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Abstract

Compared to image representation based on low-level
local descriptors, deep neural activations of Convolutional
Neural Networks (CNNs) are richer in mid-level represen-
tation, but poorer in geometric invariance properties. In
this paper, we present a straightforward framework for bet-
ter image representation by combining the two approaches.
To take advantages of both representations, we extract a
fair amount of multi-scale dense local activations from
a pre-trained CNN. We then aggregate the activations by
Fisher kernel framework, which has been modified with a
simple scale-wise normalization essential to make it suit-
able for CNN activations. Our representation demonstrates
new state-of-the-art performances on three public datasets:
80.78% (Acc.) on MIT Indoor 67, 83.20% (mAP) on PAS-
CAL VOC 2007 and 91.28% (Acc.) on Oxford 102 Flowers.
The results suggest that our proposal can be used as a pri-
mary image representation for better performances in wide
visual recognition tasks.

1. Introduction
Image representation is one of the most important fac-

tors that affect performance on visual recognition tasks.
Barbu et al. [3] introduced an interesting experiment that
a simple classifier along with human brain-scan data sub-
stantially outperforms the state-of-the-art methods in rec-
ognizing action from video clips.

With a success of local descriptors [22], many researches
have devoted in studying global image representation based
on a Bag-of-Word (BOW) model [32] that aggregates abun-
dant local statistics captured by hand-designed local de-
scriptors. The BOW representation is further improved with
VLAD [15] and Fisher kernel [27, 26] by adding higher or-
der statistics. One major benefit of these global representa-
tions based on local descriptors is their invariance property
to scale changes, location changes, occlusions and back-
ground clutters.

In recent computer vision researches, drastic advances
of visual recognition are achieved by deep convolutional
neural networks (CNNs) [5], which jointly learn the whole
feature hierarchies starting from image pixels to the final
class posterior with stacked non-linear processing layers.
A deep representation is quite efficient since its interme-
diate templates are reused. However, the deep CNN is non-
linear and have millions of parameters to be estimated. It
requires strong computing power for the optimization and
large training data to be generalized well. The recent pres-
ence of large scale ImageNet [6] database and the raise of
parallel computing contribute to the breakthrough in visual
recognition. Krizhevsky et al. [20] achieved an impressive
result using a CNN in large-scale image classification.

Instead of training a CNN for a specific task, interme-
diate activations extracted from a CNN pre-trained on in-
dependent large data have been successfully applied as a
generic image representation. Combining the CNN activa-
tions with a classifier has shown impressive performance
in wide visual recognition tasks such as object classifica-
tion [29, 8, 25, 13, 4], object detection [11, 13], scene clas-
sification [29, 12, 40], fine-grained classification [29, 38],
attribute recognition [39], image retrieval [2], and domain
transfer [8].

To utilize CNN activations as a generic image represen-
tation, a straightforward way is to extract the responses from
the first or second fully connected layer of a pre-trained
CNN by feeding an image and to represent the image with
the responses [8, 2, 13, 11]. However, this representation
is vulnerable to geometric variations. There are techniques
to address the problem. A common practice is exploiting
multiple jitterred images (random crops and flips) for data
augmentation. Though the data augmentation has been used
to prevent over-fitting [20], recent researches show that av-
erage pooling in a test stage, augmenting data and averag-
ing the multiple activation vectors, also helps achieve better
geometric invariance while improving the performance by
+2.92% in [4] and +3.3% in [29] on PASCAL VOC 2007.
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Figure 1. A pipeline of the proposed method. Given a pre-trained CNN, following [33], we replace the first two fully connected layers with
the two equivalent convolutional layers. It enables us to efficiently obtain large amount of multi-scale dense activations. The activations are
followed by the Multi-scale Pyramid Pooling (MPP) layer we suggest. The consequent image representation is combined with the linear
SVM for the target classification task.

A different experiment for enhancing the geometric in-
variance on CNN activations was also presented. Gong et
al. [12] proposed a method to exploit multi-scale CNN acti-
vations in order to achieve geometric invariance character-
istic while improving recognition accuracy. They extracted
dense local patches at three different scales and fed each lo-
cal patch into a pre-trained CNN. The CNN activations are
aggregated at finer scales via VLAD encoding which was
introduced in [15], and then the encoded activations are
concatenated as a single vector to obtain the final represen-
tation.

