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Abstract

Large scale alignment of 3D building models and satel-
lite images has many applications ranging from realistic 3D
city modeling to urban planning. In this paper, we address
this problem by matching the 2D projection of the build-
ing roofs and detected edges of satellite images. To bet-
ter handle noise and occlusions in alignment, the proposed
approach seeks an optimal matching location using an ex-
tended Chamfer matching algorithm. In addition the pro-
posed approach attempt to optimize the alignment within
large region using a global constraint. We show that the
proposed approach can estimate the alignment of matching
parts and produce robust result under occlusion. We test the
proposed algorithm on two different datasets that covers the
downtown areas of San Francisco and Chicago. The results
show that the proposed algorithm significantly improves the
registration accuracy while maintaining consistent perfor-
mance.

1. Introduction
Alignment of different types of geospatial data has at-

tracted numerous research efforts in recent years. Fusing
geospatial data of various types provides a more compre-
hensive understanding of the data, Alignment can also ben-
efit a large number of applications such as realistic city ren-
dering and urban planning. In this paper, we address a 2D-
3D alignment problem between 3D coarse building models
and 2D satellite images.

This paper differs from previous work[13, 20, 11, 16] by
avoiding the assumption of a global transformation between
the registered models. A global transformation model is in-
accurate in large scale registration problems. Instead, we
treat the alignment as a shape matching problem. Because,
in our dataset, both 3D buildings and the satellite images are

Figure 1. The initial data. We map the 2D projections of 3D
buildings onto the satellite images using the geo-referenced data.
The colored circle inside each building indicates the height of the
building.

geo-referenced, pixels in the satellite images and vertices in
the 3D buildings are referenced with respect to each other
in the same coordinate system. Since satellite images con-
tain obliquely projections, building roofs are shifted with
respect to their base position. The alignment is reduced
to a problem of 2D shape matching by using 2D projec-
tion of 3D building models. An example of the initial geo-
referenced data used in this work is shown in Figure 1.

Shape matching is a fundamental problem in computer
vision and has been used in various applications such as
information retrieval and object tracking. Similarity mea-
surement between a template and target objects is at the
core of shape matching and has been studied extensively.
For the purpose of shape matching, sketch and silhouette,
have been shown to be a dominant element in human per-
ception and cognition [10, 23]. These provide a compact
representation of the object which has been shown to be
very useful for matching. Because of these considerations, a
large number of methods for matching objects using sketch
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edges have been proposed. In most methods, a metric based
on the distance measurement between corresponding pixels
is used to evaluate the similarity among edge images. De-
pending on whether the correspondence is built by match-
ing pixels or features, matching methods can be catego-
rized into two groups: 1) feature-dependent[2, 3, 19], which
solve the correspondence problem by minimizing distance
of feature between corresponding points, and 2) feature-
independent[12, 8, 18, 1], in which the distance is defined
in a more general way over all of the points. Feature-
independent based methods are preferred when speed is
considered. However, the performance of such methods
may be affected when the scene becomes more complicated
and includes more noise. By using high dimensional spa-
tial features, feature-dependent methods get better perfor-
mance, and are more robust in the presence of clutter and
occlusions. However this increased accuracy results in in-
creased computation cost.

Chamfer matching methods which are based on integrat-
ing edge orientation[12, 18] are used when speed and ac-
curacy are concerned. However, such methods suffer from
large errors when objects are occluded or when the scene is
noisy. In this paper, we use a robust Chamfer matching al-
gorithm which takes into account the neighborhood context
of pieces in the Chamfer distance and retains well matched
pixels in the error computation. We show that we improve
both the robustness and accuracy of the Chamfer matching
when performing registration between satellite images and
3D building models. An example of the results obtained by
the proposed approach using Chamfer matching[4] is shown
in Figure 2.

The novel contributions of this paper are in several as-
pects. First, we define a generalization of Chamfer match-
ing which retains best matched parts and thus is capable of
matching occluded objects. Second, we introduce a new
distance metric that improves the Chamfer matching. By
using this metric, our approach is more robust to noise and
generate more accurate results. Third, we propose an ap-
proach to better handle the alignment under circumstances
of extreme occlusion or noise by optimizing the final build-
ing alignment using a consistency constraint imposed by the
alignment of neighbouring buildings. Fourth, we show how
the proposed approach can be applied to the registration
of satellite images and 3D building models. We show that
by using the proposed algorithm, the accuracy of matching
building roof projections with satellite images is consider-
ably better compared with existing approaches.

