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Abstract

Registering 2D and 3D data is a rapidly growing re-
search area. Motivating much of this work is the fact that
3D range scans and 2D imagery provide different, but com-
plementing information about the same subject. Combin-
ing these two perspectives leads to the creation of accu-
rate 3D models that are texture mapped with high resolu-
tion color information. Imagery can even be obtained on
different days and in different seasons and registered to-
gether to show how a scene has changed with time. Finding
correspondences among data captured with different cam-
eras and containing content and temporal changes can be a
challenging task. We address these difficulties by presenting
a contextual approach for finding 2D matches, performing
2D-3D fusion by solving the projection matrix of a camera
directly from its relationship to highly accurate range scan
points, and minimizing an energy function based on gradi-
ent information in a 3D depth image.

1. Introduction

Registering 2D and 3D imagery can create an enlighten-
ing venue for visualizing photographs with complete depth
information and conveying spatial relationships among dif-
ferent images. 3D information in the form of LIDAR (Light
Detection and Ranging) range scans shows users the full
structure of a scene and allows them to navigate through a
virtual environment to gain a new perspective. Photographs
of the same location can reveal high resolution details on
surfaces and specific data about a scene at one moment in
time. When these two modalities are combined, 3D mod-
els are created that present all of this information at once.
A series of photos taken over different seasons can be reg-
istered with a range scan and displayed together to show
how the scene has changed over time. Combining data from
different seasons can even be used to create 3D models of
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a scene under conditions when it would not be feasible to
collect a LIDAR scan, such as during a blizzard. The time
consuming scan be taken under more favorably conditions,
photographs can quickly be captured in the snow, and they
can be later registered to simulate a 3D representation of a
winter scenario.

No matter what the purpose of the registration process
may be, determining the 2D-3D correspondence can be de-
scribed as a pose-estimation problem [11]. Solving for a
camera’s pose in relation to a 3D model has been explored
in a variety of contexts with some using 3D range scan
models [9, 15, 18, 21] and others using structure from mo-
tion (SfM) point clouds [4, 13, 19, 20, 24]. Every one of
these methods requires defining and matching some type
of features either exclusively in 2D or from 2D to 3D. Our
work is focused on the approach of matching sets of 2D
data, some of which are pre-registered with a 3D point
cloud, and creating a 2D-3D link. Specifically, we work
with photographs captured by both a LIDAR range scan-
ner and various regular cameras. Images can be aligned for
this task using information from locally defined feature de-
scriptors [20], regional descriptors, or direct methods that
rely on global pixel-pixel correspondences [27]. Locally
defined keypoints use data such as gradient direction and
magnitude from neighboring pixels within a relatively small
window size whereas regional descriptors use information
over a larger portion of the image to describe an area and
potentially match it to corresponding regions in other im-
ages. SIFT [10] is a commonly used and robust local feature
detector used for 2D matching that assigns a scale and ori-
entation to each interest point. A descriptor is constructed
based on local image gradients that is generally unique to
a single area in the image. The neighborhood size used to
construct the descriptor is usually around 16x16 pixels at
the appropriate image scale.

The relatively small window size used by locally defined
methods to create keypoint descriptors can be beneficial in
many cases. They will be able to identify locally distinct
areas accurately. However, cases where image pairs have
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large scale, lighting, and/or content changes may require a
larger window size to correctly pinpoint very distinct key-
point matches since the images will have so many visual
differences. This is often the case when we start matching
imagery obtained by very different cameras and in differ-
ent seasons. We encounter these difficulties when working
with LIDAR camera images that have large focal lengths
and limited exposure values. This combined with our desire
to match outdoor images obtained over the span of an entire
year has motivated us to develop a more robust and contex-
tual approach to image matching and 2D-3D alignment.

