusted based on the radius of the previous
layer.

To present the details of the algorithm, it first divides the
point cloud associated with the trunk into horizontal layers
along the trunk’s growing direction (the z direction). Sub-
sequently, it projects the points in each layer on a plane
parallel to the ground. The algorithm then fits a circle
to the projected points using the Random Sample Consen-
sus (RANSAC) algorithm. After such circles are estimated
along the entire height of a trunk, their parameters (i.e., the
coordinates of the center and the radii) are smoothed using
a sequential algorithm that constructs a best estimate for the
parameters at each height given the parameters in two ad-
joining layers along the height.

The algorithm is started by first locating the point on
the trunk where the estimated parameters (the center coor-
dinates and the radius) can be considered to be the most
reliable according to following three criteria: (1) have
high inlier percentages, (2) reside in the longest continu-



(a) (b)
Figure 5. We initialze our CLAM approach with layers that have high inlier percentages, reside in the longest continuous sequence-of-
layers with the minimum change in their radius, and are located at the lower region of the sequence. We show in the y-axis of (a) and (b)
the inlier percentages and the radius within each layer (x-axis) on tree T1indoor . The red markers indicate that the change within the radius
in those layers is smaller than a certain threshold. We use layers 12 and 13 to initialize our CLAM, as they satisfy all the aforementioned
conditions.

ous sequence-of-layers with the minimum change in their
radius, and (3) are located at the lower region of the se-
quence. An illustrative example for tree T1indoor is shown
Figure 5, which demonstrates that layers 12 and 13 satisfy
all the aforementioned conditions. Therefore, we use these
two layers to initialize our CLAM approach for tree Tindoor.

Subsequently, as described above, starting with the most-
reliable layers, the algorithm marches in both directions and
upgrades the estimated parameters at each layer along the
trunk. This idea is best illustrated with the depiction in
Figure 6. The two blue ovals in the figure are the loca-
tions of the points along the trunk that yielded the more
reliable parameters. As the algorithm marches up the tree
trunk, the red oval has its parameters updated using the pa-
rameter values in the two blue ovals. By the same token,
as the algorithm marches down the tree trunk, the green
oval updates the parameter values using the estimates in the
blue ovals. In Figure 7, we show example results obtained
for modeling the trunk of tree, with and without applying
the proposed Circle-based-Layer-Aware Modeling (CLAM)
approach. As shown, using CLAM results in a significant
boost in the model accuracy.

3.2. Primary Branch Modeling

Modeling the PBs, where the main objective is to esti-
mate the required pruning parameters, involves the follow-
ing three steps. First, we segment the PC of the PBs (i.e.,
denoted as “PCpbs”) from the tree’s PC. For this, we use
the trunk model (i.e., introduced in Section 3.1) to extract
the PCpbs. In particular, we depend upon two trunk mod-
els, namely, “PCtr” (i.e., the blue circle in Figure 8) and
“PCen” (i.e., the red circle in Figure 8), in order to segment
the PCpbs — as it lies between PCtr and PCen, then we re-
move the PCtr from PCen. The second step is to cluster
PCpbs into individual PBs, as illustrated in Figure 9. Lastly,
we apply CLAM to model each individual PCpb.

Algorithm 2 Modeling the Trunk and Primary Branches
(PBs)
Step 1: Trunk Modeling
i) Divide the trunk PC to layers across the z direction
ii) Find the “good initialization” layers using RANSAC
iii) Refine the point set of each layer using layer-awareness
iv)Apply circle-based modeling “CLAM” on the refined set
Step 2: Primary Branch (PB) Modeling
1) Segment PC of the PBs “PCpbs” from the tree’s PC
2) Cluster PCpbs into individual PBs
3) Filter out small candidate PB clusters (# points< 400)
4) Calculate the growing direction of each PB (“PBV g”)
5) Rotate PBV g towards the z-axis and project PCpb

6) Model PCpb using CLAM, as described in Step A

(a) (b)
Figure 7. We show the trunk model of tree T1indoor in (a) without
Layer-aware Refinement. While, in (b) we show the outcome after
applying the Layer-aware Refinement.

To model an individual PB (i.e., denoted as PBi) using
CLAM, we need to calculate its growing direction (i.e., de-
noted as PBV g(i)). We use RANSAC to fit a cylinder model
on PCpb(i) and acquire its direction vector (i.e, denoted as



Figure 8. The illustration of the segmentation process to extract
the point clouds of the trunk (shown in green dots) and the primary
branches (shown in pink dots) from the original PC of the target
tree.

