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Abstract

Convolutional Neural Network (CNN) features have
been successfully employed in recent works as an image de-
scriptor for various vision tasks. But the inability of the
deep CNN features to exhibit invariance to geometric trans-
formations and object compositions poses a great challenge
for image search. In this work, we demonstrate the effec-
tiveness of the objectness prior over the deep CNN features
of image regions for obtaining an invariant image repre-
sentation. The proposed approach represents the image as
a vector of pooled CNN features describing the underlying
objects. This representation provides robustness to spatial
layout of the objects in the scene and achieves invariance
to general geometric transformations, such as translation,
rotation and scaling. The proposed approach also leads
to a compact representation of the scene, making each im-
age occupy a smaller memory footprint. Experiments show
that the proposed representation achieves state of the art
retrieval results on a set of challenging benchmark image
datasets, while maintaining a compact representation.

1. Introduction
Semantic image search or content based image retrieval

is one of the well studied problems in computer vision.
Variations in appearance, scale and orientation changes and
change in the view point pose a major challenge for image
representation. In addition, the huge volume of image data
over the Internet adds to the constraint that the representa-
tion should also be compact for efficient retrieval.

Typically, an image is represented as a set of local fea-
tures for various computer vision applications. Bag of
Words (BOW) model [31] is a well studied approach for
content based image retrieval (CBIR). The robustness of the
SIFT like local features [22] [3] [23] to various geometric
transformations and applicability of different distance mea-
sures for similarity computation have led to a widespread
adoption of this framework.

The BOW model is inspired from the familiar Bag of

Figure 1. The overview of the proposed system. First stage ob-
tains object proposals from the input image. Second stage extracts
deep features from these regions. Finally, the last stage pools these
features in order to obtain a compact representation.

Words approach for document retrieval. In this model, an
image is represented as a histogram over a set of learned
codewords after quantizing each of the image features to
the nearest codeword. However, computing the BOW rep-
resentation for an image is tedious and the computation time
grows linearly with the size of the codebook. Although
BOW model provides good accuracy for image search, it
is not scalable for large image databases, as it is intensive
both in memory and computations.

In order to have a more informative image representa-
tion, Peronnin et al. proposed a generative model based
approach called Fisher vector [27]. They estimate a para-
metric probability distribution over the feature space from
a huge representative set of features, generally a gaussian
mixture model (GMM). The features extracted from an im-
age are assumed to be sampled independently from this
probability distribution. Each feature in the sample is rep-
resented by the gradient of the probability distribution at
that feature with respect to its parameters. Gradients corre-
sponding to all the features with respect to a particular pa-
rameter are summed. The final image representation is the
concatenation of the accumulated gradients. They achieve a
fixed length vector from a varying set of features that can be
used in various discriminative learning activities. This ap-
proach considers the 1st and 2nd order statistics of the local
image features as well, whereas the BOW captures only the
0th order statistics, which is just their count.
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Jégou et al. proposed Vector of Locally Aggregated De-
scriptors (VLAD) [16] as a non-probabilistic equivalent to
Fisher vectors. VLAD is a simplified and special case of
Fisher vector, in which the residuals belonging to each of
the codewords are accumulated. The concatenated residu-
als represent the image, using which the search is carried
out via simple distance measures like l2 and l1 . A num-
ber of improvements have been proposed to make VLAD a
better representation by considering vocabulary adaptation
and intra-normalization [1], residual normalization and lo-
cal coordinate system [6], geometry information [33] and
multiple vocabularies [14].

All these approaches are built on top of the invariant
SIFT-like local features. On the other hand, features like
GIST [25] are proposed towards an image representation
via a global image feature. Douze et al. [8] attempted to
identify the cases in which a global description can reason-
ably be used in the context of object recognition and copy
detection.

Recently, the deep features extracted from the Convolu-
tional Neural networks (CNN) have been observed [7, 26]
to show a better performance over the the state-of-the-art
for important vision applications such as object detection,
recognition and image classification [10]. This has inspired
many researchers to explore deep CNNs in order to solve a
variety of problems [2, 10, 12].

For obtaining an image representation using CNNs, the
mean-subtracted image is forward propagated through a set
of convolution layers. Each of these layers contains filters
that convolve the outputs from previous layer followed by
max-pooling of the resulting feature maps within a local
neighborhood. After a series of filtering and sub-sampling
layers, another series of fully connected layers process the
feature maps and leads to a fixed size representation in the
end. Similar to the multi layer perceptron (MLP), the output
at each of the hidden units is passed through a non-linear ac-
tivation function to induce the nonlinearity into the model.

