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Abstract

Skin appearance modeling using high resolution photog-
raphy has led to advances in recognition, rendering and
analysis. Computational appearance provides an exciting
new opportunity for integrating macroscopic imaging and
microscopic biology. Recent studies indicate that skin ap-
pearance is dependent on the unseen distribution of mi-
crobes on the skin surface, i.e. the skin microbiome. While
modern sequencing methods can be used to identify mi-
crobes, these methods are costly and time-consuming. We
develop a computational skin texture model to characterize
image-based patterns and link them to underlying micro-
biome clusters. The pattern analysis uses ultraviolet and
blue fluorescence multimodal skin photography. The inter-
section of appearance and microbiome clusters reveals a
pattern of microbiome that is predictable with high accu-
racy based on skin appearance. Furthermore, the use of
non-negative matrix factorization allows a representation of
the microbiome eigenvector as a physically plausible posi-
tive distribution of bacterial components. In this paper, we
present the first results in this area of predicting microbiome
clusters based on computational skin texture.

1. Introduction

Recent advances in measuring and analyzing the skin mi-
crobiome through gene sequencing is revolutionizing our
understanding of skin appearance. With skin microbiome
measurements, causative relationships between microbes
and macro-appearance can be explored. However, gene se-
quencing is very cost-prohibitive and time-consuming. An
exciting opportunity exists to use photographic imaging and
appearance modeling to infer the skin microbiome, i.e. to
effectively “see” the microbiome of a human subject by an-
alyzing skin surface patterns. The pioneering work of [14]
shows that healthy skin may harbor a particular strain of
benevolent bacteria. The appearance of human skin in this
study was divided manually into only two simple classes
of good and bad skin appearance. By developing computa-

Figure 1: The computational skin appearance model charac-
terizes multimodal images based on their attributes using a
texton-based approach. The eigenbiome model projects the
skin microbiome to a lower dimensional subspace. By iden-
tifying overlapping groups in appearance and microbiome
clusters, we show that our skin appearance model is predic-
tive of the underlying microbiome clusters.

tional models of skin appearance, we provide a more fine-
grained quantitative categorization of human subjects using
multiple classes of appearance. While prior work in mi-
crobiomics shows the association of bacteria with skin ap-
pearance [14, 24, 19], there is no mechanism for automatic
inference of the skin microbiome from images. This asso-
ciation of visual patterns to bio-patterns on the skin surface
is a novel area that has not been explored.

In this paper, we present an approach that uses multi-
modal skin imaging and sparse coding to link microbiome
to skin texture (Figure 1). For computational skin texture,
we use a texton-based approach with a neural network clas-
sifier to categorize skin regions based on the distribution
of known attributes. The eigenbiome model projects the
skin microbiome to a lower dimensional subspace. Projec-
tions of microbiome using non-negative matrix factoriza-
tion (NMF) reveal a physically realizable eigenbiome where



Figure 2: Partial faces of subjects imaged in fluorescence excitation with blue-light (FLUO) modality. Our database contains
48 subjects with age varying between 25 and 68. The faces of each subject are imaged from left, right and frontal views
under five modalities. Each image is 4032 × 6048 pixels in size. The forehead regions used in our experiments are from the
frontal views.

the eigenvectors are all positive components and represent
particular concentrations of microbes. For our experiments,
we capture appearance measurements from 48 human sub-
jects with multimodal images: fluorescence excitation with
blue-light (FLUO), fluorescence excitation with ultraviolet
radiation (UV), parallel polarization (PPOL), cross polar-
ization (XPOL) and visible light (VISI) (Figures 2 and 3).
The association of appearance and microbiome is observed
with FLUO and UV imaging modalities, therefore these
modalities are used for our experiments. Sequencing of
swabs from the forehead skin of the 48 subjects gives the
corresponding skin microbiome. Using both eigenbiome
and skin texton modeling, we have identified overlapping
groups in appearance and microbiome. We show that our
skin appearance models are predictive of the underlying
microbiome clusters. Therefore, convenient and instanta-
neous multi-modal photography may be sufficient for infer-
ring microbial characteristics. This proposed methodology

is the first of its kind to use a computational model of skin
macro-appearance to predict the microbiome clusters.

2. Related Work

Human skin is a complex, multi-layered structure, which
hosts various microbial communities. Studies of the skin
microbiome [2, 40, 18] show dependence on genetics, en-
vironment and lifestyle as well as a variation over time.
The skin microbiome varies according to the location on
the body and from individual to individual. While the ben-
efits of gut microbes are well known, knowledge of the skin
microbiome is at an early stage [14, 24, 19].

