
On-line Video Motion Estimation by Invariant Receptive Inputs

Marco Gori, Marco Lippi, Marco Maggini, Stefano Melacci
Department of Information Engineering and Mathematics

Via Roma 56, 53100 - Siena, Italy
{marco,lippi,maggini,mela}@diism.unisi.it

Abstract

In this paper, we address the problem of estimating the
optical flow in long-term video sequences. We devise a com-
putational scheme that exploits the idea of receptive fields,
in which the pixel flow does not only depends on the bright-
ness level of the pixel itself, but also on neighborhood-
related information. Our approach relies on the definition
of receptive units that are invariant to affine transformations
of the input data. This distinguishing characteristic allows
us to build a video-receptive-inputs database with arbitrary
detail level, that can be used to match local features and
to determine their motion. We propose a parallel computa-
tional scheme, well suited for nowadays parallel architec-
tures, to exploit motion information and invariant features
from real-time video streams, for deep feature extraction,
object detection, tracking, and other applications.

1. Introduction
Motion estimation is one of the basic primitives underly-

ing tracking algorithms as well as detection approaches in
dynamic scenes. Determining the trajectories of moving ob-
jects, especially in long-term sequences, crucially depends
on the quality of local motion estimation schemes. A lot of
effort has been and is still spent by the scientific commu-
nity, in order to improve the prediction quality in different
applicative contexts, and particularly in determining the op-
tical flow [8] (for recent contributes, see [1, 12, 18, 21] and
references therein). Optical flow estimation techniques aim
at predicting the velocity field of the pixels, from which mo-
tion estimation of objects can be devised and used, for ex-
ample, to improve the detection or tracking quality [4, 17].
The applicability of many powerful estimation techniques is
frequently limited by their computational burden, due to ex-
ecution times that are not suitable for real-time applications
(e.g., see [21] for a time comparison). Recently, parallel
computational schemes (mostly based on GPUs) have been
applied to improve the flow estimation speed [19]. More-
over, the estimated velocity field must be frequently paired

with local image features on top of which higher-level deci-
sion mechanisms can be built.

In this paper, we address the problem of estimating the
optical flow in long-term video sequences, merging feature
extraction and movement estimation in a unique framework.
We devise a computational scheme that exploits the idea of
receptive fields [9], in which the pixel flow does not only
depend on the brightness (or color level) of the pixel itself,
but also on information on its neighborhood. This principle
is frequently adopted in local feature estimation approaches
[14] and in deep convolutional networks [11], both for su-
pervised [10] and unsupervised learning [6]. The proposed
approach is based on the definition of transformation invari-
ant receptive inputs, that is, receptive units that are invariant
to geometric (affine) transformations of the input data. The
construction of such receptive inputs allows us to build a
database of visual patterns with arbitrary detail level, which
can be employed to match local features and to determine
their motion. The idea of feature matching for optical flow
estimation with undergoing geometric transformations has
been the subject of several recent studies [12, 13, 2], al-
though the computational times are generally prohibitive for
real-time applications (see [12]).

We propose a parallel computational scheme that is well
suited for nowadays parallel architectures (GPU, multi-core
systems, etc.), and that allows users to tune the maximum
displacement of the matching procedure and the quality of
the matching itself accordingly to the available hardware
and the required response time. We show some prelimi-
nary examples of real-time optical flow estimation in long
video sequences, comparing different settings and sizes of
the generated video-feature database. We plan to apply our
scheme to build a deep convolutional feature extraction sys-
tem for scene parsing and object detection in video streams.

The paper is organized as follows. Section 2 introduces
the receptive inputs, while Section 3 describes the trans-
formation parameters and the video-feature database. Sec-
tion 4 characterizes the local motion estimation scheme that
leads to optical flow. Preliminary experiments are in 5, and
conclusions are drawn in Section 6.

712

2. Receptive inputs

Let I be a video frame, and let x ∈ X be the 2D co-
ordinates of a pixel in I. We model a receptive field of x
using a set ofN Gaussians that are located in the neighbor-
hood of the pixel. The mean xk of each Gaussian gk(xk, µ),
k = 1, . . . ,N , is expressed in the reference frame centered
in x, and all the gk share the same variance µ.