Because of the local convolution operations, the repre-
sentation preserves the spatial information to some extent.
For example, Zeiler et al. [35] have shown that the acti-
vations after the max-pooling of the fifth layer can be re-
constructed to a representation that looks similar to the in-
put image. This makes the representation to be sensitive to
the arrangement of the objects in the scene. Though max-
pooling within each feature map contributes towards the in-
variance to small-scale deformations [21], transformations
that are more global are not well-handled due to the pre-
served spatial information in the activations.

Intuitively, the fully connected layers, because of their
complexity, are supposed to provide the highest level of vi-
sual abstraction. For the same reason, almost all the works
represent the image content with the activations obtained
from the fully connected layers. There is no concrete rea-

soning provided to comment on the invariance properties of
the representations out of the fully connected layers. How-
ever, Gong et al.[12] have empirically shown that the final
CNN representation is affected by the transformations such
as scaling, rotation and translation. In their experiments,
they report that this inability of the activations has been
translated into direct a loss of classification accuracy and
emphasize that the activations preserve the spatial informa-
tion. As another evidence, Babenko et al. [2] show that the
retrieval performance of the global CNN activations (called
‘neural codes’) increases considerably, when the rotation in
the reference (database) images is nullified manually.

Figure 2. Sensitivity of the CNN features to global transformation.
Top row: two images from the Holidays dataset, with the same ob-
jects but re-arranged. Bottom row: Corresponding l2 normalized
4096D CNN features shown on 64 × 64 grid (Best viewed when
zoomed-in).

We have considered two images of the same scene from
the Holidays database. We have conducted an experiment
to demonstrate the sensitivity of the CNN features to global
transformation that results in a different arrangement of the
underlying objects. We extracted the 4096 dimensional
CNN feature for both the images after the first fully con-
nected layer (fc6) in the Alexnet, as described in [19]. Fig-
ure 2 shows the two images and the corresponding deep
features reshaped to a 64 × 64 matrix. We can clearly ob-
serve that the corresponding activations to be very different
in both the representations, leading to an inferior similarity
between the two images.

Gong et al.[12] proposed a simple framework called
Multi-scale Orderless Pooling (MOP-CNN) towards an or-
derless representation via pooling the activations from a
set of patches extracted at different scales. They resized
the image to a fixed size and considered patches at three
fixed scales in an exhaustive manner to extract CNN fea-
tures from each of the patches. The resulting CNN features
are VLAD pooled (aggregated) in order to achieve an image
representation.

Motivated by this approach, we construct an image rep-
resentation on top of the CNN activations without binding



any spatial information. The proposed approach, constructs
a novel object based invariant representation on top of the
CNN descriptions extracted from an image. We describe
the objects present in an image through the deep features
and pool them into a representation, as to keep the effective
visual content of the image.

Generating object proposals is one of the effective so-
lutions in the recent times to achieve computational effi-
ciency for object detection. Our proposed system employs
the selective search object proposals scheme developed by
Uijlings et al. [32] to extract regions from the given im-
age. Selective search relies on a bottom-up grouping ap-
proach for segmentation that results in a hierarchical group-
ing. Hence, it naturally enables to generate object proposals
at all scales.

After obtaining the object level deep features, construct-
ing an image representation on top of them is another chal-
lenge. In order to have a holistic image representation that
summarizes the entire visual content, we propose to keep
the largest of the activations at each of the output units in the
CNN. That means the representation is the max pooled out-
put vector of all the object level CNN activations extracted
from an image. We have experimentally observed that the
proposed representation consistently outperforms other rep-
resentations based on deep features (refer section 3).

Figure 1 shows the overview of the proposed system.
The reminder of the paper is organized as follows: In sec-
tion 2, we discuss each of the modules of the proposed re-
trieval system in detail. In section 3, we present the ex-
perimental setup using which we evaluate the invariance of
the proposed image representation derived from the object
level CNN activations and discuss the results. Section 4
summarizes our approach with a conclusion and possible
expansions.

2. Proposed Approach
In this paper, we propose to use objectness prior on the

Convolutional Neural Network (CNN) activations obtained
from the image in order to represent the image compactly.
Our proposed system as shown in Figure 1, is essentially a
cascade of three modules. In this section we discuss these
three modules in detail.

2.1. Region Proposals

The first stage of the proposed system is to obtain a set
of object regions from the image. Recent research offers
a variety of approaches [32] [4] [36] for generating a set
of class independent region proposals on an image. The
motivation for this module comes from the fact that tasks
such as detection and recognition rely on the localization
of the objects present in the image. Thus the approach is
an object based representation learning built on the deep
features.