Prior applications of skin modeling include studies of
skin aging [4, 27, 38], computer-assisted quantitative der-
matology [32, 44], and lesion classification [25, 34]. Sev-
eral imaging techniques have been developed in dermatol-
ogy for analyzing skin health. These imaging techniques in-
clude polarized imaging to enhance surface and subsurface
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Figure 3: Facial images of a subject captured in different modalities. (a) Fluorescence excitation with blue-light (appears
green). (b) Fluorescence excitation with UV radiation (appears blue). (c) Visible light. Fluorescence excitation captures skin
textures not revealed by the visible light. The most salient attributes are apparent in FLUO and UV images (see Figure 4),
therefore these modalities are used for computational skin modeling.

skin features, and fluorescence imaging to capture features
which are not visible [23, 3, 21, 8, 9, 33]. The images cap-
tured using different methods are collectively called mul-
timodal images. Multimodal high-resolution skin imaging
captures fine scale features like pores, wrinkles, pigmenta-
tion. Computational methods have been developed to au-
tomatically detect skin conditions like inflammatory acne,
erythema and facial sebum distribution from multimodal
images [3, 21, 20]. However, the skin appearance has not
been characterized as a collection of quantifiable features
using these imaging techniques.

In computer vision, textons have been used for texture
classification and object recognition. A classic approach
is to use filter responses or the joint distribution of inten-
sity values over pixel neighborhoods to identify the basic
texture elements or textons [29, 5, 45, 10, 7, 31]. An im-
age can then be represented by a distribution of textons.
In [30], a multi-layered approach based on multilevel PCA
and multiscale texon features is applied for face recogni-
tion. The bag-of-words representation of images using local
interest features has been used for object or scene recogni-
tion [48, 13], image segmentation [22] and image retrieval
[51]. Skin exhibits 3D texture and the appearance varies
significantly depending on illumination or viewing direc-
tion. Methods have been developed to model skin appear-
ance to account for this variation [6, 8, 29, 36]. Skin re-
flectance models have also been developed to acquire and
render human skin [12, 15, 26, 47]. Local appearance has
been linked to attributes [41, 1, 43], pose [42, 50, 35] and
motion [39, 49, 46]. In this work we develop an appear-
ance model that can be demonstrably linked to microbiome
measurements.

3. Methods

3.1. Multimodal Skin Imaging

Fluorescence excitation with blue light (FLUO) or
ultraviolet-A radiation (UV) is used to excite skin elements
like keratin, collagen cross-links and elastin cross-links
[23, 20]. These skin structures result in image features but
not in visible light. Noticeable skin features include red or
yellow dots in FLUO images (Figures 4(e) and 4(f)) and
blotches in UV images (Figure 4(h)). Red dots in FLUO
images are due to excitation of porphyrins in the pores. Por-
phyrins are known to be produced by bacteria such as Pro-
pionibacterium acnes residing in sebaceous glands. Yellow
dots in FLUO images are produced by excitation of “horn”
in pores, which is a mixture of keratinocyte ghosts from the
sebaceous glands lining, sebaceous lipids, sebocyte ghosts
and water. In UV images, blotches are observed due to
skin pigmentation, which can be a result of pigmented mac-
ules (spots), hyperpigmentation due to sun-damage or con-
ditions such as melasma, or erythematous macules (flat red
lesions). Pigmented skin appears as dark patches in UV im-
ages as a result of attenuation by melanin in epidermis or
induction of collagen cross-links fluorescence in dermis.

We capture images of 48 subjects with age varying be-
tween 25 and 68. The face of each subject is imaged from
left, right and frontal views under five modalities: ultravi-
olet (UV), blue fluorescence (FLUO), parallel polarization
(PPOL), cross polarization (XPOL) and visible light (VISI).
Each image is 4032 × 6048 pixels in size. The most salient
attributes are apparent in FLUO and UV images (Figure 4),
therefore these modalities are used for computational skin
modeling. The forehead regions used in our experiments are
from the frontal views. Example images of these modalities
are shown in Figure 3.
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Figure 4: Examples of patches on facial skin. The corresponding attribute labels are as follows: In FLUO images: (a) smooth,
(b) blotchy, (c) fine hair, (d) sparse sebum dots, (e) dense yellow sebum dots, (f) dense red sebum dots. In UV images: (g)
smooth, (h) blotchy, (i) fine hair, (j) sparse sebum dots, (k) dense sebum dots.
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Figure 5: Computational appearance model. The texton histogram of a patch centered at each pixel of a skin image is labeled
with one of the attribute categories using a neural networks classifier. The histogram of attribute labels of the entire skin
image is its skin appearance descriptor. A texton label characterizes a 5 × 5 region. An attribute label characterizes a 101 ×
101 region. The histogram of attribute labels describes a larger region (typical size 1000× 2000)