In this paper, we introduce a multi-scale pyramid pool-
ing to improve the discriminative power of CNN activations
robust to geometric variations. A pipeline of the proposed
method is illustrated in Figure 1. Similar to [12], we also
utilize multi-scale CNN activations, but present a different
pooling method that shows better performance in our ex-
periments. We extract abundant amount of multi-scale local
activations from a CNN, and aggregate them using the state-
of-the-art Fisher kernel [27, 26] with a simple but impor-
tant scale-wise normalization, so called multi-scale pyra-
mid pooling. Our proposal demonstrates substantial im-
provements on both scene and object classification tasks
compared to the previous representations including a sin-
gle activation, the average pooling [29, 4], and the VLAD
of activations [12]. Also, we demonstrate object confi-
dence maps which is useful for object detection/localization
though only category-level labels without specific object
bounding boxes are used in training.

According to our empirical observations, replacing a
VLAD kernel with a Fisher kernel does not present sig-
nificant impact, however it shows meaningful performance
improvements when our pooling mechanism that takes an
average pooling after scale-wise normalization is applied.
It implies that the performance improvement of our repre-

sentation does not come just from the superiority of Fisher
kernel but from the careful consideration of neural activa-
tion’s property dependent on scales.

2. Multi-scale Pyramid Pooling
In this section, we first review the Fisher kernel frame-

work and then introduce a multi-scale pyramid pooling
which adds a Fisher kernel based pooling layer on top of
a pre-trained CNN.

2.1. Fisher Kernel Review

The Fisher kernel framework on a visual vocabulary is
proposed by Perronnin et al. in [26]. It extends the con-
ventional Bag-of-Words model to a probabilistic generative
model. It models the distribution of low-level descriptors
using a Gaussian Mixture Model (GMM) and represents
an image by considering the gradient with respect to the
model parameters. Although the number of local descrip-
tors varies across images, the consequent Fisher vector has
a fixed-length, therefore it is possible to use discriminative
classifiers such as a linear SVM.

Let x denote a d-dimensional local descriptor and Gλ =
{gk, k = 1...K} denote a pre-trained GMM with K Gaus-
sians where λ = {ωk, µk, σk, k = 1...K}. For each visual
word gk, two gradient vectors, Gµk

∈ ℜd and Gσk
∈ ℜd,

are computed by aggregating the gradients of the local de-
scriptors extracted from an image with respect to the mean
and the standard deviation of the kth Gaussian. Then, the
final image representation, Fisher vector, is obtained by
concatenating all the gradient vectors. Accordingly, the
Fisher kernel framework represents an image with a 2Kd-
dimensional Fisher vector G ∈ ℜ2Kd.

Intuitively, a Fisher vector includes the information
about directions of model parameters to best fit the local de-
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Figure 2. Obtaining multi-scale local activations densely from a pre-trained CNN. In this figure, the target layer is the first fully connected
layer (FC6). Because FC6 can be equally implemented by a convolutional layer containing 4,096 filters of 6×6×256 size, we can obtain
an activation map where spatial ordering of local descriptors is conserved. A single pre-trained CNN is shared for all scales. Please refer
to [33].

scriptors of an image to the GMM. The fisher kernel frame-
work is further improved in [27] by the additional two-stage
normalizations: power-normalization with the factor of 0.5
followed by ℓ2-normalization. Refer to [27] for the theoret-
ical proofs and details.

2.2. Dense CNN Activations

To obtain multi-scale activations from a CNN without
modification, previous approach cropped local patches and
fed the patches into a network after resizing the patches to
the fixed size of CNN input. However, when we extract
multi-scale local activations densely, the approach is quite
inefficient since many redundant operations are performed
in convolutional layers for overlapped regions.

To extract dense CNN activations without redundant op-
erations, we replace the fully connected layers of an existing
CNN with equivalent multiple convolution filters along spa-
tial axises, as Tompson et al. did in [33]. When an image
larger than the fixed size is fed, the modified network out-
puts multiple activation vectors where each vector is CNN
activations from the corresponding local patch. The proce-
dure is illustrated in Fig. 2. With this method, thousands
of dense local activations (4,410 per image) from multi-
ple scale levels are extracted in a reasonable extraction time
(0.46 seconds per image on a server with a CPU of 2.6GHz
Intel Xeon and a GPU of GTX TITAN Black).