The conventional approach to object detection has been
an exhaustive search over the image region with a sliding
window. The recent alternative framework of objectness
proposals aims to propose a set of object bounding boxes
with an objective of reducing the complexity in terms of the
image locations needed to be further analyzed. Another at-
tractive feature of the object proposals framework is that,
the generated proposals are agnostic to the type of the ob-
jects being detected.

In the proposed system, we adapt the region proposals
approach by Uijlings et al. [32]. This method combines
the strength of both an exhaustive search and segmentation.
This method relies on a bottom-up hierarchical segmenta-
tion approach, enabling itself naturally to generate regions
at different scales. The object regions obtained are for-
warded through a CNN for an efficient description.

Since the objects in the scene are crucial components to
understand the underlying scene, we use object based rep-
resentation for describing the scene. Further, in semanti-
cally similar scenes, these objects need not be present in
the same spatial locations, making the object level descrip-
tion a necessity. Unlike MOP-CNN [12] which preserves
the geometry information loosely because of the concatena-
tion, the proposed approach does not encode any geomet-
ric information into the final representation. Wei et al. [34]
proposed Hypotheses-CNN-Pooling (HCP), an object based
multi-label image classification approach that aggregates
the labels obtained at object level classification. They ob-
tain objects present in the image as different hypotheses and
classify them separately using a fine-tuned CNN. The final
set of labels are obtained as the result of max-pooling the
outputs corresponding to the hypotheses, emphasizing the
importance of the objects in the scene.

2.2. Feature Extraction: CNN features

The objective of the CNN in the proposed system is to
achieve a high level semantic description of the input im-
age regions. For over more than a decade, the vision com-
munity has witnessed the dominance enjoyed by a variety
of hand-crafted SIFT like[22, 3, 5] features for applications
like object recognition and retrieval. But a number of recent
works [7, 10, 12, 26] have claimed the supremacy of the
features extracted from the Convolutional Neural Networks
(CNN) and Deep learning over the conventional SIFT-like
ones.

CNNs are biologically inspired frameworks to emulate
cortex-like mechanisms and the architectural depth of the
brain for efficient scene understanding. The seminal works
by LeCun et al. [20] has inspired many researchers to ex-
plore this framework for many vision tasks. A similar ar-
chitecture proposed by Serre et al. [30] also tries to follow
the organization of the visual cortex and builds an increas-
ingly complex and invariant representation. Their architec-



ture alternates between template matching and max-pooling
operations and is capable of learning from only a few set of
training samples.

Compared to the standard feedforward networks with
similar number of hidden layers, CNNs have fewer con-
nections and parameters, making it easier to learn. In the
proposed approach, we describe each of the extracted im-
age regions with a fixed size feature vector obtained from
a high capacity CNN. Our feature extraction is similar to
that in [10]. We have used the Caffe [18] implementation
of the CNN described by Krizhevsky et al. [19]. We pass
the image region through five convolution layers, each of
which is followed by a sub-sampling (or pooling) and a rec-
tification. After all the convolution layers, the activations
are passed through a couple of fully connected layers in
order to extract a 4096-dimensional feature vector. More
about the architecture details of the network can be found
in [18] and [19].

2.3. Feature Pooling

At this stage, each image is essentially a set of object
level CNN features. The extracted features from the CNN
are max-pooled in order to obtain a compact representation
for the input image.

Apart from the obvious aggregation to deliver a compact
representation, the main motivation for the max-pooling
stems form the aim to construct a representation that sums
the visual content of the image. It is also observed by Gir-
shick et al. [10] that, at the intermediate layers of the CNN
(like pool 5 layer in [10]), each of the units responds with
a high activation to a specific type of visual input. The
specific image patches causing these high activations are
observed to belong to a particular object class. It can be
thought of as, each of the receptive fields in the network is
probing the image region for the content of a specific se-
mantic class. Thus, keeping the component-wise maximum
of all the CNN activations belonging to the object proposals
sums up the whole visual content of the image.

2.4. Query time Processing

During the query time, we apply selective search on the
given query image to extract object proposals. These pro-
posals are propagated forward through the CNN in order to
describe them with a fixed length (4096D) representation.
At this point, we rank the proposals using their objectness
scores. We use a Jaccard intersection-over-union measure
to reject the lower scoring proposals and retain the higher
scoring ones.

Finally, we employ max-pooling to aggregate all the
CNN activations in order to represent the visual content of
the input image. We compare the pooled vector representa-
tion of the query with that of the database images to retrieve
the similar images. Simple distance measures such as l2 and

Hamming distance (for the binarized representations of the
pooled output) are found suitable to compare the images.