3.2. Computational Appearance Modeling

In each modality, there are groups of people with percep-
tually similar skin appearance attributes. In FLUO and UV
modalities, we observe the following five skin attributes:
smooth, blotchy, fine hair and sparse sebum dots or dense
sebum dots (Figure 4). We further categorize the sebum dots
into red or yellow for the FLUO modality. The skin appear-
ance of subjects can be modeled as a percentage of each of
these attributes. This attribute-based approach includes a
training phase to obtain a trained neural network (NNET)
classifier [37] and an image labeling phase to obtain a skin
appearance descriptor.

For the training phase, we use two components that are
typical in computer vision: texton histograms which is
an unsupervised approach, followed by a NNET classifier
which is a supervised learning approach. To obtain a texton
library, a random sampling of skin images are filtered using
a filter bank with L filters, resulting in each pixel having an
L-dimensional feature vector. Our filter bank is comprised

of 48 filters as in [29]. These filters include 36 first and
second order derivative of Gaussain filters (6 orientations,
3 scales each), 8 Laplacian of Gaussain filters and 4 Gaus-
sian filters. The filter outputs over 5×5 region are clustered
using k-means clustering into T clusters or textons. We em-
pirically choose T=50 for our texton library.

A neural network classifier for each modality is trained
to classify the skin patches. Every patch pixel is assigned
the label of its closest texton and a texton histogram is com-
puted over each skin patch of size 101 × 101. The training
set is obtained by manually labeling random skin patches
with one of the attribute labels described in Figure 4. The
texton histograms from the labeled skin patches and the
patch attribute labels are used for training the neural net-
works classifier (NNET).

The image labeling phase is illustrated in Figure 5. The
term skin image refers to the entire extracted forehead re-
gion and a histogram of attributes (one attribute per patch)
is used to to describe the skin image. For a skin image (typ-
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Figure 6: Image labeling using NNET classifier. The forehead skin image from the frontal view of the subject in FLUO
modality has been labeled using NNET classifier. Face is blurred to preserve the privacy of the subject.

ical size 1000 × 2000), a patch of size 101 × 101 around
each pixel is filtered, labeled with textons and a texton his-
togram is obtained. Using the texton histogram as input
to the trained NNET classifer, the patch corresponding to
each pixel is labeled with one of the attributes (for exam-
ple Figure 6). A histogram of attribute labels is then con-
structed for each skin image, giving a skin appearance de-
scriptor. We merge the attributes labels sparse sebum dots
and dense sebum dots together to form the attribute sebum
dots. In FLUO modality the color of the dots is an addi-
tional attribute that indicates either excitation of porphyrins
(red sebum dots) or horn (yellow sebum dots). The dots are
detected by finding high gradient pixels that have attribute
labels as sebum dots. The mean of the normalized red chan-
nel for the dot pixels is a measure of dot redness.

Skin appearance of a subject is grouped using the per-
centage of attributes in each modality. Appearance clusters
corresponding to each attribute are defined by specifying a
simple threshold on the attribute percentages. For example,
when the percentage of pixels in UV labeled as sebum dots
is high (≥ 50%), that subject is in appearance cluster AD

U .
We define six appearance clusters: AD

F (percentage of se-
bum dot pixels ≥ 50% and red color ≥ 0.76 in FLUO);
AB

F (percentage of blotchy pixels ≥ 50% in FLUO); AS
F

(percentage of smooth pixels ≥ 50% in FLUO); AD
U (per-

centage of sebum dot pixels≥ 50% in UV); AB
U (percentage

of blotchy pixels≥ 50% in UV); AS
U (percentage of smooth

pixels ≥ 50% in UV).