2.3. Multiscale Pyramid Pooling (MPP)

For representing an image, we first generate a scale pyra-
mid for the input image where the minimum scale image
has a fixed size of a CNN and each scale image has two
times larger resolution than the previous scale image. We
feed all the scaled images into a pre-trained CNN and ex-
tract dense CNN activation vectors. Then, all the activation
vectors are merged into a single vector by our multi-scale
pyramid pooling.

If we consider each activation vector as a local descrip-
tor, it is straightforward to aggregate all the local activa-

tions into a Fisher vector as explained in Sec. 2.1. However,
CNN activations have different scale properties compared
to SIFT-like local descriptors, as will be explained in Sec. 3.
To adopt the Fisher kernel suitable to CNN activation char-
acteristics, we introduce adding a multi-scale pyramid pool-
ing layer on top of the modified CNN as follows.

Given a scale pyramid S containing N scaled image and
local activation vectors xs extracted from each scale s ∈ S,
we first apply PCA to reduce the dimension of activation
vectors and obtain x′

s. Then, we aggregate the local acti-
vation vectors x′

s of each scale s to each Fisher vector Gs.
After Fisher encoding, we have N Fisher vectors and they
are merged into one global vector by average pooling after
ℓ2-normalization as

GS =
1

N

∑
s∈S

Gs

∥Gs∥2
s.t. Gs =

1

|x′
s|

∑
x∈x′

s

∇λ logGλ(x),

(1)
where | · | denotes the cardinality of a set. We use an aver-
age pooling since it is a natural pooling scheme for Fisher
kernel rather than vector concatenation. Following the Im-
proved Fisher Kernel framework [27], we finally apply
power normalization to tackle burstiness [19, 14] and ℓ2-
normalization to the Fisher vector GS . The overall pipeline
of MPP is illustrated in Figure 1.

3. Analysis of Multi-scale CNN Activations
We compare scale characteristics between traditional lo-

cal features and CNN activations. It tells us that it is
not suitable to directly adopt a Fisher kernel framework to
multi-scale local CNN activations for representing an im-
age. To investigate the best way for aggregating the CNN
activations into a global representation, we perform empir-
ical studies and conclude that applying scale-wise normal-
ization of Fisher vectors is very important.

A naive way to obtain a Fisher vector G′S given multi-
scale local activations X = {x ∈ xs, s ∈ S} is to aggregate
them as,
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Figure 3. Classification performance of SIFT-Fisher and CNN-
Fisher according to image scale on PASCAL VOC 2007. The tick
labels of the horizontal axis denote image scales and their average
number of local descriptors.

G′S =
1

|X|
∑
s∈S

∑
x∈xs

∇λ logGλ(x). (2)

Here, every multi-scale local activation vector is pooled to
one Fisher vector with an equal weight of 1/|X|.

To better combine a Fisher kernel with mid-level neu-
ral activations, the property of CNN activations according
to patch scale should be taken in consideration. In the tra-
ditional use of Fisher kernel on visual classification tasks,
the hand-designed local descriptors such as SIFT [22] have
been often densely computed in multi-scale. This local de-
scriptor encodes low-level gradient information within an
local region and captures detailed textures or shapes within
a small region rather than the global structure within a larger
region. In contrast, a mid-level neural activation extracted
from a higher layer of CNNs (e.g. FC6 or FC7 of [20]) rep-
resents higher level structure information which is closer to
class posteriors. As shown in the CNN visualization pro-
posed by Zeiler and Fergus in [37], image regions strongly
activated by a certain CNN filter of the fifth layer usually
capture a category-level entire object.

To figure out the different scale properties between the
Fisher vector of traditional SIFT (SIFT-Fisher) and that of
neural activation from FC7 (CNN-Fisher), we conduct an
empirical analysis with scale-wise classification scores on
PASCAL VOC 2007 [9]. For the analysis, we first diversify
dataset into seven different scale levels from the smallest
scale of 227×227 resolution to the biggest scale of 1, 816×
1, 816 resolution and extract both dense SIFT descriptors
and local activation vectors in the seventh layer (FC7) of our
CNN. Then, we follow the standard framework to encode
Fisher vectors and to train an independent linear SVM for
each scale, respectively.