A receptive input of x is the outcome of convolving the
receptive field with I. We indicate the receptive input with
ξ(x, I) = [ξ1(x, I), . . . , ξN (x, I)], where

ξk(x, I) = gk ⊗ I ∝
∫
X

e
− ‖xk+x−τ‖2

2µ2 I(τ)d(τ) . (1)

The vector ξ(x, I) is a filtered representation of the neigh-
borhood of x, whose detail level depends on the number of
Gaussians N and on the variance µ. The position of the
centers xk is arbitrary, and, in this work, we select them on
a uniform grid of unitary edge centered in x.

We can parametrize the receptive field by incorporating
affine transformations of the Gaussian centers. Given a 2D
affine map A (discarding translations, due to the convolu-
tional nature of the fields), we can equivalently rewrite it as
the composition of three 2D transformations and a scale pa-
rameter, that is, A = σRϕ1

Uϕ2
Rϕ3

, where σ > 0 and Rϕ1
,

Uϕ2
, Rϕ3

are the following 2× 2 matrices,

Rϕ1
=

[
cosϕ1 − sinϕ1

sinϕ1 cosϕ1

]
, Uϕ2

=

[1
cosϕ2

0

0 1

]
,

Rϕ3
=

[
cosϕ3 − sinϕ3

sinϕ3 cosϕ3

]
,

with ϕ1 ∈ [0, 2π], ϕ2 ∈ [0, π2), and ϕ3 ∈ [0, π) [15]. We
consider these continuous intervals to be discretized into the
grids Φ1,Φ2,Φ3, and, similarly, we collect in Σ a set of
discrete samples of σ (starting from σ = 1). The domain
T = Σ × Φ1 × Φ2 × Φ3 collects all the possible tuples of
transformation parameters.

Given a tuple T ∈ T , each component of the newly pa-
rameterized receptive input ξ(x, T, I) is then

ξk(x, T, I) ∝
∫
X

e
− ‖σRϕ1

Uϕ2
Rϕ3

xk+x−τ‖2

2σ2µ2 I(τ)d(τ) , (2)

where the effect of the scale σ is not only limited to the
position of Gaussian centers, but also to the width of the
Gaussian1. Computing the receptive input for all the pixels
x ∈ X and for all the transformations in T only requires
to perform |Σ| Gaussian convolutions per-pixel, indepen-
dently on the number of centers N and on the size of the
grids Φ1,Φ2,Φ3. As a matter of fact, only σ affects the

1See [15] for additional details.

shape of the Gaussian functions2. If we memorize the result
of the convolutions for all the x ∈ X , then we can com-
pute the receptive inputs for any tuple T simply performing
lookup operation.

The receptive input can be additionally improved by in-
cluding invariance to local changes in brightness and con-
trast, that we model by normalizing ξ(x, T, I) to zero-mean
and unitary L2 norm.

3. Transformation invariant matching
A key concept of the proposed algorithm, that makes it

different from (most of) the existing optical flow estimates,
is that it does not only aim at estimating the velocity vector
field. As we will describe in this section, it also extracts
patterns that are invariant with respect to geometric (affine)
transformations of the input. This is crucial for building
motion-based decision mechanisms, where the mere esti-
mation of the velocity field must be paired with some kind
of semantics on the local contents around each pixel (fea-
ture extractors, object detectors, tracking algorithms, etc.).

Given a video frame It at time t, we assign a unique
transformation tuple T xt to each pixel xt, and, as a conse-
quence, we have a unique receptive input ξ(xt, T xt , It) (2).
The tuple is selected such that ξ(xt, T xt , It) minimizes the
mismatch to a discrete sample of the receptive inputs of the
video that were processed up to the current frame-pixel. Let
Q be the collection of such receptive inputs3, and let d(·, ·)
be a metric that is used to compare them. We indicate with
ξ (without any arguments) the data stored in Q.

Formally, we associate T xt to xt of It such that

(T xt , ξxt) = arg min T∈T , ξ∈Q d(ξ, ξ(xt, T, It)) , (3)

where ξxt ∈ Q is the closest element to ξ(xt, T xt , It). As
a result, each pixel is “described” by its transformation pa-
rameters T xt and by its closest representative ξxt ∈ Q. Any
learning scheme can be applied to the data in Q to extract
higher-level information, while the matching criterion (3)
allows us to link each pixel to the predictions on the data
belonging to Q.