3.3. Eigenbiome-Model for Skin Microbiome

Using 16S ribosomal RNA gene sequencing [16, 11, 17],
a swab from the forehead of each subject is profiled to ob-
tain the relative abundance of 724 genera. Relative abun-
dance of genus is the concentration (percentage) of each
of the 289 genus in a subject’s skin microbiome. Out of
724 genera, 289 genra had non-zero relative abundance of
genus for all the subjects. Subjects with similar microbiome
should group together using clustering techniques. How-
ever, clustering in a 289 dimensional space is problematic
due to the well-known problem in machine learning referred
to as the curse of dimensionality. By projecting this high
dimensional data to a lower dimensional subspace, we can
obtain meaningful clusters that can be linked to appearance.
Additionally, the projection provides a convenient visual-
ization.

Principal component analysis (PCA) is widely used for
dimensionality reduction. PCA finds an optimal orthogonal
basis set for describing the data such that the variance in the
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Figure 7: Random samples from the subjects in the three
microbiome clusters: (a) Cluster M1. (b) Cluster M2. (c)
Cluster M3. Notice that the appearance forms a group in
microbiome cluster M1. Also see Figure 8.

data is maximized. The data can be projected to a lower di-
mension with eigenvectors which retain the maximum vari-
ance. We refer to the microbiome projected to a lower di-
mensional eigenspace as eigenbiome. For the microbiome
data, the percentage of variance retained with each eigen-
vector is analyzed and it is observed that 92.49% variance
is retained by first three eigenvectors. Thus, three dimen-
sional space is sufficient for this microbiome representation.
Clustering of the eigenbiome is done based on proximity to
neighbors by a simple kmeans clustering. The distribution
of subjects microbiome in the eigenbiome space suggests
clustering with k = 3, i.e., three distinct groups can be visu-
ally discriminated. Using three groups, we classify all sub-
jects into one of the three microbiome clusters (M1, M2 or
M3) in Figure 8.

The eigenbiome vectors for each of the three clusters
have both positive and negative components using PCA.
However, the negative concentrations of relative abundance
of genus are not physically realizable. If we employ non-
negative matrix factorization (NMF) [28], the eigenbiome
clusters are constrained to have positive components. This
constraint has a very useful physical interpretation. The
vector components are positive so that they are physically
realizable for the relative concentration of genus. More-
over, since NMF favors a sparse solution, the physical inter-
pretation can be enhanced. Sparsity constraints force near
zero concentrations to be set to exactly zero. Therefore,
the eigenbiome vectors are realizable concentrations of se-
lect microbes. In this sense the three eigenbiome vectors are
distinct microbial communities that contain some microbes,
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Figure 9: Using non-negative matrix factorization (NMF)
for projecting the microbiome to a lower dimensional space,
the eigenbiome clusters are constrained to have positive
components so that they are physically realizable for the rel-
ative concentration of genus. Overlap of microbiome clus-
ter M1 and appearance cluster AD

F (high concentration of
sebum dots with red color threshold≥0.76 in FLUO modal-
ity) shows that this appearance cluster is linked to micro-
biome cluster M1.

but not others. All subjects are computationally expressed
as a mixture of these three dominant communities.

4. Results

Using the computational appearance modeling discussed
in Section 3.2, the forehead of a subject in each modality is
labeled using the trained NNET classifier and its histogram
is obtained as illustrated in Figure 6. The appearance clus-
ters defined by specifying thresholds of attributes. The six
appearance clusters, three each for FLUO and UV modal-
ities, are listed in Table 1. These appearance clusters are
of interest because our results indicate a clear microbome
association. There were not many subjects in the dominant
fine-hair category, so a connection to the microbiome could
not be made and the category is omitted from Table 1.

Using the eigenbiome model in Section 3.3 each subject
is projected to a three dimensional space using PCA and as-
signed to one of the three microbiome clusters (M1, M2
or M3). Figures 8 shows the overlap of microbiome clus-
ter M1 and appearance cluster AD

F (high concentration of
sebum dots with a red color in FLUO modality) shows that
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Figure 8: Clusters in eigenbiome have been linked to appearance clusters. (Left) Microbiome is projected to a three di-
mensional space using PCA and three clusters (M1(red),M2(blue),M3(green)) are found using kmeans clustering. The
rectangular markings show the appearance cluster AD

F (high concentration of sebum dots with red color threshold≥0.76 in
FLUO modality). Overlap of microbiome cluster M1 and appearance cluster AD

F shows that this appearance cluster is linked
to microbiome cluster M1. (Right) Example patches are shown for the subjects that are in the overlap of appearance cluster
AD

F and microbiome cluster M1. The conditional probabilities such as P(M1 | AD
F ) are given in Table 1. As expected

P(M1 | AD
F ) is high showing that appearance is predictable of the microbiome cluster.

