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Abstract

Deep convolutional neural networks have been success-
fully applied to image classification tasks. When these same
networks have been applied to image retrieval, the assump-
tion has been made that the last layers would give the best
performance, as they do in classification. We show that
for instance-level image retrieval, lower layers often per-
form better than the last layers in convolutional neural net-
works. We present an approach for extracting convolu-
tional features from different layers of the networks, and
adopt VLAD encoding to encode features into a single vec-
tor for each image. We investigate the effect of different
layers and scales of input images on the performance of
convolutional features using the recent deep networks Ox-
fordNet and GoogLeNet. Experiments demonstrate that in-
termediate layers or higher layers with finer scales pro-
duce better results for image retrieval, compared to the last
layer. When using compressed 128-D VLAD descriptors,
our method obtains state-of-the-art results and outperforms
other VLAD and CNN based approaches on two out of three
test datasets. Our work provides guidance for transferring
deep networks trained on image classification to image re-
trieval tasks.

1. Introduction
Image retrieval has been an active research topic for

decades. Most existing approaches adopt low-level vi-
sual features, i.e., SIFT descriptors, and encode them using
bag-of-words (BoW), vector locally aggregated descriptors
(VLAD) or Fisher vectors (FV) and their variants. Since
SIFT descriptors capture local characteristics of objects,
such as edges and corners, they are particularly suitable for
matching local patterns of objects for instance-level image
retrieval.

Recently, convolutional neural networks (CNNs)
demonstrated excellent performance on image classification
problems such as PASCAL VOC and ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [17, 31, 29, 34].
By training multiple layers of convolutional filters, CNNs

are capable to automatically learn complex features for
object recognition and achieve superior performance
compared to hand-crafted features. A few works have
suggested that CNNs trained for image classification
tasks can be adopted to extract generic features for other
visual recognition tasks [6, 25, 19]. Although several
approaches have applied CNNs to extract generic features
for image retrieval tasks and obtained promising results, a
few questions still remain unaddressed. First, by default
CNNs are trained for classification tasks, where features
from the final layer (or higher layers) are usually used for
decision because they capture more semantic features for
category-level classification. However, local characteristics
of objects at the instance level are not well preserved at
higher levels. Therefore, it is questionable whether it is best
to directly extract features from the final layer or higher
layers for instance-level image retrieval, where different
objects from the same category need to be separated.
Second, most existing work assumes the size of a test
image is the same as that of the training images. However,
different scales of input images may affect the behavior of
convolutional layers as images pass through the network.
Only a few recent works attempt to investigate such effects
on the performance of CNNs for image retrieval [8, 26].

In view of the power of low-level features (i.e., SIFT)
in preserving the local patterns of instances, and the suc-
cess of CNN features in abstracting categorical information,
we process CNN activations from lower to higher layers to
construct a new feature for image retrieval by VLAD, al-
though other encoding schemes can be readily applied. Re-
cent deep networks OxfordNet and GoogLeNet pre-trained
on ImageNet database are used for evaluation. We find that
features from lower layers capture more local patterns of
objects, and thus perform better than features from higher
layers for instance-level image retrieval, which indicates
that it is not the best choice to directly apply the final layer
or higher layers that are designed for classification tasks to
instance-level image retrieval. In addition, we conduct fur-
ther experiments by changing the scale of input images and
using the same feature extraction and encoding methods. It
is surprising that the behavior of filters in each layer changes



significantly with respect to the scale of input images. With
input images of higher resolution, even the filters at higher
layers effectively capture local characteristics of images as
well, apart from semantic concepts of objects, thus produc-
ing better features and subsequent better retrieval results.

The contributions of this work are three-fold. First, we
design and conduct systematic and thorough experiments to
investigate the performance of features from different lay-
ers and different scales of input test images in instance-level
image retrieval. Second, we introduce using VLAD encod-
ing of local convolutional features from CNNs for image re-
trieval. The new convolutional feature mimics the ability of
SIFT descriptors to preserve local characteristics of objects,
in addition to the well-known power of CNNs of capturing
category-level information. Our framework, based on the
new features, outperforms other VLAD and CNN based ap-
proaches even with a relatively low-dimensional represen-
tation. Finally, we provide insights as to why lower layers
should be used for instance-level image retrieval rather than
higher layers, while higher layers may achieve better per-
formance for high resolution input images.