Duplicates are not stored in Q, and a tolerance ε is intro-
duced to define the detail level of the sampling. More pre-
cisely, after having solved (3), if d(ξxt , ξ(xt, T

xt , It)) > ε,
then ξ(xt, T xt , It) is added to Q, otherwise it is associated
with ξxt (3). We end up with a well-spaced set of points,
in which each ξi ∈ Q is the centre of a (closed) ball of ra-
dius ε, B(ξi, ε), and no other ξj ∈ Q falls in the ball that
is centered in ξi 6= ξj . This mechanism allows us to filter
out noise on the data captured by the receptive fields and to

2The non-uniform scaling of Uϕ2 should generate anisotropic Gaus-
sians (see [15]), that we do not consider here both for simplicity and to
reduce the computational burden.

3We do not explicitly indicate the dependance of Q on the frame and
pixel indices to keep the notation simple.

713

not consider slight local changes in the video frames. The
value of ε can be selected to tune the size of Q with respect
to the available memory budget. The set Q is a compressed
affine-invariant representation of the video data.

We set Q = ∅ at the beginning of the video, and then
we progressively add data to it as long as the video is pro-
cessed. The resulting Q depends on the characteristics of
the video stream, and on the order in which pixels are elab-
orated. We devise a blurring scheme to reduce the latter
dependency, in which the variance µ (2) is initialized to a
large value and progressively decreased with an exponen-
tial decay that depends on t. The first frames are strongly
blurred, and only a few ξ’s are added to Q for each It (even
just one or none). The progressive decrement of µ allows us
to reduce the number of additions to Q for each following
It (the tuple assigned to the first addition to Q is arbitrary).

The data in Q are distributed on the surface of a sphere
SN−2 of radius 1, since one of the dimensions is lost due to
the L2 normalization, and the other due to the data center-
ing. If we consider d(·, ·) to be the classical Euclidean dis-
tance, one can equivalently use a similarity measure based
on the scalar product 〈·, ·〉 to compare receptive inputs, and
then the constraint d(ξi, ξj) > ε translates to 〈ξi, ξj〉 < γε.

Due to the role of the tolerance ε, the set Q is an ε-net of
the subspace of IRN that contains all the observed receptive
inputs (Q̂). Such nets are standard tools in the field of metric
spaces, frequently exploited in many search problems [7].
As a consequence, Q is both ε-covering and ε

2 -packing,

1. d(ξi, ξj) > ε, ∀ξi, ξj ∈ Q (ε2 -packing)

2. Q̂ ⊆ ∪ξi∈QB(ξi, ε) (ε-covering)

where the second condition tells us that all the observed in-
puts in Q̂ are either elements of Q or duplicates of them, up
to tolerance ε.

Theorem 3.1 There exists a finite set Q for any processed
video stream.

Proof: The components of the zero-mean and L2 nor-
malized receptive inputs (2) are bounded in [−1, 1], so the
set Q̂ is bounded, and the metric space (Q̂, d) is closed and
bounded. Q̂ is compact, that, in turn, implies that it is com-
plete and totally bounded. If a set is totally bounded then
there exists a finite ε-net of it for all ε > 0 [20]. �

The cardinality ofQ can be estimated by using some the-
oretical results on the metric space (Q̂, d). From [3], and
considering the spherical data distribution, we have that |Q|
is O(1/εN−1). Notice that this estimate is only due to the
properties of the selected metric and on the dimensionality
of the metric space itself, and not due to the intrinsic di-
mensionality of the data. As a matter of fact, the data may
lie only in a lower dimensional manifold over the surface
of SN−2, and then the estimate could be further reduced.

Another useful descriptive index is related to the covering
density of Q, given that we can cover the spherical data in
Q̂ with differently distributed ε-nets. Such density is the
average number of spherical caps covering a point of Q̂, i.e.

ν(Q̂) = ν(SN−2) =
∑
ξi∈Q

vol
(
Q̂ ∩ C(ξi, rε)

)
vol(Q̂)

,

where C(ξi, rε) is the cap centered in ξi and with base ra-
dius rε, generated by the intersection of B(ξi, ε) with the
surface of SN−2, and vol(·) indicates the volume of a set
[5, 16]. The cardinality of the ε-net stored in Q is directly
proportional to ν(Q̂). Following Theorem 1 in [5], we can
devise a lower bound on ν(SN−2).

Theorem 3.2 ([5]) For any η > 1
2 , a sphere SN−2 of any

radius and growing dimension N → ∞ can be covered
with spherical caps of half-chord rε = 1 with density

ν(Q̂) = ν(SN−2) ≤ η|Q| ln |Q| .