2. Related Work
Aligning of different types of geospatial data is a com-

mon task. In [11], an objective function is designed to re-
duce the matching error between extracted edges of a build-
ing image and a point cloud. By using this objective func-

tion Kaminsky et al. demonstrate a system for both outdoor
and indoor LiDAR and image alignment. A similar problem
is addressed in [20] where the structure from a point cloud
is first roughly aligned with a surface model using GPS in-
formation. The alignment is further refined by maximizing
the correlation between the height information of the two
sources. In [16, 13], mutual information between optical
images and LiDAR point cloud is maximized to generate
an optimal alignment.

The idea of using Chamfer matching for image registra-
tion was first introduced by Barrow et al. [1] where they try
to find the model of a coastline in a segmented satellite im-
age. Since then many variations of the Chamfer matching
have been introduced.

An important variation of the Chamfer matching by
Borgefors [5] uses a hierarchical Chamfer matching algo-
rithm (HCMA). This algorithm uses an image pyramid in
searching for the optimal position of a template. The search
for an optimal position is made in different resolution lev-
els of the pyramid by using a representation of the distance
image. The optimization of the objective function is done
by discretizing the transformation parameters and stepping
through them in each pyramid level. The speed of HCMA
can be improved by modifying the computation of the dis-
tance transform image and by selecting the starting search
position [22]. An HCMA algorithm based on interesting
points has been used in [21] where a parallel computation
scheme of Chamfer matching is discussed. The selection of
interesting points in this work is done through a dynamic
threshold scheme guided by a histogram.

A Chamfer matching algorithm which is based on mul-
tiple features was introduced by Gavrila et al.[8],[9], where
it is proposed to use edge orientation as a feature. An ori-
entation channel is created for each feature and a distance
transform image is generated for edges in the channel. This
method uses a hierarchical scheme for matching multiple
templates with an image in which similar templates are
grouped at different levels.

Shotton et al.[18] use the Chamfer distance with an ad-
ditional cost which measures the mismatch of edge orienta-
tions given by the average difference in orientation between
template edges and the closest edges in target image. In-
stead of explicitly formulating a separate term of orienta-
tion mismatch, the orientation difference is generalized in
the computation of the Chamfer distance[12]. A compari-
son between shape context matching and Chamfer match-
ing is conducted in [19], where results show that using the
Chamfer matching is faster than matching using shape con-
text and that global matching using Chamfer matching is
better than using shape context.
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(a) (b) (c) (d) (e)
Figure 2. (a) A target building which is partially occluded by a shadow. (b) Edge information showing no detected edges within the
shadowed area. (c) a template. (d) Basic Chamfer matching failed to find optimal location in the target image. (e) The proposed approach
successfully matches the template and the target.

3. Chamfer Matching
Given U and V , two binary edge images, where U is the

target image and V is the template image, we use {uj}mj=1

and {vi}ni=1 to denote the edge pixels in these images re-
spectively. Let U(uj) denote the value of image U at loca-
tion uj .

In Chamfer matching, we seek a correspondence be-
tween {uj} and {vi} under transformation W . Assuming
that the transformation W between the template and target
images is rigid with translation T and rotationR, a template
edge pixel vi is transformed into the target image by using
following expression:

W (vi;R, T ) = R · vi + T ≡ vU
i (1)

Given a distance metric d(·), we can solve for the trans-
formation parameters T and R by minimizing the total dis-
tance:

D(U, V ;R, T ) =
1

n

∑
1≤i≤n

d(vU
i , uj) (2)

where uj is the closest target edge pixel to vU
i in the sense

of the distance metric d(·).
The computation of d(vU

i , uj) can be done in linear time
using the distance transform of the target image[17]. De-
noting the distance transform image of U by UDT , we can
write Equation (2) as:

D(U, V ;R, T ) =
1

n

∑
1≤i≤n

UDT (vU
i ). (3)

Various types of distance transforms can be produced
using different distance metrics d(·). In [17], city-block
distances are used and a two-step linear algorithm is pro-
posed to compute the distances. Euclidean distances ap-
proximations are provided by Borgefors[4], Montanari[14],
and Danielsson[6]. An efficient squared Euclidean distance
computation algorithm is described by Felzenszwalb[7],
Felzenszwalb’s algorithm can be generalized to compute
other distances.