2. Related Work
Traditional image retrieval approaches rely on hand-

crafted features like SIFT descriptors, which are usually
encoded into bag-of-words (BoW) histograms [30]. To in-
crease the discriminative ability of SIFT descriptors, Root-
SIFT [1] was proposed to address the burstiness problem
by using the Hellinger kernel on the original SIFT descrip-
tors. Jégou et al. [11] proposed the vector locally aggre-
gated descriptor (VLAD) to obtain a compact representa-
tion as a replacement for BoW histograms, which achieves
good results while requiring less storage. PCA and whiten-
ing [9], signed square root (SSR) on VLAD vectors [11]
and intra-normalization [2] are later applied to the original
VLAD descriptors to reduce noise and further boost per-
formance. Multi-VLAD [2] is based on constructing and
matching VLAD features of multiple levels from an image
to improve localization accuracy. Other global features such
as GIST descriptors and Fisher Vector (FV) [21] have also
been evaluated for large-scale image retrieval. Some ap-
proaches rely on semantic concepts or attributes to capture
mid-level image information [7, 28, 24], where attributes
are binary values indicating the presence of semantic char-
acteristics. Relative attributes have been widely applied to
refine search results. In [16], a set of ranking functions are
learned offline to predict the strength of attributes, which
are then updated by relative attribute feedback to rerank rel-
evant images from the query stage. Implicit feedback [20]
to learn ranking functions using implied user feedback cues
and pivot attributes selection [15] to reduce the system’s
uncertainty have also been proposed to improve reranking
performance. [14] learns a generic prediction function

and adapts it into a user-specific function using user-labeled
samples for personalized image search.

CNNs have led to major improvements in image classi-
fication [6, 25, 19]. As a universal image representation,
CNN features can be applied to other recognition tasks and
perform well [19, 6, 34]. Razavian et al. [25] first investi-
gated the use of CNN features, i.e., OverFeat [27], for vari-
ous computer vision tasks, including image retrieval. How-
ever, the performance of CNN feature extracted from the
final layer lags behind that of simple SIFT-based methods
with BoW and VLAD encoding. Only by additionally in-
corporating spatial information do they achieve compara-
ble results. In [4], CNN features learned from natural im-
ages with various augmentation and pooling schemes are
applied to painting retrieval and achieve good results. Gong
et al. [8] introduce Multi-scale Orderless Pooling (MOP) to
aggregate CNN activations from higher layers with VLAD,
where these activations are extracted by a sliding window
with multiple scales. Experiments on an image retrieval
dataset have shown promising results, but choosing which
scales and layers to use remains unclear. In [3], a CNN
model is retrained on a separate landmark database that is
similar to the images at query time. Not surprisingly, fea-
tures extracted from the retrained CNN model obtain very
good performance. Unfortunately, collecting training sam-
ples and retraining the entire CNN model requires signifi-
cant amounts of human and computing resources, making
the application of this approach rather limited. [32] con-
ducted a comprehensive study on applying CNN features to
real-world image retrieval with model retraining and simi-
larity learning. Encouraging experimental results show that
CNN features are effective in bridging the semantic gap
between low-level visual features and high-level concepts.
Recently, [26] conducted extensive experiments on differ-
ent instance retrieval dataset and obtained excellent results
by using spatial search with CNN features. Our work is
inspired by [8] which also employs VLAD on CNN acti-
vations on multi-scale setting, but fundamentally different
from [8]. They utilize higher layers and multi-scale slid-
ing window to extract CNN features from multiple patches
independently, so the network has to be applied multiple
times. In contrast, we apply the network only once to the
input image, and extract features at each location of the
convolutional feature map in each layer. We also explicitly
verify the effectiveness of intermediate layers for image re-
trieval and provide additional analysis on the effect of scale.

[33] introduces latent concept descriptors for video event
detection by extracting and encoding features using VLAD
at the last convolutional layer with spatial pooling. In con-
trast, we extend the use of convolutional features to lower
layers without additional pooling to preserve local informa-
tion. We also focus on evaluating performance of different
convolutional layers for instance-level image retrieval.



3. Approach
We describe our approach of extracting and encoding

CNN features for image retrieval in this section. We start
by introducing the deep neural networks used in our frame-
work, and then describe the method for extracting features.
To encode features for efficient retrieval, we adopt VLAD to
compress the CNN features into a compact representations.