PBV cyl(i)). We verify the correctness of PBV cyl(i) (i.e.,
whether it is headed towards the growing direction of PBi

or in the opposite direction) based on the direction of a ref-
erence vector “PBV ref(i)”. To calculate PBV ref(i), we first
construct a new coordinate system (where its first and the
second coordinates are the point’s z value and the distance
between the point and the trunk center, respectively). We
compute the Euclidean Distances (ED) between each point
in PCpb(i) and the world frame (0,0). We use the two points
with the shortest and longest EDs to calculate PBV ref(i)

based on the differences between them. We obtain PBV g(i)

by computing the dot product of PBV ref(i) and PBV cyl(i)

using Eq. 2.

PBV g(i) =

{
PBV cyl(i) if (PBV cyl(i) · PBref(i)) ≥ 0,

−PBV cyl(i) if (PBV cyl(i) · PBref(i)) < 0,

(2)
Once the PBV g(i) direction is calculated , we rotate it

towards the z-axis of the world frame, project the points of
PCpb(i) on it, and apply CLAM, as discussed in Sec. 3.1.
Algorithm 2 summarizes the main steps for modeling the
trunk and PBs based on the proposed CLAM approach.

4. Evaluation of the Framework with Experi-
ments

Here we present the experimental setup (see Section 4.1)
and the results of our experiments. Firstly, we evaluate the
proposed 3D reconstruction scheme using the SbG features
in Section 4.2. Secondly, we evaluate the performance of
our adaptive CLAM approach for constructing a 3D model
of a tree in Section 4.3. Thirdly, we perform an evaluation
of the accuracy of the pruning parameters estimated from a
3D model of a tree in Section 4.4.

(a) (b) (c) (d)
Figure 9. We show in (a) the original point cloud of tree T1indoor ,
in (b) the segmented point cloud of the trunk, in (c) the segmented
point cloud of the PB, and in (d) the individual clustered point
clouds for each PB labeled in different colors.

Figure 11. Each Tree is divided into sections starting from the tree-
root. Each section is annotated based on the following color-coded
pattern (i.e., red, blue, yellow, white, and green).

4.1. The Data, the Ground Truth, and the Evalua-
toin Metrics

Dataset: Our evaluation dataset consists of six trees,
with two constructed synthetically, two as stand-alone trees
in our laboratory, and two consisting of trees in an apple or-
chard. These are shown in Figure 10. The trees T1indoor
and T2indoor in the figure are stand-alone trees in our lab-
oratory. The trees T3outdoor and T4outdoor are real live
trees in an actual apple orchard. Finally, the trees T5syn
and T6syn are generated synthetically by using Xfrog soft-
ware. As the reader would expect, the data collection for the
trees T1indoor and T2indoor is in an indoor environment. On
the other hand, the data for trees T4outdoor and T5outdoor is
collected in an outdoor environment. The data is collected
using a Kinect 2 sensor. Each tree is scanned just front and
back to yield two views. The depth data thus collected is
then processed using our framework. Finally, the ground-
truth is obtained by dividing each tree into several sections
staring from the root. Subsequently, each primary branch is
labeled with a color-coded pattern, as shown in Figure 11.
Evaluation Methodology: To validate the performance of
our approach, we follow the protocol used in [9]. The re-
sults are presented using the Branch Identification Accuracy
(BIA) metric, which is computed as the percentage of the



(a) T1indoor (b) T2indoor (c) T3outdoor (d) T4outdoor (e) T5syn (f) T6syn
Figure 10. The real trees in the dataset are shown in (a), (b), (c), and (d). While, the synthetic trees are shown in (e) and (f).

Tree Number Number of actual branches Branch reconstruction Branch Modeling

Reconstructed branches BIA% Modeled branches BIA% PPRA%

T1indoor 16 15 93.75 15 93.75 73.00
T2indoor 20 19 95.00 18 90.00 78.00
T3outdoor 11 11 100.00 11 100.00 100.00
T4outdoor 20 19 95.00 17 85.00 60.00

Mean (BIA%) 96.00 92.20 78.00

Table 1. The first column indicates the examined trees. We show in second column the number of ground-truthed primary branches in
each tree. In the “Branch Reconstrucion” & “Branch Modeling” columns, we show the number of branches successfully reconstructed and
modeled, respectively. Using the criterion whose values are displayed in the last column, we show the percentages of the detected primary
branches with correct radius estimations over the total number of detected primary branches. We refer to this criterion as the Primary Point
Radius Accuracy (PPRA). The last row displays the mean values for the entries in the columns.

detected branches verified to be true over the actual number
of ground-truth branches of the tree.