3. Experiments and Results
In this section, we demonstrate the effectiveness of hav-

ing an objectness prior on the Convolutional Neural Net-
work (CNN) activations obtained from the object patches of
an image in order to achieve an invariant image representa-
tion. We evaluate these invariant representations via a series
of retrieval experiments performed on a set of benchmark
datasets. Note that our primary aim is to have a compact
representation for the images at both query and database
ends over which we build an image retrieval system. We
evaluate our approach over the following publicly avail-
able benchmark image databases. Sample images from the
databases are shown in Fig. 3.

3.1. Datasets

INRIA Holidays[15]: This dataset contains 1491 pho-
tographs captured at different places that fall into 500 dif-
ferent classes. One query per class is considered for evalu-
ating the proposed system through Mean Average Precision
(mAP).

Oxford5K[28]: This database is a collection of 5062 im-
ages of 11 landmark buildings in the oxford campus that
are downloaded from Flickr. 55 hold-out queries, uniformly
distributed over the 11 landmarks evaluate the retrieval per-
formance through Mean Average Precision (mAP).

Paris6K[29]: The Paris dataset consists of around 6400
high resolution images collected from Flickr by searching
for 11 particular landmarks in the city of Paris. Similar to
the Oxford database, 55 queries distributed over these 11
classes. Mean Average Precision (mAP) is considered as
the metric for evaluation.

UKB[24]: UKB dataset contains 10200 images of 2550
different indoor objects. This can be considered as having
2550 classes each populated with four images. We have
considered One query image per class and four times the
precision at rank 4 (4×precision@4) as the evaluation met-
ric for this database.

3.2. Compact Representation and Retrieval

The proposed approach extracts the possible object
patches as suggested by the selective search [32] approach.
Because of the objectness prior associated with each of
these patches, our approach is more accurate and reliable in
aggregating the effective visual content of the image. From
each image, we extract on an average 2000 object proposals.
These patches are described by the 4096 dimensional fea-
tures obtained using a trained CNN. Through max-pooling,
we retain the component-wise maxima of all these features.
The resulting representation is still a 4096 dimensional vec-
tor that sums up the visual information present in the image.



Figure 3. Sample database images. First row shows images from
the Holidays, second from the Oxford5K, third from the Paris6K
and the fourth from the UKB dataset.

We use the Principal Component Analysis (PCA) to reduce
the dimensionality of the representation. The retrieval is
conducted using these lower dimensional representations on
all the databases and the results are presented in Tables 1,
2, 3 and 4. We compare the performance of the proposed
approach with the existing methods for various sizes of the
compact codes.

3.3. Binarization

A great deal of compression can be achieved via binary
coding. We adopt the recent work, Iterative Quantization
(ITQ) by Gong et al. [11] to obtain binary representation
for our pooled representation while preserving the similar-
ity. The method proposes a simple iterative optimization
strategy to rotate a set of mean centered data so that the
quantization error is minimized to assign each point to ver-
tices of a unit binary cube, in the projected space of arbitrary
dimension.

The results presented in Figure 5 show that the binary
representation retains the retrieval performance in spite of
the very compact representation.

3.4. Number of Proposals

In this subsection, we investigate the retrieval perfor-
mance as a function of the number of extracted region pro-
posals per image. The proposed method, using the selective
search [32] approach provides around 2000 regions per im-
age as potential object locations. We rank the regions based
on their scores. Jaccard IoU measure is employed to neglect
the regions with lower scores.

The plot in Fig. 6 shows the mAP considering only
the top N proposals for three datasets. It can be observed
that with as minimum as 100 proposals itself, the pro-
posed approach achieves very competitive results on all the
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Figure 5. Retrieval performance on various datasets for different
number of bits in the binary representation obtained via ITQ.
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Figure 6. Retrieval performance on various databases considering
different number of object proposals per image.

databases. The approach can be computationally very effi-
cient by considering only these top scored CNN activations.

3.5. Fine Tuning

Apart from using the pre-trained model of the Alexnet
CNN [19], we have also fine tuned it with a very small
amount of training data from the dataset under investiga-
tion. For each dataset, we have presented around 100, 000
patches populated equally across all the classes, as the train-
ing data for fine tuning. The final fully connected layer
(fc8) is adjusted to have as many units as the number of
classes in the corresponding dataset. The learning rate is
kept very low for the initial layers compared to fc8. The
results for these experiments are presented in Figs. 7, 8, 9
and 10. Fine tuning of the model is observed to improve the
representation for most of the databases.