3.1. Convolutional neural network

Our approach is applicable to various convolutional neu-
ral network architectures. We experiment with two vari-
ants of recent deep neural networks: OxfordNet [29] and
GoogLeNet [31], which ranked top two in ILSVRC 2014.
The networks are pre-trained on ImageNet by Caffe imple-
mentation [13] and publicly available on the Caffe model
zoo. We adopt the 16 layers OxfordNet trained by [29] as
it gives similar performance to the 19 layer version. The
network consists of stacked 3 × 3 convolutional layers and
pooling layers, followed by two fully connected layers and
takes images of 224 × 224 pixels as input. We also use
a 22-layer deep convolutional network GoogLeNet [31],
which gives state-of-the-art results in ImageNet classifica-
tion tasks. The GoogLeNet takes images of 224×224 pixels
as input that is then passed through multiple convolutional
layers and stacking “inception” modules. Each inception
module is regarded as a convolutional layer containing 1×1,
3×3 and 5×5 convolutions, which are concatenated with an
additional 3× 3 max pooling, with 1× 1 convolutional lay-
ers in between for dimensionality reduction. There are to-
tally 9 inception modules sequentially connected, followed
by an average pooling and a softmax at the end. Unlike Ox-
fordNet, fully connected layers are eliminated which sim-
plifies our experiments, so that we can focus on the convo-
lutional feature maps. Finally, the networks are trained by
average-pooled activation followed by softmax. The fully
convolutional network GoogLeNet simplifies the extension
to applying the network to multiple scales of images, and
lets us encode the local convolutional features in the same
way for all layers, which allows fair comparisons among
layers. Table 1 shows the output size of intermediate layers
in OxfordNet and GoogLeNet. Since it is time consuming
to evaluate the lower layers which have large feature maps,
some lower layers are omitted in our evaluation.

3.2. Extracting convolutional features

Given a pre-trained network (OxfordNet or GoogLeNet)
with L layers, an input image I is first warped into an n×n
square to fit the size of training images, and then is passed
through the network in a forward pass. In the l-th convolu-
tional layer Ll, after applying the filters to the input image
I, we obtain an nl × nl × dl feature mapMl, where dl is
the number of filters with respect to Ll. For notational sim-
plicity, we denote nl

s = nl × nl. Similar to the strategy in

[33], at each location (i, j), 1 ≤ i ≤ nl and 1 ≤ j ≤ nl,
in the feature mapMl, we obtain a dl-dimensional vector
f li,j ∈ Rdl

containing activations of all filters, which is con-
sidered as our feature vector. In this way, we obtain nl

s lo-
cal feature vectors for each input image at the convolutional
layer Ll, denoted as Fl = {f l1,1, f l1,2, · · ·, f lnl,nl} ∈ Rdl×nl

s .
While [33] only extracts features from the last convolutional
layer, we extend the feature extraction approach to all con-
volutional layers. By processing the input image I through-
out the network, we finally obtain a set of feature vectors for
each layer, {F1,F2, · · ·,FL}. The feature extraction proce-
dure is illustrated in Figure 11.

3.3. VLAD encoding

Unlike image classification, which is trained with many
labeled data for every category, in instance retrieval gener-
ally there is no training data available. Therefore, a pre-
trained network is likely to fail to produce good holistic
representations that are invariant to translation or viewpoint
changes while preserving instance level information. In
contrast, local features, which focus on smaller parts of im-
ages, are easier to represent and generalize to other object
categories while capturing invariance.

Since each image contains a set of low-dimensional fea-
ture vectors, which has similar structure as dense SIFT, we
propose to encode these feature vectors into a single feature
vector using standard VLAD encoding. The VLAD encod-
ing is effective for encoding local features into a single de-
scriptor while achieving a favorable trade-off between re-
trieval accuracy and memory footprint. An overview of our
system is illustrated in Figure 1.

Figure 1: Overview of our feature extraction and encoding.