4. The Proposed Approach

4.1. Data Preparation

Given geo-referenced 3D building models and satellite
images, the proposed approach aims to minimize the match-
ing error between roofs in these two datasets. Building roofs
are shifted in the image in proportion to their height. Let r
be the resolution of a single pixel in meters in the satel-
lite image. Let h be the height of a building given by a
3D model. Assuming an oblique projection not greater than
45◦, we can compute the radius of the search window as
w = h · cos(45◦)/r. We limit the search for optimal align-
ment of each building to a search window as defined above.

The Chamfer matching is based on edges extracted from
the satellite image. To better handle noise and low resolu-
tion issues in the edge detection, a mean-shift filter is first
used to locally homogenize small differences in the image.
Edges are extracted by a canny edge detector and are fur-
ther refined by removing short edges. We use U in Equation
(3) to denote the edge image of a satellite image within the
search window.

In Chamfer matching, the counterpart V in Equation (3)
is extracted as the boundary of a 3D building projection onto
2D. Since roofs are the most visible part of buildings in
satellite images, we use the projection of the roof of each
building. The extraction of 3D building roofs is done by
computing the surface normal of the 3D mesh and compar-
ing it with the vertical direction. To avoid the case where
the extracted roof surface of a building is a small region, we
group the extracted roofs within highest 15 meters into one.

4.2. Extended Chamfer Matching

Object matching is a fundamental problem in computer
vision. Robust matching should be resistant to noise and
be able to deal with cases where objects are partially
occluded. The basic Chamfer matching is sensitive to noise
and can not reliably handle occlusion. To address these
shortcomings, we extend the Chamfer matching in several
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ways. First we propose a general way of computing edge
orientation in both the target and template images, and
use it in a new distance metric. Second, we propose a
method using the context of pixels to rule out outliers when
computing the distance error. Third, we provide a strategy
for matching incomplete targets.

Distance Metric with Edge Orientation
We extend the basic Chamfer matching and obtain addi-
tional robustness by jointly minimizing the spatial distance
between pixels and the misalignment of edge orientations.
A similar distance metric is used in [12] where a linear rep-
resentation of edges is generated to model the edge orien-
tation. The proposed approach avoids the need for a linear
representation of edges by computing the edge orientation
directly from the images.

Figure 3. Computing edge orientation in the binary template im-
age.

The edge orientation at each location is computed as
a vector perpendicular to the gradient vector at that loca-
tion. In the target image, the distance transform image UDT
is used to compute the edge orientation at each location.
Specifically, given a transformed location vU

i , its edge ori-
entation ~vU

i is computed as a vector perpendicular to the
gradient vector ∇UDT (vU

i ). To compute the edge orienta-
tion in the binary template image V , we create a gradient
vector field around edges by smoothing V using a standard
Gaussian kernel. The edge orientation vectors ~vi are then
calculated as vectors perpendicular to the gradient vectors
obtained from the gradient vector field. An example of the
edge orientation computation in V is shown in Figure 3.

Having the edge orientation computed in both the target
and template images, the distance between pixels vU

i and uj
is computed by:

d(vU
i , uj) = λUDT (vU

i ) + (1− λ)(1− | cos(αvU
i
)|) (4)

where λ is a weight factor that controls the importance of
orientation mismatch, cos(αvU

i
) = 〈~vU

i , ~vi〉 measures the
orientation mismatch, and it is assumed that ~vU

i and ~vi are
normalized.

A discussion of the selection of λ is given in section
6. A squared Euclidean norm is used in the first term of
Equation (4), which gives a larger penalty to mismatched
pixels. A method to generate the squared Euclidean norm
distance transform in linear time is described in [7].

(a) Modified distance = 1.5 × 0.55 = 0.82

(b) Modified distance = 1.5 × 2.54 = 3.82
Figure 4. Example of the modified distance measure. In both cases
we use a neighborhood of size p = 13, and select the lowest q = 5
neighbors. While the distance at the pixel is the same (1.5), the
modified distance measure in the bottom example is higher due to
the larger distance to neighbors.

Edge Distance Variance
To have a robust matching result, the matching error of a
pixel vi should not solely depend on d(vU

i , uj). This is be-
cause it is possible that vU

i will be an incorrect edge pixel in
the target image that happened to have a small error. Based
on this consideration, we argue that to get a confident mea-
surement of the matching error it is necessary to take into
account the matching error of neighbouring pixels.