1.1. Related Work

Many groups have focused on 2D-3D registration and
have generally followed the common framework of taking
existing 3D information, such as a range scan, and fusing
images and videos with it [9, 15, 18, 21]. This body of work
can be broken down into two main modes of performing
2D-3D registration. One common way is to directly match
2D photographs with 3D range scans, generally matching
large structural features such as lines or circles[21]. These
methods assume that certain features are present in the
scene which is reasonable since many groups focus on ur-
ban data that mainly contains regularized architecture. They
also often require some sort of user guidance and usually
work exclusively with images and range scans that are col-
lected at the same time. Another approach is to assume that
there is a set of photographs that is pre-registered with the
range scan because they were taken by either by a camera
built into the scanner or a camera mounted on the scanner
with a known configuration. Our work falls under this sec-
ond category.

1.1.1 Direct 2D-3D Registration

The photo-realistic urban modeling system produced by
Stamos et al. [21] identifies edges and vanishing points
in the 2D imagery and matching 3D linear features to es-
timate the camera parameters used in the 2D-3D registra-
tion. Schindler et al. [18] register 2D and 3D urban data
by identifying patterns in the structural features in both the
2D and 3D data and then matching them. Wan et al. [24]
also take advantage of the linear features inherent in urban
scenes to compute camera locations from vanishing lines.
The work of Li et al. [9] identifies repetitive structures as
well and utilizes vanishing lines to rectify photographs be-
fore registering them with the LIDAR range scans. Another
approach to direct registration is to create a structure from
motion point cloud from a set of photographs and match the
3D output with the range scan [21, 28].

Mutual information can also be used for direct 2D-3D
registration. 2D images can be constructed from a LIDAR
scan that visualize various properties of the scan such as

Figure 1. Top: Diagram showing 3D-2D link from LIDAR scan
(circles) to LIDAR images (stars) to regular photograph (trian-
gles). Bottom: 3D registration result shown from two perspectives.

the reflectivity of the laser [16], normals [3], or the rela-
tive height throughout a point cloud [1, 11]. The entropy
between these types of images and regular photographs is
minimized to uncover the relationship between the two.

1.1.2 Using Pre-registered Images for Registration

Using pre-registered photographs to guide the 2D-3D regis-
tration maybe a more tractable approach since data is avail-
able that is similar to the photographs being registered.
However, there are still many difficulties to handle espe-
cially when the goal is to register 2D and 3D data that are
obtained on different days as the scene may have changed or
if different modalities are used to depict a scene such as in-
frared images or paintings. Yang et al. [26] match difficult
image pairs by identifying one stable matching feature be-
tween an image with unknown location and a pre-registered
image and use a region growing method to find more cor-
respondences. As the feature search space increases, they
consider matches between corners, edges, and normals.
They feel that their iterative approach to searching for and
checking feature correspondences helps to overcome some
of the inaccuracies encountered when matching keypoints
between images that differ in qualities such as illumination
and viewpoint. Weinmann et al. [25] handle the challenge
of aligning regular and infrared photographs by matching
general shapes of the images’ gradient fields across planar
areas. Structurally accurate paintings of scenes have even
been registered with 3D scans using histogram of gradient
information of distinctive regions and by matching contours
between 2D and 3D imagery [17, 2].

1.2. Contributions

For the 2D-2D matching stage of our pipeline, we
present a unique contextual approach for finding image cor-
respondences that builds on the SIFT feature descriptor.
Once we have an initial estimate of the 2D-3D correspon-
dence for a camera and a range scan, we refine our estima-
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tion using the 3D depth image to directly determine the best
alignment of the 2D photograph and the 3D point cloud.

We show that our approach is general enough to work
on imagery containing different types of architecture and
foliage. Much of the current work in the field will face dif-
ficulties in complex scenes, including those heavy in trees,
as they rely on extracting straight lines or planes or com-
puting the normals of 3D points. We do not determine cor-
respondences between data by assuming a specific type of
structural feature is abundant and identifiable. We use both
local and regional feature descriptors to match images that
will strongly respond to different image properties which
we believe makes our pipeline more flexible when using a
variety of data sets.