In Fig. 3, we show the results of classification perfor-
mances using SIFT-Fisher and CNN-Fisher according to
scale. The figure demonstrates clear contrast between SIFT-
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Figure 4. Classification performance of our multi-scale pyramid
pooling in Eq. (1) and the naive Fisher pooling in Eq. (2). The tick
labels of the horizontal axis scale levels in a scale pyramid.

Fisher and CNN-Fisher. CNN-Fisher performs worst at
the largest image scale since local activations come from
small image regions in an original image, while SIFT-
Fisher performs best at the same scale since SIFT prop-
erly captures low-level contents within such small regions.
If we aggregate the CNN activations of all scales into one
Fisher vector by Eq. (2), the poorly performing 2,500 acti-
vations will have dominant influence with the large weight
of 2,500/4,410 in the image representation.

One possible strategy for aggregating multi-scale CNN
activations is to choose activations of a set of scales rel-
atively performing well. However, the selection of good
scales is dependent on dataset and the activations from the
large image scale can also contribute to geometric invari-
ance property if we balance the influence of each scale. We
empirically examined various combinations of pooling as
will be shown in Sec. 4 and we found that scale-wise Fisher
vector normalization followed by an simple average pooling
is effective to balance the influence.

We perform an experiment to compare our pooling
method in Eq. (1) to the naive Fisher pooling in Eq. (2).
In the experiment, we apply both of two pooling methods
with five different numbers of scales and perform classifi-
cation on PASCAL VOC 2007. Despite the simplicity of
our multi-scale pyramid pooling, it demonstrates superior
performances as depicted in Fig. 4. The performance of the
naive Fisher kernel pooling in Eq. (2) deteriorates rapidly
when finer scale levels are involved. This is because in-
distinctive neural activations from finer scale levels become
dominant in forming a Fisher vector. Our representation,
however, exhibits stable performance that the accuracy is
constantly increasing and finally being saturated. It verifies
that our pooling method aggregates multi-scale CNN acti-
vations effectively.



4. Experiments
4.1. Datasets

To evaluate our proposal as a generic image represen-
tation, we conduct three different visual recognition tasks
with following datasets.

MIT Indoor 67 [28] is used for a scene classification
task. The dataset contains 15,620 images with 67 indoor
scene classes in total. It is a challenging dataset because
many indoor classes are characterized by the objects they
contain (e.g. different type of stores) rather than their spa-
tial properties. The performance is measured with top-1 ac-
curacy.

PASCAL VOC 2007 [9] is used for an object classifica-
tion task. It consists of 9,963 images of 20 object classes
in total. The task is quite difficult since the scales of the
objects fluctuate and multiple objects of different classes
are often contained in the same image. The performance is
measured with (11-points interpolated) mean average preci-
sion.

Oxford 102 Flowers [24] is used for a fine-grained ob-
ject classification task, which distinguishes the sub-classes
of the same object class. This dataset consists of 8,189 im-
ages with 102 flower classes. Each class consists of various
numbers of images from 20 to 258. The performance is
measured with top-1 accuracy.

4.2. Pretrained CNNs

We use two CNNs pre-trained on the ILSVRC’12
dataset [6] to extract multi-scale local activations. One is the
Caffe reference model [16] composed of five convolutional
layers and three fully connected layers. This model per-
formed 19.6% top-5 error when a single center-crop of each
validation image are used for evaluation on the ILSVRC’12
dataset. Henceforth, we denote this model by “Alex” since
it is nearly the same architecture of Krizhevsky et al.’s
CNN [20].

The other one is Chatfield et al.’s CNN-S model [4]
(“CNNS”, henceforth). This model, a simplified version of
the OverFeat [30], is also composed of five convolutional
layers (three in [30]) and three fully connected layers. It
shows 15.5% top-5 error on the ILSVRC’12 dataset with the
same center-crop. Compared to Alex, it uses 7×7 smaller
filters but dense stride of 2 in the first convolutional layer.