VLAD encoding is similar to constructing BoW his-
tograms. Given a collection of L2-normalized convolu-

1The k-means clustering figure is from http://www.vlfeat.
org/overview/kmeans.html

http://www.vlfeat.org/overview/kmeans.html
http://www.vlfeat.org/overview/kmeans.html


Layer (low→ high) Output size (nl × nl × dl)
pool1-norm1 56× 56× 64
conv2-norm2 28× 28× 192

Inception 3a 28× 28× 256
Inception 3b 28× 28× 480

Inception 4a 14× 14× 512
Inception 4b 14× 14× 512
Inception 4c 14× 14× 512
Inception 4d 14× 14× 528
Inception 4e 14× 14× 832

Inception 5a 7× 7× 832
Inception 5b 7× 7× 1024

(a) GoogLeNet

Layer (low→ high) Output size (nl × nl × dl)
conv2 1 112× 112× 128
conv2 2 112× 112× 128
conv2 3 112× 112× 128

conv3 1 56× 56× 256
conv3 2 56× 56× 256
conv3 3 56× 56× 256

conv4 1 28× 28× 512
conv4 2 28× 28× 512
conv4 3 28× 28× 512

conv5 1 14× 14× 512
conv5 2 14× 14× 512
conv5 3 14× 14× 512

(b) OxfordNet

Table 1: Size of feature maps

tional features from layer Ll, we perform k-means clus-
tering to obtain a vocabulary cl1, ..., c

l
k of k visual words,

where k is relatively small (k = 100 in our experiments
following [8]), so the vocabulary is coarse. For each im-
age, a convolutional feature f li,j from layer Ll is assigned
to its nearest visual word cli = NN(f li,j). For the visual
word cli, the vector difference between cli and the feature
f li,j (residual), f li,j − cli, is recorded and accumulated for all
features assigned to cli. The VLAD encoding converts the
set of convolutional features of an image, Fl, from layer Ll

to a single dl × k-dimensional vector vl ∈ Rdl×k, describ-
ing the distribution of feature vectors regarding the visual
words. Formally, a VLAD descriptor of an image regarding
layer Ll is represented as

vl = [
∑

NN(f li,j)=cl
1

f li,j − cl1, · · ·,
∑

NN(f li,j)=cl
k

f li,j − clk]. (1)

Here
∑

NN(f li,j)=cl
k
f li,j−clk is the accumulated residual be-

tween the visual word clk and all convolutional features f li,j
that are assigned to clk. The VLAD descriptors are normal-
ized by intra-normalization which has been shown to give
superior results than signed square root (SSR) normaliza-
tion [2]. Since the dimensionality of the original VLAD

descriptor is very high, making direct comparison expen-
sive, we further apply PCA to reduce the dimensionality of
VLAD descriptors to improve retrieval efficiency and then
whitening to increase its robustness against noise.

3.4. Image Retrieval

For all database images and a query image, we extract
convolutional features and encode them into VLAD de-
scriptors. Image retrieval is done by calculating the L2 dis-
tance between the VLAD descriptors of the query image
and database images. We use PCA to compress the orig-
inal VLAD descriptors to relatively low-dimensional vec-
tors (128-D), so that the computation of L2 distance can be
done efficiently. We will show in the experiments that the
compressed 128-D VLAD vectors achieve excellent results
with little loss of performance.

4. Experiments
We perform experiments on 3 instance-level image re-

trieval datasets: Holidays [10], Oxford [22] and Paris [23].
The Holidays dataset includes 1491 images of personal hol-
iday photos from 500 categories, where the first image in
each category is used as the query. The Oxford and Paris
datasets consist of 5062 images and 6412 images of famous
landmarks in Oxford and Paris, respectively. Both datasets
have 55 queries with specified rectangular region of interest
enclosing the instance to be retrieved, where each landmark
has multiple query images. To simplify the experiments,
the rectangular regions are ignored and full images are used
for retrieval in this work. Following the standard evaluation
protocol, we use mean average precision (mAP) to evaluate
the performance of our approach.

4.1. Comparison of layers

We first study the performance of convolutional features
from different layers. We use VLAD to encode convolu-
tional features from each layer and evaluate the mAP with
respect to the corresponding layer. Figure 2 shows the per-
formance for both OxfordNet and GoogLeNet. There is a
clear trend in the results of both networks on the first scale
(solid lines in the figure). The mAP first increases as we go
deeper into the network because the convolutional features
achieve more invariance, until reaching a peak. However,
the performance at higher layers gradually drops since the
features are becoming too generalized and less discrimina-
tive for instance-level retrieval. The best performing layers
of GoogLeNet on the Holidays, Oxford and Paris datasets
are Inception 3a, Inception 4a, and Inception 4e
respectively. On the Holidays dataset, the performance of
intermediate layers is much better than that of the last layer
(82.0% vs 68.5%). In contrast, the best performing layers
on the Oxford and Paris datasets are from middle upper lay-
ers. Nevertheless, similar trends can still be clearly seen
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Figure 2: Performance of different layers on both scales: Solid and dash lines correspond to the original and second scale
respectively. Fully-connected layers of OxfordNet are omitted due to incompatible size of the last convolutional layer at scale
2.