1.3. Data Acquisition

We use a Leica C10 HDS LIDAR scanner which pro-
vides a high resolution point cloud of a scene and 2D images
of the scanned subject using a built-in camera. These im-
ages tend to have small fields of view and exposure incon-
sistencies making them difficult to match to typical images
people take with regular cameras. The output data from the
scanner also consists of files containing the internal and ex-
ternal camera parameters for each image. From this, we are
able to establish the link between the 2D LIDAR images
and the LIDAR range scan as shown in Figure 1. The pho-
tographs and videos were taken with a variety of cameras
including a Nikon D80 and several smartphones.

2. Methodology
In order to register an image with the LIDAR range scan,

we must calculate the camera pose for the photograph in re-
lation to the 3D point cloud. This entails matching an im-
age of interest to other images whose 3D correspondences
are known, such as our LIDAR camera images, and solving
for the camera’s projection matrix. Our 2D-3D registration
method can be divided into two main phases. First, we per-
form 2D image matching between LIDAR photographs and
new photographs to be registered and try to obtain as many
keypoints matches as possible. We then move onto our 2D-
3D phase in which we solve each camera’s projection ma-
trix to align it with the range scan and use depth information
to refine our 3D pose estimate.

2.1. 2D Contextual Feature Matching

For simplicity in our discussion, we will refer to the 2D
images of a pair as I1 and I2 which have matching keypoints
A and B respectively. We obtain an initial set of matches
for an image pair using the SIFT feature detector and de-
scriptor which is very robust and describes the rich gradient
information surrounding an interest point. Traditionally, for
SIFT to accept that A and B are a correct match their fea-
ture descriptors must pass a distinctiveness ratio test such as

||Ades−Bdes||
||Ades−Cdes|| < 0.7, where C is the second best match to A
in I2.

In order to identify correct point matches that may not
pass the ratio test (and increase our pool of matches),
we also take into account contextual information such as
line segments and histogram of gradients (HOG) descrip-
tors. We look at the similarities of the lines and HOG’s in
the larger neighborhoods surrounding a potential keypoint
match to determine if the overall regions agree with each
other. These two different features each have their strong
points. Our SIFT + line segment method is robust to light-
ing and content changes and helps by identifying salient lin-
ear features. Our SIFT + HOG method makes no assump-
tions about the existing structure and is useful for matching
regions lacking dominant lines but that are rich in texture.
Both methods are used to clear up some of the ambiguity
between possible keypoint matches. If the neighborhoods
of the matches with relatively higher distinctiveness ratios
(0.7 < ratio < 0.9) match well using one of our measures,
we include them in our list of putative correspondences that
are used for future registration.

In order to use either similarity measure, we must first
define corresponding neighborhoods in the image pair. We
use the scale and dominant orientation provided by the SIFT
detector to identify these regions that contain the same con-
tent and are based in the same coordinate system. The
neighborhood in I1 is centered at keypoint A with a width
of k ∗Ascale where Ascale is A’s SIFT descriptor scale and
k = 50. k is application dependent and should be chosen
so that neighborhoods encompass relatively large and inter-
esting areas. We have experimentally determined one value
for k to use on our dataset that is very stable.

To incorporate linear features into our matching criteria,
we identify stable line segments within the defined neigh-
borhood using the Line Segment Detector method [6]. All
the line segments in this neighborhood are transformed to
a polar coordinate system determined by the SIFT feature’s
orientation and normalized by the SIFT feature’s scale and
are represented as (ρ, θ). We then match groupings of line
segments in corresponding neighborhoods using Hungarian
graph matching [8]. Figure 2 outlines this process. The sim-
ilarity measure for a pair of line segments (lA, lB) is shown
in Equation 1.

sim(lA, lB) = (ρA − ρB)2 + ω(θA − θB)2 (1)

ω is a weight parameter that normalizes the range of θ
to that of ρ. We have determined experimentally that ω is
stable over a range of [3, 4]. This similarity measure is only
calculated if at least three lines are identified in the neigh-
borhood of the SIFT keypoint. If at least half of the lines
match according to Equation 1 (sim(lA, lB) < 2.0 for our
experiments), the match is saved.
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Figure 2. Matching lines in the neighborhood of a SIFT feature
point. Left: Line segments are identified within neighborhoods
centering a SIFT match. The SIFT point is shown in black in both
neighborhoods and the SIFT scale is represented by the black cir-
cle. Right: Line segments are converted to polar coordinates based
on their distance from and orientation in relation to the SIFT point
and matched.