Our experiments are conducted mostly with the Alex
by default. The CNNS is used only for the PASCAL
VOC 2007 dataset to compare our method with [4], which
demonstrates excellent performance with the CNNS. Both
of the two pre-trained models are available online [35].

4.3. Implementation Details

We use an image pyramid of seven scales by default
since the seven scales can cover large enough scale varia-
tions and performance in all datasets as shown in Fig. 4.

The overall procedure of our image representation is as
follows. Given an image, we make an image pyramid con-
taining seven scaled images. Each image in the pyramid has
twice resolution than the previous scale starting from the
standard size defined in each CNN (e.g. 227×227 for Alex).
We then feed each scale image to the CNN and obtain 4,410
vectors of 4,096 dimensional dense CNN activations from
the seventh layer. The dimensionality of each activation
vector is reduced to 128 by PCA where a projection is
trained with 256,000 activation vectors sampled from train-
ing images. A visual vocabulary (GMM of 256 Gaussian
distributions) is also trained with the same samples. Conse-
quently, one 65,536 dimensional Fisher vector is computed
by Eq. (1), and further power- and ℓ2-normalization follow.
One-versus-rest linear SVMs with a quadratic regularizer
and a hinge loss are trained finally.

Our system is mostly implemented using open source li-
braries including VLFeat [34] for a Fisher kernel framework
and MatConvNet [35] for CNNs.

4.4. Results and Analysis

We perform comprehensive experiments to compare var-
ious methods on the three recognition tasks. We first
show the performance of our method and baseline methods.
Then, we compare our result with state-of-the-art methods
for each dataset. For simplicity, we use a notation protocol
“A(B)” where A denotes a pooling method and B denotes
descriptors to be pooled by A. The notations are summa-
rized in Table 1.

We compare our method with several baseline meth-
ods. The baseline methods include intermediate CNN ac-
tivations from a pre-trained CNN with a standard input, an
average pooling with multiple jittered images, and modified
versions of our method. The comparison results for each
dataset are summarized in Table 2(a), 3(a), 4(a). As ex-
pected, the most basic representation, Alex-FC7, performs
the worst for all datasets. The average pooling in AP10
and AP50 improves the performance +1.39%∼+3%, how-
ever the improvement is bounded regardless of the num-
ber of data augmentation. The other two baseline methods
(MPP w/o SN and CSF) exploit multi-scale CNN activa-
tions and they show better results than single-scale repre-
sentations. Compared to the AP10, the performance gains
from multi-scale activations exceed +10%, +1%, and +5%
for each dataset. It shows that image representation based
on CNN activations can be enriched by utilizing multi-scale
local activations.

Even though baseline methods exploiting multi-scale
CNN activations show substantial improvements compared



to the single-scale baselines, we can also verify that han-
dling multi-scale activations is important for further im-
provement. Compared to the naive Fisher kernel pooling
(NFK) in Eq. (2), our MPP achieves an extra but significant
performance gain of +4.18%, +4.58%, and 2.84% for each
dataset. Instead of pooling multi-scale activations as our
MPP, concatenating encoded Fisher vectors can be another
option as done in Gong et al.’s method [12]. The concate-
nation (CSF) also improves the performance, however the
CSF without an additional dimension reduction raises the
dimensionality proportional to the number of scales and the
MPP still outperforms the CSF for all datasets. The com-
prehensive test with various pooling strategies so far shows
that the proposed image representation can be used as a pri-
mary image representation in wide visual recognition tasks.

We also apply the spatial pyramid (SP) kernel [21] to
our representation. We construct a spatial pyramid into four
sub-regions (whole, top, middle, bottom) and it increases
the dimensionality of our representation four times. The re-
sults are unequable but the differences are marginal for all
datasets. This result is not surprising because the rich acti-
vations from smaller image scales already cover the global
layout. It makes the SP kernel redundant.