Given the transformed template edge pixels {vU
i }ni=1,

we find for each pixel vU
i matching scores for the p clos-

est transformed template edge pixels. To estimate contex-
tual matching error of d(vU

i , uj) at location vU
i , the q pix-

els with lowest matching error, where q < p, are selected.
We denoted these q pixels as {vU

k}
q
k=1. We then calcu-

late the variance of the distance d(vU
i , uj) of the q selected

pixels:ϕ(vU
i ) = 1

q

∑q
k=1(d(vU

k, uj) − d̄)2, where d̄ is the
average matching error of the q neighbors.

The distance variance ϕ(vU
i ) provides a more stable as-

sessment of the matching result at vi. The parameters p and
q control the size of the contextual information used in the
computation. A larger p leads to more contextual informa-
tion included while q helps in excluding outliers. In our
experiments, we set p = 13 and q = 5. Since p and q are
constants, the asymptotic time complexity of the algorithm
is not affected by them. From a practical point of view, to
save time when searching for the p closest neighbors at each
vi, we generate and maintain a list of p closest neighbors for
each vi before the matching begins.

As we would like to give preference to distance measures
with small distance variance, we modify the distance met-
ric in Equation (4) by multiplying it by a factor which is
proportional to the distance variance:

dϕ(vU
i , uj) = d(vU

i , uj)× (1 + ϕ(vU
i )) (5)

Figure 4 shows an example of the modified distance com-
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putation.
The significance of multiplying the distance variance in

Equation (5) lies in several aspects. First, the distance mea-
sure is no longer solely dependent on each pixel’s individ-
ual matching distance as the distance now considers the
relationship between a pixel and its best matched neigh-
bours. Consequently, we expect each pixel and its con-
nected neighbours to have a small distance. Second, the
variance in Equation (5) makes it much easier to separate
well matched pixels from mismatched ones by increasing
the width of boundary that separates the well matched pix-
els and mismatched ones.

Algorithm 1 Computation of D(U, V ;R, T ).
Input:
• Images U , V and their edge pixels.
• Current transformation R, T .
• Parameters p, q, λ, θ, ts, tα and tϕ.

Output:
• D(U, V ;R, T )
1. Compute Φ using Equation (6).
2. Compute dϕ(vU

i , uj) for each vU
i using Equation (5).

3. Create the set S = {(vU
i , uj) | dϕ(vU

i , uj) < Φ}.
4. if #S < θ · n, add to S, (θ · n− #S) pairs of (vU

i , uj)
not already in it with the smallest dϕ(vU

i , uj).
5. Compute D(U, V ;R, T ) using S.
return D(U, V ;R, T ).

Matching Incomplete Targets
The basic Chamfer matching does not handle well occlu-
sions in the target. This is because distance transform val-
ues change and become unpredictable in parts which are oc-
cluded. Including the matching distance in occluded parts
will result in a shift from the true optimal location. There-
fore, we aim at separating well matched pixels from pix-
els in occluded areas, and retain only pixels with small dis-
tances for error computation. By using the proposed dis-
tance measure of Equation (5), the proposed approach gen-
erates a much more pronounced boundary between low er-
ror and high error regions, thus making it easier to separate
them.

Let the matching distance of each template edge pixel
be denoted by {dϕ(vU

i , uj)}ni=1. The goal in matching is
to get as many pixels with acceptable matching distance as
possible in computing the final matching error. Thus, we
set two parameters. The first parameter θ is the fraction of
template pixels that have to be used in the distance compu-
tation. The second parameter Φ is a tolerance of distance
error. The distance metric we propose contains three com-
ponents: spatial distance (ts), angular difference (tα, in de-
grees), and a distance variance (tϕ), by setting thresholds
for these three components, the distance tolerance Φ can be

computed using Equation (5) as:

Φ = (λt2s + (1− λ)(1− | cos(tα)|))× (1 + tϕ) (6)

Given the parameters θ and Φ, the computation of the total
distance D(U, V ;R, T ) as defined in Equation (2) is per-
formed using pixels with acceptable distance. This total
distance is then used to drive the registration by attempt-
ing to minimize it. A summary of the necessary steps for
computing D(U, V ;R, T ) is provided in Algorithm 1.