Figure 4. Retrieval results on Holidays. First image in each row (separated by green line) is the query image and the subsequent images
are the corresponding ranked images. The red boxes show images that are irrelevant and ranked higher than the relevant images. Note that
irrelevant images ranked after the relevant images are not shown in red boxes. Note that queries 1, 3, 4 and 5 are picked to demonstrate the
invariance to rotation achieved by the proposed approach. Note that, the query image is removed from the ranked list while computing the
mAP.

Table 1. Retrieval results on the Holidays dataset. Best performances in each column are shown in bold. (∇ indicates result obtained with
manual geometric alignment and retraining the CNN with similar database.)

Dimension

METHOD 32 64 128 256 512 1024 2048 4096 8064 ≥ 10K

VLAD [16] 48.4 52.3 55.7 - 59.8 - 62.1 55.6
Fisher Vector[27] 48.6 52 56.5 - 61 - 62.6 59.5
VLAD +adapt+ innorm [1] - - 62.5 - - - - - - 64.6
Fisher+color [13] - - - - - - - 77.4
Multivoc-VLAD [14] - - 61.4 - - - - -
Triangulation Embedding [17] - - 61.7 - - 72.0 - - 77.1
Sparse-coded Features [9] - - 0.727 - - - - - - 76.7
Neural Codes [2] 68.3 72.9 78.9∇ 74.9 74.9 - - 79.3∇

MOP-CNN [12] - - - - - - 80.2 78.9
gVLAD [33] - - 77.9 - - - - 81.2

Proposed 73.96 80.67 85.09 87.77 88.46 86.58 85.94 85.94

4. Conclusion

In this paper, we have demonstrated the effectiveness of
the objectness prior on the Convolutional Neural Network
(CNN) activations of image regions, to impart invariance to
the common geometric transformations such as translation,
scaling and rotation. The object patches are extracted at
multiple scales in an efficient non-exhaustive manner. The

activations obtained for the extracted patches are aggregated
in an order less manner to obtain an invariant image repre-
sentation. Without incorporating any spatial information,
our representation exhibits the state of the art performance
for the image retrieval application with compact codes of
dimensions less than 4096. The binary representation with
a memory footprint as small as 2Kbits per image also per-



Table 2. Retrieval results on the Oxford5K dataset. Best performances in each column are shown in bold. (* indicates result obtained with
retraining the CNN with similar database.)

Dimension

METHOD 32 64 128 256 512 1024 2048 4096 8064

VLAD [16] - - 28.7 - - - - -
Fisher Vector[27] - - 30.1 - - - - -
Neural Codes [2] 39.0 42.1 43.3 43.5 43.5 - - 54.5*

VLAD +adapt+ innorm [1] - - 44.8 - - - - 55.5
gVLAD [33] - - 60 - - - - 62.6
Triangulation Embedding [17] - - 43.3 - - 56.0 57.1 62.4 67.6

Proposed 40.1 48.02 56.24 59.78 60.71 59.42 58.92 58.20

Table 3. Retrieval results on the Paris6K dataset. Best performances in each column are shown in bold. (* indicates result obtained with
retraining the CNN with similar database.)

Dimension

METHOD 32 64 128 256 512 1024 2048 4096

VLAD [16] - - 28.7 - - - - -
Fisher Vector[27] - - 30.1 - - - - -
Neural Codes [2] 39.0 42.1 43.3 43.5 43.5 - - 54.5 *
gVLAD [33] – - 59.2 - - - - 63.1

Proposed 65.38 71.47 70.39 68.43 66.23 64.11 62.84 63.20
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Figure 7. Retrieval performance on Holidays dataset with the ob-
ject level deep features obtained after fine tuning the net.

forms on par with the state of the art. Our proposed method
achieves these results with only 100− 500 region proposals
per image, making it computationally non-intensive. The
database specific fine tuning of the learned model is ob-
served to improve the representation using minimal training
data.
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Table 4. Retrieval results on the UKB dataset. Best performances in each column are shown in bold. (* indicates result obtained with
retraining the CNN with similar database.)

Dimension

METHOD 32 64 128 256 512 1024 2048 4096 8064 ≥ 10K

VLAD [16] - - 3.35 - - - - - - -
Fisher Vector [27] - - 3.33 - - - - - - -
Triangulation Embedding [17] - - 3.4 3.45 3.49 3.51 - - 3.53 -
Neural Codes [2] 3.3* 3.53* 3.55* 3.56* 3.56* - - 3.56 * - -
Sparse-Coded Features [9] 3.52 3.62 3.67 - - - - - - 3.76

Proposed 3.4 3.61 3.71 3.77 3.81 3.84 3.84 3.84 - -
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Figure 9. Retrieval performance on Paris6K dataset with the object
level deep features obtained after fine tuning the net.
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level deep features obtained after fine tuning the net.
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