In Table 2(b), we compare our result with various state-
of-the-art methods on Indoor 67. Similar to ours, Gong et
al. [12] proposed a pooling method for multi-scale CNN ac-
tivations. They performed VLAD pooling at each scale and
concatenated them. Compared to [12], our representation
largely outperforms the method with a gain of +7.07%. The
performance gap possibly comes from 1) the large number
of scales, 2) the superiority of the Fisher kernel, and 3) the
details of pooling strategy. While they use only three scales,
we extract seven-scale activations with a quite efficient way
(Fig. 2). Though adding local activations from very finer
scales such as 6 or 7 in a naive way may harm the perfor-
mance, it actually contribute to a better invariance prop-
erty by the proposed MPP. In addition, as our experiment
of the “CSF” was shown, the MPP is more suitable for ag-
gregating multi-scale activations than the concatenation. It
implies that our better performance does not just come from
the superior Fisher kernel, but from the better handling of
multi-scale neural activations.

The record holder in the Indoor 67 dataset has been
Zuo et al. [41] who combined the Alex-FC6 and their com-
plementary features so called DSFL. DSFL learns discrim-
inative and shareable filters with a target dataset. When we
stack an additional MPP at the Pool5 layer, we (77.76%) al-
ready surpass the records with a pre-trained Alex only. We
also stack DSFL feature1 over our representation and the re-
sult shows 80.78%. It shows that our representation is also
improved by combining complementary features.

1Pre-computed DSFL vectors for the MIT Indoor 67 dataset are pro-
vided by the authors.

The results on VOC 2007 is summarized in Table 3(b).
There are two methods ([25] and [29]) that use the same
Alex network. Razavian et al. [29] performed target data
augmentation and Oquab et al. [25] used a multi-layer per-
ceptron (MLP) instead of a linear SVM with ground truth
bounding boxes. Our representation outperforms the two
methods using the pre-trained Alex without data augmenta-
tion or the use of bounding box annotations. The gains are
+1.84% and +2.34% respectively.

Most of recent state-of-the-art methods are adopting bet-
ter CNNs for the source task (i.e. ImageNet classification)
or the target task, such as Spatial Pyramid Pooling (SPP)
network [13], Multi-label CNN [36] and the CNNS [4].
Our basic MPP(Alex-FC7) demonstrates slightly lower pre-
cisions (79.54%) compared to them, however we use the
basic Alex CNN without fine-tuning on VOC 2007. When
our representation is equipped with the superior CNNS [4],
which is not fine-tuned on VOC 2007, our representation
(81.40%) reaches nearly stat-of-the-art performance. When
we also use the same target data augmentation [4] in SVM
training, we achieved a new state-of-the-art score of 83.20%
without fine-tuning. This result beats [4] by +3.5% in the
same setup, and it is even higher than the previous state-of-
the-art score of [4], which uses fine-tuned CNNS.

Table 5 shows per-class performances on VOC 2007.
Compared to state-of-the-art methods, our method performs
best in 6 classes. It is interesting that the 6 classes include
“bottle”, “pottedplant”, and “tvmonitor”, which are the rel-
atively small objects in the VOC 2007 dataset. The results
clearly demonstrates the benefit of our MPP that aggregates
activations from very finer-scales as well, which are prone
to harm the performance if it is handled inappropriately.

Table 4(b) shows the classification performances on 102
Flowers. Our method (91.28%) outperforms the previous
state-of-the-art method [18] (90.20%).

4.5. WeaklySupervised Object Confidence Map

One interesting feature of our method is that we can
present object confidence maps for object classification
tasks, though we train the SVM classifiers without bounding
box annotation but only with class-level labels. To recover
confidence maps, we trace how much weight is given to
each local patch and accumulate all the weights in the spa-
tial domain. To trace the weight of each patch, we compute
our final representation per patch using the corresponding
single activation vector only and compute the score from
the pre-trained SVM classifiers we used for object classifi-
cation.

Fig. 5 shows several examples of object confidence map
on the VOC 2007 test images. In the figures, we can verify
our image representation encodes the discriminative image
patches well, despite large within-class variations as well as
substantial geometric changes. As we discussed in Sec. 4.4,



Method Description
CNN-FC7 A standard activation vector from FC7 of a CNN with a center-crop of a 256× 256 size input image.
AP10(CNN-FC7) Average pooling of a 5 crops and their flips, given a 256× 256 size input image.
AP50(CNN-FC7) Average pooling of a 25 crops and their flips, given a 256× 256 size input image.
NFK(CNN-FC7) Naive Fisher kernel pooling without scale-wise vector normalization, given a multi-scale image pyramid.
CSF(CNN-FC7) Concatenation of scale-wise normalized Fisher vectors, given a multi-scale image pyramid.
MPP(CNN-FC7) The proposed representation, given a multi-scale image pyramid.