Our second approach for contextual matching takes ad-
vantage of every pixel in corresponding neighborhoods sur-
rounding potential keypoint matches. To measure how
well the two neighborhoods match, we begin by comput-
ing HOG’s for each image patch. A vector is constructed
for each HOG cell by concatenating its nine bin values and
normalizing using the vector’s magnitude. We calculate the
L2 distance between the vectors for corresponding cells in
the matching neighborhoods. If the average of all these dis-
tances is under a defined threshold (threshold = 0.4 for
our experiments) we say that the neighborhoods surround-
ing the match have a strong correspondence and save the
keypoint match.

All 2D matches are geometrically verified by calculating
the homography relating I1 and I2 and removing outlying
matches.

2.2. 2D-3D Registration and Optimization

Using the set of 2D matches we have found, we proceed
to our 2D-3D registration stage. We know from the pre-
processing stage what 3D point matches to what 2D LIDAR
image pixel. By matching our regular photograph to the LI-
DAR images, we determine what 3D points match to the
feature points of our photograph as is shown in Figure 1. A
single list of 2D-3D correspondences is created that is based
on the feature matches from the full set of photographs with
which an image shares correspondences. We consider the
3D points to be very reliable and treat them as the absolute
locations for the feature points. This set of 2D-3D corre-
spondences is then used to calculate the projection matrix
of the camera.

We carry out the six-point algorithm with DLT (Di-
rect Linear Transform) [7] and RANSAC (Random Sam-
ple Consensus) [5] to find the set of matches that calculate
the most accurate projection matrix P . We refine P using
the set of inlying matches with Levenberg-Marquardt op-
timization. At this point we have a fairly strong estimate
of the projection matrix as we have searched extensively
for 2D keypoint matches and have calculated both 2D and

3D camera pose relationships to guide our registration. We
refine our 3D pose estimate one more time using 2D-3D
information directly to make sure we have a really clean
alignment.

2.2.1 Depth Imaged-Based Guided Matching and Op-
timization

Once we have a strong estimate of P , we refine the regis-
tration one last time using a depth image computed using P
and the 2D photograph being registered, I . We create the
grayscale depth image D by projecting the 3D point cloud
onto I’s 2D plane using P . This depth image is a valu-
able source of information because it contains the dominant
edges of the 3D point cloud as they are viewed from our
estimated camera pose and are in the same 2D coordinate
system as I .

Using the alignment of the depth image and the regular
photograph, we perform guided matching along the depth
image’s edges to directly obtain a relatively denser set of
2D-3D matches that cover the image plane. These matches
are used to refine the projection matrix estimate. D’s edges
ideally should align with the strong gradient responses in I .
To ensure that this is the case we incorporate gradient de-
scent in a hierarchical fashion. We first look for this align-
ment globally, finding one transformation to project D to I .
We then divide D and I into smaller and smaller patches,
calculating the best alignment for each patch pair. For ev-
ery edge pixel in D, we save the alignment that gave us the
smallest energy in an effort to minimize Equation 2, where
(ex, ey, ez) is the 3D point corresponding to an edge pixel
in D.

E =

# of edges in D∑
j=0

[1−5I(P∗(ejx , ejy , ejz , 1)T )]2 (2)

We take this multiple patch approach because varying
amounts of image information will help us find the best
alignment for different areas. During the gradient descent
process, very accurately matched sections of the depth im-
age along the 2D plane may be shifted away from their opti-
mal alignment due to noise and inaccuracies in surrounding
regions. In these cases, it is expected that a smaller window
size, looking at a subset of the image, will help maintain the
best alignment for the edges in these sections. Less-well
matched sections, however, may need to rely on the stable
regions elsewhere in the image to help guide them to their
best alignment, thus requiring a larger window.