Appearance Cluster A n(A) P(M1 | A) P(M2 | A) P(M3 | A) P(A |M1) P(A |M2) P(A |M3)
AD

F : FLUO modality 14 0.93 0.07 0 0.57 0.06 0
Sebum dot ≥ 50%
Color ≥ 0.76

AB
F : FLUO modality 5 0 0.6 0.4 0 0.18 0.25

Blotchy ≥ 50%
AS

F : FLUO modality 7 0 0.85 0.14 0 0.35 0.13
Smooth ≥ 50%

AD
U : ULVI modality 29 0.66 0.17 0.17 0.83 0.29 0.63

Sebum dot ≥ 50%
AB

U : ULVI modality 12 0.25 0.58 0.17 0.13 0.41 0.25
Blotchy ≥ 50%

AS
U : ULVI modality 6 0 0.83 0.17 0 0.29 0.13

Smooth ≥ 50%

Table 1: Conditional probabilities for microbiome clusters M1,M2,M3 and appearance clusters based on the following
appearance attributes: Dots - high concentration of sebum dots pixels with red color above threshold, Blotchy - high concen-
tration of blotchy pixels and Smooth - high concentration of smooth pixels. Observe that the probability of microbiome M1
conditioned on appearance cluster AD

F in FLUO modality with a high concentration of sebum dots and redness=0.76 is 0.93,
indicating a 93% chance of a subject being in microbiome cluster M1 given this appearance cluster. Similarly observe that
the probability of microbiome M2 given a high concentration of smooth pixels in FLUO and UV is high (0.85 and 0.83 given
AS

F and AS
U , respectively.)



this appearance cluster is linked to microbiome cluster M1.
Using non-negative matrix factorization (NMF) for project-
ing the microbiome to a lower dimensional space (Figure 9),
the eigenbiome clusters are constrained to have positive
components so that they are physically realizable for the rel-
ative concentration of genus. The subjects grouped together
using the projected microbiome data by NMF are same as
the subjects in groups using PCA.

Table 1 shows the conditional probability of each of three
microbiome clusters conditioned on the individual appear-
ance cluster. High conditional probabilities indicate a high
likelihood of the microbiome cluster when the subject ex-
hibits the particular appearance attribute. Observe that in
three distinct cases the conditional probability is high: 1)
AD

F : sebum dots with a red color above the indicated thresh-
old in FLUO (predictive of microbiome cluster M1 with
P (M1 | AD

F )=0.93); 2) AS
F : smooth in FLUO (predictive

of microbiome cluster M2 with P (M2 | AS
F )=0.85); and

3) AS
U : smooth in UV (predictive of microbiome cluster M2

with P (M2 | AS
F )=0.83). For the appearance cluster AD

F )
the conditional probability increases as redness of dots in-
creases but the number of samples in the appearance cluster
decreases (see Figure 10). Our results reveal a strong link
between appearance clusters (captured instantaneously with
camera) and microbiome clusters (from time-consuming se-
quencing).

5. Conclusions

In this paper, we present an attribute-based appearance
model using texton-analysis of blue fluorescence and ul-
traviolet imaging modalities. Using 48 subjects, we link
appearance to the eigenbiome, the low dimensional repre-
sentation of a subject’s skin microbiome. The eigenbiome
model using non-negative matrix factorization represents
physically realizable concentrations of microbes. The inter-
section of the appearance and eigenbiome clusters reveals
three interesting cases where the probability of a subject be-
longing to a microbiome cluster conditioned on appearance
is high. The sequencing of microbiome takes several days
but computational appearance is obtained in seconds. The
established link to microbiome clusters provides biological
information with photographic imaging.
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Figure 10: (a) Conditional probability for linking of mi-
crobiome from appearance P (M1 | AD

F ) and appearance
from microbiome P (AD

F | M1) as a function of redness
of dots. For varying threshold of sebum dot redness, ap-
pearance cluster AD

F has subjects with high concentration
of sebum dots (≥ 50%) with indicated red color threshold
in FLUO. (b) Number of subjects in clusters AD

F and M1
(M1 ∩AD

F ) as a function of redness of dots. As the thresh-
old increases, the conditional probability of a subject to be
in microbiome cluster M1 given it is in appearance cluster
AD

F increases whereas the number of subjects in appearance
cluster AD

F decreases.

conversations about the microbiology aspect of the data.
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