on these two datasets that the intermediate layers perform
better than the last layer. We then conduct similar experi-
ment with the 16 layers OxfordNet. Although OxfordNet
is less deeper than GoogLeNet, we still see this trend. On
the Oxford and Paris datasets, the best performing layer is
not the last layer, but the intermediate convolutional layers
conv5 1, showing that increasing generalization at higher
layers is not always useful in instance retrieval. This veri-
fies that across different network architectures and datasets,
intermediate layers perform the best and should be used for
instance-level retrieval.

When convolutional networks grow deeper, which gives
an increasing number of choice for layers to transfer, it be-
comes more important to examine the layers used for im-
age retrieval, since the layers perform very differently in
deep networks. Unlike recent work, which suggests only
using the last two fully connected layers [25, 8, 3], or the
last convolutional layers [26], our experiments show that
higher layers are not always optimal depending on the tasks
considered, especially for the very deep networks recently
proposed. For instance-level image retrieval, which is very
different from classification tasks, lower layers usually per-
form better than higher layers as features from lower layers
preserve more local and instance-level characteristics of ob-
jects. We envisage this trend will become more pronounced
when networks become deeper in the future.

4.2. Scales

Applying a network at multiple scales gives significant
improvement over its original scale as shown in previous

work [8, 25]. In view of this, apart from using the original
size of input images (scale 1), we enlarge the size of the
input image to 2n × 2n (scale 2) to generate 4 times larger
feature maps at each layer, and conduct similar experiments.
We evaluate the difference in performance using features
extracted from scale 1 and scale 2.

Figure 2 shows the performance of different layers at
both scales. In general, features from the finer scale, which
are obtained from higher resolution images, give better per-
formance than the original scale except OxfordNet on the
Holidays dataset. Interestingly, the relative performance
among layers at the higher scale are quite different from the
original scale from GoogLeNet. On the Holidays dataset,
the performance at scale 2 first increases and then decreases
as we go up to higher layers. The trend is similar to scale 1
although the performance difference between layers at scale
2 is smaller. On the Oxford and Paris datasets, we obtain
better results using features from higher layers than those
from lower layers on the finer scale (scale 2). It is surprising
that the networks perform better with larger input images,
although by default they should take images of 224 × 224
pixels that they are trained on as the input [26]. An intu-
itive explanation for the good performance of the last layer
at scale 2 is that the original filters focus more on local de-
tails of enlarged images since the size of the filters remains
unchanged. Therefore, the convolutional features extracted
from the higher layers at a finer scale actually focuses on
smaller parts of the images, thus preserving mid-level de-
tails of objects to some extent instead of global categorical
and abstract information as in the original scale. Our exper-



Original images Inception 4a Inception 5b Inception 5b (scale 2)
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Figure 3: Correspondence visualization of images (best viewed electronically).

iments suggest that higher resolution images are preferable
even if the network was trained at a coarser level. In con-
trast, different layers in OxfordNet, which was trained in a
multi-scale setting, behave similarly for both scales.

4.3. Feature visualization

To further understand the features of different layers and
scales, we produce visualizations of GoogLeNet features
based on the Holidays dataset.

Correspondence visualization. We construct a visu-
alization to observe the correspondence behavior follow-
ing [18]. To produce the visualization, we first represent
each convolutional feature regarding a layer in the database
by a square image patch which is obtained from the center
of the image region that affects the local feature. Specifi-
cally, for an n × n image with a layer output size nl × nl,
each local feature will be represented by a square image
patch of size n

nl × n
nl . For each convolutional feature, the

original image patch will be replaced by the average of its k
nearest neighbors from all patches extracted in the database.
If the local distinction has been abstracted by high level ab-

straction, locally different image patches will have similar
neighbors as these patches may be semantically close; oth-
erwise the neighbors can be also different since the local
distinction is preserved. Note that although the actual im-
age region that affects the local features is much larger than
the displayed patch itself due to stacked convolutions, the
center patch still preserves localized correspondence [18].