The new set of 2D-3D matches are searched for and ex-
tracted along the shifted edges of D. If D and I both have a
strong edge at the same pixel location and the neighboring
pixels have similar gradient orientations in both images we
save the corresponding 2D and 3D points as a new match.
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Image # Matches % Inliers Avg. Error
Fig. 1 210 49.05% 2.82
Fig. 3 a. i. 1745 98.05% 4.3
Fig. 3 a. ii. 734 88.69% 3.32
Fig. 3 b. i. 207 92.27% 4.16
Fig. 3 b. ii. 2169 91.06% 3.63
Fig. 3 b. iii. 1004 91.11% 2.86

Table 1. Quantitative results for our 2D-3D registration. The reso-
lution of the LIDAR images is 1920x1920 and that of the regular
photographs is 3264x2448.

Figure 3. 2D-3D registration results. Fall and winter photographs
registered with summer scan. Top: 3D environment after registra-
tion. Bottom: 2D images being registered.

We refine P using Levenberg-Marquardt optimization to
minimize the reprojection error of this new set of matches.
We are more confident in our final calculation of the pro-
jection matrix since it is based on a large set of matches lo-
cated throughout a large percentage of the image plane that
have been chosen using contextual information after multi-
ple rounds of registration estimation and refinement.

The image can finally be registered with the scan by
mapping every 3D point onto the image plane using the re-
fined projection matrix. The color assigned to each 3D point
is the color of the pixel it is closest to when projected onto
the image plane. During this stage, the image’s 2D-3D cor-
respondences are saved so that it can be used to guide the
registration of new images.

3. Results and Discussion

We judge the accuracy of our results both qualitatively
and quantitatively. When the 2D images are viewed next to
the registration of the images and the range scan (Figure 3),
one can easily visually judge the accuracy of the projected
data. We also consider the number of matches and their re-
projection error when 3D points are mapped to the image
plane. These quantitative results are presented in Table 1
which shows the number of matches, the percentage of fea-
ture points identified as inliers, and the average reprojection
error of the inliers.

3.1. Limitations and Future Work

Our 2D-3D registration relies on initially matching 2D
images for which we use SIFT and our contextual match-
ing methods. Since SIFT is not affine invariant, we are
limited to matching photographs with relatively small base-
lines. We can expand our feature matching stage to also use
an affine invariant feature descriptor such as ASIFT [14]
or MSER [12] to make it more robust to affine transforma-
tions. In the cases where we still cannot find an initial set
of matches because the visual conditions between images is
just too great, we can allow the user to select a few initial
correspondences and then continue with our registration.

At the moment, we also do not perform any explicit
change detection between the 2D photographs and the 3D
point cloud such as is discussed in [22]. If the content in
these different types of imagery changes too much, our reg-
istration will not have a pleasing visual result. For instance,
if a building is completely covered by trees in the summer
that are rather far in front of it and then it becomes exposed
in the winter, the image will not have any correct 3D infor-
mation onto which it can be projected. In the future, we will
need to update the 3D information that has large changes to
produce a more visually accurate result. We can do this by
creating a structure from motion point cloud from the new
set of photographs and use it to alter the LIDAR point cloud.

The visual representation of our results could also be im-
proved by taking into account lighting differences between
images that overlap when registered with the LIDAR scan.
At the moment we average the color values if multiple im-
ages project onto the same 3D point. While this does help
to blend the images, seams are still visible if the lighting
changes too much. A more sophisticated method such as
that presented in the work of Troccoli et al. [23] could help
improve this.

4. Conclusion

We have presented a general 2D-3D registration method
that centers around solving a camera’s projection matrix in
relation to an accurate LIDAR range scan and minimizing a
gradient-based energy function using a 3D depth image. In-
cluded in this process is a contextual method for matching
2D images that takes into account stable linear features and
HOG descriptors of unstructured, richly textured areas. We
show that our method is robust enough to register data with
highly varying visual properties. We work with images with
drastically differing focal lengths and exposure values and
changes of lighting conditions and seasons. Multiple pho-
tographs can be viewed simultaneously in a 3D environment
to easily view the full context of a scene from a variety of
perspectives. We have also shown that imagery captured on
different days and registered with the same scan can quickly
and clearly reveal to a user how a location has changed with
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time.
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