4.2. Experiment 1: Reconstruction of 3D Point
Clouds using Skeleton-based Geometric At-
tributes

This experiment shows the efficacy of the proposed
Skeleton-based Geometric (SbG) attributes for the recon-
struction of a 3D point cloud from the front and the back
scans of a tree. The top row of Figure 12 shows qualitatively
the reconstructed point clouds. For a quantitative assess-
ment of the quality of the reconstructed point clouds, the
third column of Table 1 shows the value of the BIA metric
defined previously in Section 4.1. On average, our recon-
struction scheme allowed us to successfully detect 96.0% of
the original tree branches. As stated previously, the ground
truth for this accuracy measurement consists of the pho-
tographs of the trees after we have attached colored tags
to the primary branches.

4.3. Experiment 2: Fitting 3D Tree Models to the
Point Clouds

We now present validation experiments that evaluate the
quality of the 3D tree models that are fit to the 3D point
clouds using the approach introduced in Section 3.1. As

stated earlier, the end-goal of this model fitting is the local-
ization of the primary branches emanating from the trunk of
the tree and estimation of the parameters of these branches
in the vicinity of their junctions with the trunk. See the
bottom row of Figure 12 for a qualitative assessment of the
3D models that are fit to the 3D point clouds for each tree.
These results demonstrate that we get accurate and smooth
3D model on both synthetic and real data. For a more quan-
titative assessment, we go back to the values of the BIA
metric in the sixth column of Table 1.

4.4. Experiment 3: Measuring the Accuracy of the
Estimated Branch Radius

Since the radius of a primary branch is the main param-
eter used for locating a pruning point on a primary branch
emanating from the trunk of a tree, it is important to evalu-
ate the accuracy with which such radii are calculated by our
framework. We measure these accuracies by comparing the
estimated radii with their corresponding ground-truth val-
ues. The ground truth was obtained by asking orchard man-
agers to locate the pruning points on the trees and by physi-
cally measuring branch diameters at those locations. These
accuracy measurements are expressed through the parame-
ter named Pruning Point Radius Accuracy (PPRA). It is the
ratio of the total number of detected primary branches with



Figure 12. The first row shows the 3D point clouds reconstructed for each of the six trees of Figure 10. The second row shows the
CLAM-based 3D tree model fit to the relevant portions of the point clouds. The colors show the locations of the different primary branches
attached to the main trunk.

correctly estimated radii over the total number of success-
fully detected branches. By “correctly estimating” a pri-
mary branch radius, we mean estimating it within a toler-
ance of 2 millimeters. The last column of Table 1 shows
the value of the PPRA parameter for the validation experi-
ments. As shown, our approach achieves an average PPRA
based accuracy of 78.0% on real trees for which the data
was collected outdoors and on the trees for which the data
was collected indoors, and, as the reader would expect, an
accuracy of 100.0% on synthetic trees.

5. Conclusion and Future Work

In this work, we presented a complete system that first
constructs a 3D model of an apple tree in the field, while
the tree is in its dormant condition. We showed how such
a model can be used to estimate important parameters that
are relevant for pruning. The system uses Kinect 2 sen-
sor for scanning the apple trees from just two viewpoints
— front and back. Subsequently, the model of a tree is
constructed using the SbG features presented in this paper.
Our results demonstrate the effectiveness of the SbG feature
based framework for model construction. Our results show
that we can achieve an accuracy of 96.0% with regard to
locating the pruning points on the limbs. The ground truth
that was used for this accuracy measurement consisted of
human tagged pruning points on a set of trees. This paper
also presented an adaptive circle-based-layer-aware model-

ing “CLAM” scheme for the trunk and the primary branches
of a tree. Our algorithms are able to detected correctly the
primary branches with an accuracy of 92.2%.

Our plans for extending the research reported here are
as follows: At the moment, when the adjacent trees are too
close together, we must manually edit the scanned data for
separating the tree of interest from its neighbors. We would
like to automate this process in the future. We also wish
to adaptively determine the best values to use for various
thresholds used by our system. As a case in point, the
parameter that is used to discard the branches that are too
small (and, therefore, not deserving of further attention) is
set manually for the data collected in the field for each tree.
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