5. Alignment Using a Global Constraint
The optimal transformation parameters R and T are ob-

tained by minimizing D(U, V ;R, T ) in the search window.
In the proposed approach, we ignore the rotation R in the
transformation since this is resolved by the geo-referencing
of the data. We represent the translation T of building as a
shift vector pointing from the initial geo-referenced location
to the location returned by the alignment process. Exam-
ples of the shift vectors returned by the proposed Chamfer
matching are shown in Figure 5.

The proposed algorithm handles building roof alignment
well and achieves high accuracy in general. However, in
some cases, the proposed approach returns incorrect align-
ment result. Such incorrect alignments are caused by sev-
eral factors. First, the proposed approach may fail to detect
the target if the image quality is low due to large occlusions
or strong shadows in the image. Second, the proposed ap-
proach may fail in situations where multiple similar targets
are present in the search region. Finally, coarse or inaccu-
rate modeling of 3D building in our dataset may cause the
proposed approach to fail.

Figure 5. Illustration of the alignment using global constraint.
Blue bars represent the shift vectors computed by our approach.
The red disk shows the nearest building search area aligning using
the global constraint.

To handle possible failures in the alignment computa-
tion, we introduce a global constraint which takes into ac-
count the alignments of neighboring buildings. Assuming
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that the shift vector direction of buildings in a region are
close to each other, we require every shift vector to be con-
sistent with its neighbors during the alignment.

Given a set of n target images and n template images
denoted by {(Ub, Vb)}nb=1 for buildings in a city scale re-
gion, we look for a corresponding set of shift vectors T =
{Tb}nb=1 which minimizes the global alignment error shown
below:

E(T ) = E({Tb}nb=1) =

n∑
b=1

E(Ub, Vb;Tb) (7)

where E(Ub, Vb;Tb) is an error term for building b. In
the computation of E(Ub, Vb;Tb), we take into account
the consistency among the alignments in the neighborhood
which is measured by the difference between Tb and the
dominant shift vector of the neighboring buildings. Thus
E(Ub, Vb;Tb) is computed as:

E(Ub, Vb;Tb) = βDb +
(1− β)

2
(1− Tb

‖Tb‖
· T ′b
‖T ′b‖

) (8)

where Db is an abbreviation for Db(Ub, Vb;Rb ≡ I, Tb),
the Chamfer matching distance with the translation Tb and
no rotation, and T ′b is the dominant shift vector in the neigh-
borhood of building b. We use β to balance the importance
between the distance and angular terms (β = 0.4 is used
in all our tests). To ensure that the ranges of the distance
term and the angular term are the same, we normalize Db

to a value between 0 and 1. The 30 closest buildings in
the neighborhood are considered when computing dominant
shift vector and we use RANSAC and principal component
analysis (PCA) to better handle outliers in the computa-
tion of the dominant shift vector. To efficiently minimize
E(Ub, Vb;Tb), we keep track of a set of local minimum val-
ues of Db during the Chamfer matching stage which is de-
noted by Sb. We further use FLANN[15] to accelerate the
neighborhood search.

The final optimized shift vectors are computed as the
ones that minimize E(T ). E(T ) is optimized iteratively
and the optimization process is shown in Algorithm 2.

6. Experimental Results
We tested the proposed approach on two datasets, where

each contains 1000 building models selected from a San
Francisco (SF) and a Chicago (CHI) urban area.

The four parameters in Algorithm 1 are set as follows:
θ = 50%, ts = 5, tα = 15, and tϕ = 0.8. By setting
these parameters, we allow for at least 50% of template pix-
els to be inliers in the computation of D(U, V ;R, T ); the
accepted matching error of obtained transformation has to
be within error of 5 pixels in terms of spatial distance and

Algorithm 2 Optimization of E(T ).
Input:
• {Sb}nb=1 for n buildings

Output:
• {T ?b }nb=1 that minimize E(T )
while Ek(T )− Ek−1(T ) > γ do

for b = 1, . . . , n do
T kb = argminTk

b ∈Sb
RANSAC(Ek(Ub, Vb;T

k
b ))

end for
Ek(T ) =

∑n
b=1E

k
b (Ub, Vb, T

k
b )

end while
for b=1, . . . , n do
T ?b = T kb

end for
return {T ?b }nb=1.

(a) (b) (c) (d) (e)
Figure 6. Results of matching partially occluded buildings. (a)
Edge images detected from target image. (b)-(d) Results of the
CM algorithm, the results of the DCM algorithm and the results of
the proposed algorithm, respectively. (e) The pixels selected for
computing the average error during the matching process.