Table 1. Summary of our notation protocol. Consequent image representations by the listed methods are finally ℓ2-normalized.

Method FT plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP
Alex-FC7 No. 85.0 79.7 82.8 80.4 39.7 69.3 82.9 81.7 58.7 57.8 68.5 75.9 83.0 72.5 90.6 51.7 71.1 60.8 85.0 70.5 72.4
AP10(Alex-FC7) No. 85.7 80.8 83.3 80.7 40.4 71.5 83.8 82.7 60.7 60.5 70.6 79.0 84.5 75.0 91.3 53.4 70.1 62.6 86.5 72.1 73.7
MPP(Alex-FC7) No. 90.2 86.9 86.6 84.4 54.0 80.0 87.9 86.0 63.4 72.2 75.7 83.1 87.8 83.9 93.0 64.8 75.8 69.6 89.9 75.9 79.5
MPP(CNNS-FC7) No. 90.2 88.6 89.0 84.7 58.2 82.8 88.1 89.0 64.9 77.0 78.4 86.9 89.2 86.7 92.8 61.2 81.3 70.0 89.8 79.3 81.4
Perronnin et al. [27] 10’ No. 75.7 64.8 52.8 70.6 30.0 64.1 77.5 55.5 55.6 41.8 56.3 41.7 76.3 64.4 82.7 28.3 39.7 56.6 79.7 51.5 58.3
Razavian et al. [29] ’14 No. 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2
Oquab et al. [25] ’14 No. 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7
Wei et al. [36] ’14 Yes. 95.1 90.1 92.8 89.9 51.5 80.0 91.7 91.6 57.7 77.8 70.9 89.3 89.3 85.2 93.0 64.0 85.7 62.7 94.4 78.3 81.5
Chatfieldet al. [4] ’14 Yes. 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4

Table 5. Per-class classification performances on PASCAL VOC 2007.

Method Description CNN Acc.
Baseline Alex-FC7 Yes. 57.91
Baseline AP10(Alex-FC7) Yes. 60.90
Baseline AP50(Alex-FC7) Yes. 60.37
Baseline NFK(Alex-FC7) Yes. 71.49
Baseline CSF(Alex-FC7) Yes. 72.24
Ours MPP(Alex-FC7) Yes. 75.67
Ours MPP(Alex-FC7)+SP Yes. 75.97
Ours MPP(Alex-FC7,Pool5) Yes. 77.56
Ours MPP(Alex-FC7)+DSFL[41] Yes. 80.78

(a) baselines and our methods.
Method Description CNN Acc.
Singh et al. [31] ’12 Part+GIST+DPM+SP No. 49.40
Juneja et al. [17] ’13 IFK+Bag-of-Parts No. 63.18
Doersch et al. [7] ’13 IFK+MidlevelRepresent. No. 66.87
Zuo et al. [41] ’14 DSFL No. 52.24
Zuo et al. [41] ’14 DSFL+Alex-FC6 Yes. 76.23
Zhou et al. [40] ’14 Alex-FC7 Yes. 68.24
Zhou et al. [40] ’14 Alex-FC7 Yes. 70.80
Razavian et al. [29] ’14 AP(Alex)+PT+TA. Yes. 69.00
Gong et al. [12] ’14 VLAD Concat.(Alex-FC7) Yes. 68.90

(b) state-of-the-art methods on MIT Indoor 67.

Table 2. Classification performances on MIT Indoor 67. (SP: Spa-
tial Pyramid, DPM: Deformable Part-based Model, PT: Power
Transform, IFK: Improved Fisher Kernel, DSFL: Discriminative
and Shareable Feature Learning.)