The intermediate convolutional layers of the shallow
AlexNet [17] preserve correspondence between different in-
stance objects as well as traditional SIFT descriptor [18].
However, as CNNs become deeper, it is unclear how the in-
termediate to high level convolutional layers would perform
in capturing correspondence information. In addition, we
observe the behavior difference between scales of the fea-
ture from the visualization. In particular, we would like to
understand why the higher layers at finer scale obtain bet-
ter performance than at lower scale. [18] focuses on part
correspondence across different object instances, which is
in contrast to our goal of finding correspondence between
objects. However, we believe part correspondence is an im-
portant step for achieving instance correspondence, and this



visualization is also useful in understanding the CNN fea-
tures in instance correspondence.

The visualization is presented in Figure 3. The size of
the convolutional feature map in Inception 5b scale 1 is
7 × 7, which is much smaller than 14 × 14 in Inception
4a’s . Therefore, each patch of Inception 5b in the vi-
sualization is much larger than Inception 4a. From the
visualization, it is clear that features from Inception 5b
do not correspond well compared to those from Inception
4a. In Inception 5b, we can see many repetitive pat-
terns for both 1-NN and 5-NN cases, which means that
local features spatially close to each other are highly sim-
ilar while the local appearance disparity between them is
blurred by convolution operations. One possible reason is
that GoogLeNet is trained with average pooling just before
softmax, which encourages the features of the last convolu-
tional layer to be similar. Comparing Inception 5b (scale
2) to Inception 4a, which have the same feature map
sizes, Inception 5b retrieves more semantically relevant
rather than locally distinct patches. When applied to finer
scale (scale 2), Inception 5b contains more local appear-
ance details than the original scale, thus producing more
diverse patches and roughly preserving the original appear-
ance of the objects. The visualization of Inception 4a
contains more semantically irrelevant patches, especially in
textureless regions, like retrieving grass or sea patches in
the pyramid. However, there are less repetitive patterns in
the visualization, and the edges in the images are better pre-
served. This shows that, as an intermediate convolutional
layer, Inception 4a is more powerful at preserving cor-
respondence of objects and capturing local appearance dis-
tinctions.

Patch clusters. To better observe the clustering of local
CNN features, we sample patches in the dataset and show
their nearest neighbors on different layers. Each convolu-
tional feature is represented as a patch in the same way as in
the correspondence visualization. Figure 4 shows the patch
clustering visualization of GoogLeNet layers Inception
3a, Inception 5b and Inception 5b (scale 2). The
patch clusters in the lower layer Inception 3a are quite
similar to SIFT-like low level features, where strong edges,
corners and texture are discovered and encoded. For higher
layers, such as Inception 5b, we can see more gener-
alization of parts with semantic meaning, such as differ-
ent views of a car or scene, which reflects the tendency of
higher layers to capture category-level invariances. How-
ever, for the same layer Inception 5b applied to the finer
scale, the features focus on smaller parts of the images, thus
capturing more local appearance. This confirms that the fea-
tures behave quite differently when applied to images of dif-
ferent resolutions. Although the higher layers are supposed
to encode high level categorical features, more instance-
level details are also preserved when they are applied to

finer scales, so they are more useful for image retrieval.

(a) Inception 3a (scale 1)

(b) Inception 5b (scale 1)

(c) Inception 5b (scale 2)

Figure 4: Visualization of local convolutional features on
different layers and scales. Each row represents a cluster of
local convolutional features by displaying the correspond-
ing patches. The leftmost column shows the sampled refer-
ence patches, and other patches are sorted according to their
L2 distance with the reference patches.

4.4. Comparison to state-of-the-art

Since our method only uses simple CNN features and
VLAD encoding, we only compare to other recent CNN
based approaches and classic SIFT-based representations
with BoW and VLAD encoding.

Uncompressed representation. We first compare our
approach using uncompressed VLAD representation with
other state-of-the-art approaches in Table 2. In Figure 2,
the best performing layers on Holidays, Oxford and Paris
datasets are Inception 3a on original scale (scale 1),
Inception 5b and Inception 4e on finer scale (scale
2) on GoogLeNet respectively, and conv4 2, conv5 1 and



Method Holidays Oxford Paris
SIFT-based method

BoW 200k-D [11] 54.0 36.4 46.0
Improved Fisher [21] 62.6 41.4 -

LCS+RN [5] 65.8 51.7 -
VLADintra+ RootSIFT [2] 65.3 55.8 -

CVLAD [35] 82.7 51.4 -
CNN-based method

CNNaug-ss [25] 84.3 68.0 79.5
Multi-resolution 89.7 84.4 85.3

Spatial Search [26]
Neural codes [3] 79.3 54.5 -
MOP-CNN [8] 80.2 - -

Ours (OxfordNet) 83.8 64.9 69.4
Ours (GoogLeNet) 84.0 58.1 68.8

Table 2: Comparison with other methods on image retrieval
dataset.