15 degrees in terms of orientation difference; finally 0.8 av-
erage distance variance is used to rule out outliers during
Chamfer matching.

In our experiments, we test the accuracy of our algo-
rithm in estimating the optimal transformation during align-
ment. We manually labelled the ground truth locations
of the building roofs in satellite images. The accuracy of
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Figure 7. Experimental evaluation results on the San Francisco
(upper row) and Chicago (lower row) datasets. The left and right
columns show different evaluation metrics.

the result is measured by the ratio of overlap between the
bounding box of the ground truth roof mask and the one
transformed by the proposed algorithm. Note that simply
measuring the Root Mean Square error (RMSE) between
the aligned targets and templates is not accurate as it is sen-
sitive to broken edges and incorrect alignments.

We first test the proposed Chamfer matching without us-
ing global constraint. We divide our evaluation into two
parts. In the first part, the evaluation is done on all the build-
ings of both datasets using the same λ. We then change λ
between 0 and 1 to compare the robustness of the proposed
approach, and evaluate the relative importance of the spatial
and angular terms. In the second part, to assess the perfor-
mance of the proposed algorithm on matching occluded ob-
jects, we specifically run tests on building images in which
the target buildings are partially occluded. In all the tests,
we compare our results with that of the directional Chamfer
matching (DCM) proposed in [12] and the basic Chamfer
matching (CM). Note that the result of CM is a special case
of the DCM algorithm when λ = 1.0.

Two kinds of metrics were used in our evaluation. In
the first metric, we compute the average ratio of overlap
area in the two datasets. In the second metric, we consider
only results with area overlap above a certain rate (85% and
90%).

In the first test where all the buildings were included, it
could be observed in Figure 7 that our algorithm generates
better results compared with DCM and CM at almost every
setting of λ. In both datasets, our algorithm maintains a
similar and consistent performance, while DCM performs
differently on the two datasets.

Metric One
Metric Two

≥ 85%

Metric Two

≥ 90%

SF

53 Buildings

Proposed 91% 0.94 0.90

DCM 63% 0.33 0.28

CM 35% 0.20 0.18

CHI

74 Buildings

Proposed 80% 0.81 0.78

DCM 51% 0.21 0.20

CM 32% 0.16 0.13

Table 1. Accuracy results of aligning buildings partially occluded
by shadow.

To test proposed algorithm’s strength in finding match-
ing targets under partial occlusion, we specifically test and
evaluate the algorithms’ performances on 53 buildings from
San Francisco and 74 buildings from Chicago which are
significantly occluded by shadows. We use a parameter of
λ = 0.7 in this test. The results are shown in Table 1. As
can be observed, the proposed algorithm achieves 80% ac-
curacy on both datasets compared with about 50% accuracy
when using DCM and 30% accuracy when using the origi-
nal Chamfer matching. Some examples of matching incom-
plete buildings are shown in Figure 6.

We finally tested the improvement obtained by the global
constraint for λ = 0.7.For both data sets, we obtain at least
2% improvement in terms of accuracy. The comparisons of
alignment results with and without global constraint align-
ment are given in Table 2.

Metric One
Metric Two

≥ 85%

Metric Two

≥ 90%

SF 89%→ 91% 88%→ 90% 78%→ 79%

CHI 89%→ 92% 89%→ 91% 83%→ 85%

Table 2. Results of alignment using global constraint. The num-
ber on the right side of the arrows show the results obtained by
alignment using the global constraint.

7. Conclusion
In this paper we address the problem of the 2D and 3D

alignment between 3D coarse building models and 2D satel-
lite images. To solve this problem, we extend the Chamfer
matching algorithm by measuring the distance error based
on context information instead of individual pixel error, us-
ing edge orientation, and segmenting distance errors. This
results in a new distance metric. We demonstrate that by
using this metric, our extended Chamfer matching is more
robust to noise as well as partial occlusion of the target im-
age. The proposed algorithm was tested on two sets of satel-
lite building images which contain many cases where build-
ings are occluded or covered by strong shadows. To bet-
ter handle the alignment failures in several extreme cases,
a strategy using a constrained imposed by the alignment
of neighboring buildings are proposed. Experimental re-
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sults show that, compared with known methods, we obtain
increased accuracy over the entire dataset and get superior
performance on a set of occluded building images.
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