Method Description FT BB CNN mAP
Baseline Alex-FC7 No. No. Yes. 72.36
Baseline AP10(Alex-FC7) No. No. Yes. 73.75
Baseline AP50(Alex-FC7) No. No. Yes. 73.60
Baseline NFK(Alex-FC7) No. No. Yes. 74.96
Baseline CSF(Alex-FC7) No. No. Yes. 78.46
Ours MPP(Alex-FC7) No. No. Yes. 79.54
Ours MPP(Alex-FC7)+SP No. No. Yes. 79.29
Ours MPP(CNNS-FC7) No. No. Yes. 81.40
Ours MPP(CNNS-FC7)+TA No. No. Yes. 83.20

(a) Baselines and our methods.
Method Description FT BB CNN mAP
Perronnin et al. [27] 10’ IFK(SIFT+color) No. No. No. 60.3%
He et al. [13] ’14 SPPNET-FC7 No. No. Yes. 80.10%
Wei et al. [36] ’14 Multi-label CNN Yes. No. Yes. 81.50%
Razavian et al. [29] ’14 AP(Alex)+PT+TA No. No. Yes. 77.20%
Oquab et al. [25] ’14 Alex-FC7+MLP No. Yes. Yes. 77.70%
Chatfield et al. [4] ’14 AP(CNNS-FC7)+TA No. No. Yes. 79.74%
Chatfield et al. [4] ’14 AP(CNNS-FC7)+TA Yes. No. Yes. 82.42%

(b) state-of-the-art methods on
PASCAL VOC 2007 classification.

Table 3. Classification performances on PASCAL VOC 2007 clas-
sification. “FT” represents fine-tuning of a pre-trained CNN on
VOC2007 and “BB” denotes the use of ground truth object bound-
ing boxes in training. (SP: Spatial Pyramid, IFK: Improved Fisher
Kernel, SPPNET: Spatial Pyramid Pooling Network, PT: Power
Transform, TA: Target data Augmentation in SVM training, MLP:
Multilayer Perceptron.)



Bottle Bottle Dining Table Dining Table

Car Car Sofa Sofa

TV monitor TV monitor Train Train

Potted plant Potted plant Bus Bus

Bicycle Bicycle Person Person
Figure 5. Examples of object confidence maps obtained by our image representation on the PASCAL VOC 2007. All examples are test
images, not training images. Note, the object bonding box annotations are not used for training.

Method Description Seg. CNN Acc.
Baseline Alex-FC7 No. Yes. 81.43
Baseline AP10(Alex-FC7) No. Yes. 83.40
Baseline AP50(Alex-FC7) No. Yes. 83.56
Baseline NFK(Alex-FC7) No. Yes. 88.44
Baseline CSF(Alex-FC7) No. Yes. 89.35
Ours MPP(Alex-FC7) No. Yes. 91.28
Ours MPP(Alex-FC7)+SP No. Yes. 90.05

(a) baselines and our methods.
Method Description Seg. CNN Acc.
Nilsback and
Zisserman [24] ’08

Multple kernel learning Yes. No. 77.70

Angelova and
Zhu [1] ’13

Seg+DenseHoG
+LLC+MaxPooling

Yes. No. 80.70

Koniusz et al. [18] ’13 Bag-of-words + HOP No. No. 90.2
Murray and
Perronnin [23] ’14

GMP of FK(SIFT+color) No. No. 81.50

Fernando et al. [10] ’14 Bag-of-FLH Yes. No. 72.70
Razavian et al. [29] ’14 AP(Alex)+PT+TA No. Yes. 86.8

(b) state-of-the-art methods on Oxford 102 Flowers.

Table 4. Classification performances on Oxford 102 Flowers.
“Seg.” denotes the use of ground truth segmentations in training.
(HOP: Higher-order Occurrence Pooling.)

the images containing small-size objects also present the ac-
curate confidence maps. These maps may further be utilized
as an considerable cue for object detection/localization and
also be useful for analyzing image representation.

5. Discussion

We have proposed the multi-scale pyramid pooling for
better use of neural activations from a pre-trained CNN.
There are two conclusions we can derive through our study.
One is that we should take the scale characteristic of neu-
ral activations into consideration for the successful combi-
nation of a Fisher kernel and a CNN. The activations be-
come uninformative as a patch size becomes smaller, how-
ever they can contribute to better scale invariance when they
meet a simple scale-wise normalization. The other is that
reasonable object-level confidence maps can be obtained
from our image representation even though only class-level
labels are given, which can be further applied to object de-
tection or localization tasks. In the comprehensive experi-
ments on three different recognition tasks, the results sug-
gest that our proposal can be a primary image representation
in wide visual recognition tasks.
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