conv5 2 for Holidays, Oxford and Paris dataset on Ox-
fordNet respectively. The VLAD descriptors from the two
scales on the best performing layer are concatenated as our
final multi-scale descriptors. OxfordNet, which has much
larger convolutional feature maps, performs slightly bet-
ter than GoogLeNet for image retrieval. Although we do
not focus on producing state-of-the-art results on image re-
trieval but more on investigating the behavior of convolu-
tional features from different layers and the effect of multi-
ple scales, our system gives competitive results compared to
state-of-the-art methods. Specifically, our approach signif-
icantly outperforms all the classic SIFT-based approaches
with BoW and VLAD encoding, which verifies the repre-
sentative power of the convolutional features compared to
traditional SIFT descriptors. Although better results are re-
ported by other SIFT-based approaches using large vocab-
ularies, spatial verification and query expansion, etc., our
framework is not limited to the current setting, and can be
readily adapted to other encoding schemes (i.e., BoW and
FV), and re-ranking techniques (i.e., query expansion). In
addition, compared to recent CNN-based approaches, our
method still produces better or comparable results. In par-
ticular, our approach outperforms its rivals that either use
time-consuming multi-scale sliding windows to extract fea-
tures [8] or retrain the entire network using extra data [3].
It should be noted that including spatial information greatly
boosts the performance of CNN-based approaches such as
spatial search [25, 26]. Although [25] and [26] produce bet-
ter results than our method, we believe that our approach of
extracting and encoding convolutional features using lower
layers and our investigation of how scales affect convolu-
tional features provide a better understanding of why spatial
search on multi-scale features from the last layer performs
well. Spatial information can be also included in our frame-
work with few modifications, which will be studied in fu-

Method dim Holidays Oxford Paris
VLADintra+SIFT [2] 128 62.5 44.8 -
FV+T-embedding [12] 128 61.7 43.3 -

Neural codes [3] 128 78.9 55.7 -
MOP-CNN [8] 512 78.4 - -

Spatial Pooling [26] 256 74.2 53.3 67.0
Ours (OxfordNet) 128 81.6 59.3 59.0
Ours (GoogLeNet) 128 83.6 55.8 58.3

Table 3: Comparison of low dimensional descriptors.

ture work. It would also be interesting to combine multiple
layers from the best scales in spatial search to fully utilize
the power of deep networks.

Low-dimensional representation. To trade-off between
retrieval accuracy and storage space, most approaches com-
press the original feature vector to a low-dimensional rep-
resentation. Therefore, we conduct additional experiments
using compressed VLAD descriptors and compare the re-
sults with those of other approaches using low-dimensional
representations. We use PCA to reduce the dimensionality
to 128 and apply whitening to further remove noise.

As shown in Table 3, our method obtains state-of-the-art
results on two out of three datasets with minimal perfor-
mance loss. Our method outperforms all SIFT-based ap-
proaches by a large margin, which again demonstrates the
power of CNNs. Moreover, we obtain better results than
[3], even though [3] fine-tunes the pre-trained CNNs using
a large amount of additional data. Although adopting sim-
ilar VLAD encoding scheme, our method still outperforms
MOP-CNN [8] which uses a larger 512-D representation,
which further verifies that our approach of extracting con-
volutional features from intermediate layers is more suit-
able for instance-level image retrieval. The performance of
[26] with low-dimensional descriptors drops notably com-
pared to our 128-D representation, showing that elimination
of spatial search greatly reduces the power of CNN repre-
sentation. It is also important to use more sophisticated en-
coding methods to capture the local information of convolu-
tional features instead of simple max-pooling as in [26]. In
contrast, our low-dimensional representation is robust and
retains good discriminative power.

5. Conclusion
In this work, we systematically experiment with features

from different layers of convolutional networks and differ-
ent scales of input images for instance-level image retrieval,
and provide insights into performance through various vi-
sualizations. With VLAD encoding on convolutional re-
sponse, we achieve state-of-the-art retrieval results using
low dimensional representations on two of the instance im-
age retrieval datasets.
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