The result presented for rε = 1 can be generalized to any rε
by rescaling the radius of SN−2 accordingly.

Solving (3) requires to perform |T | full nearest-neighbor
(NN) searches in Q. Theoretical results proved that a NN
search on an ε-net can be performed in constant time, but the
memory requirements for the data structures are exponen-
tial in the dimensionality N [7]. We propose a pivot-based
strategy for exact NN search, that is both feasible and effec-
tive, exploring the relationships among different instances
of the same receptive input, generated with different trans-
formation tuples T1, . . . , T|T |.

Starting from the first tuple T1, we have to search for
the NN in Q of the query receptive input q := ξ(x, T1, I).
Let αε be the angle corresponding to a Euclidean spacing of
ε between two receptive inputs. We select a random pivot
element p on the surface of SN−2, and compute the angle
α(p,q) between p and q as the inverse cosine of dot product
〈p, q〉. If the NN to q is closer than ε, then it is a duplicate
of an element in Q, and it is guaranteed to lie on the surface
of the spherical segment defined by the points whose angles
from p belong to [α(p,q) − αε , α(p,q) + αε]

4, as depicted
in Figure 1, therefore strongly reducing the search space.
Moreover, a full search can be early stopped (without any
loss) once we find ξi for which d(q, ξi) ≤ ε

2 , due to the
properties of ε-nets. Finding the subset of Q that belongs to
the spherical segment can be efficiently performed by keep-
ing the data in Q sorted w.r.t. the pivot-angles, α(p,ξi).
We can reduce the spherical segment whenever we find a
point whose angle with q is smaller than αε, and we can
always consider the smallest segment size when processing
the following transformation tuples, T2, . . . , T|T |, reducing
the burden of the NN searches. See Figure 1 (a-c). If the

4We always assume that the result of adding or subtracting angles is
bounded in [0, π].

714

rεq
rεq

p1

rεq

p1

\

(a) (b) (c)
Figure 1. The (dark-purple) spherical surface on which the data
(black dots) lie. (a) A query point (red dot) q defines an ε-ball that
corresponds to the basis of a spherical cap of radius rε. (b) Given
a pivot p1, the surface of the target spherical segment is depicted
in light purple. (c) Whenever we find a point whose angle with q is
smaller that αε, we can reduce the segment and restrict the search
space to the area bounded by the dotted-orange lines.

NN is farther than ε, then we can both perform a full search
on the discarded data, or keep the best solution found so far
(if any) to devise an approximation of the global solution.
As long as the number of points and the dimensionality in-
crease, a single pivot p may not be enough to significantly
restrict the search space. In those cases, more pivots can
be used, leading to consider only the data that belong to the
intersection of the multiple spherical segments.

4. Local motion estimation
Solving (3) for all xt of frame It, in order to deter-

mine the pairs (T xt , ξxt), is an unfeasible operation in on-
line video processing, even using the described pivot-based
scheme. In order to reduce the computational burden, we
define a local motion estimation procedure that exploits the
pairs (T xt−1 , ξxt−1), computed for all xt−1 of frame It−1.
We assume that the scene smoothly changes over time (cam-
era movements, object movements, etc.), and we introduce
δ(xt), that is the map that associates xt with xt−1, i.e. the
(reverse) optical flow between the pair of frames.

We define the following problem

min
δ

R[δ] (4)

s.t. ξxt = ξδ(xt) (5)
T xt ≈ T δ(xt) (6)
d(ξxt , ξ(xt, T

xt , It)) ≤ ε (7)

d(ξxt , ξ(xt, T
xt , It)) ≤ ζ · d ξ

δ(xt)

t−1 (8)

in which R[·] is a regularizer that penalizes large displace-
ments in the map δ (i.e. we aim at associating pixel co-
ordinates that are close). Constraint (5) enforces the map
to assign the same receptive input of Q to the mapped pix-
els, thus enforcing visual coherence. Notice that this is a
stricter requirement than what is commonly done in optical
flow estimation, in which only the brightness of the pixel
is considered in constraining schemes. The receptive in-
put has a wider coverage of the neighborhood of the pixel,

Frame t
Frame t-1

xt

Z(xt,hmax)

Figure 2. For each xt, we look for a valid mapping δ(xt) over
a set of coordinates centered around xt in It−1. Incrementally
larger contours Z(xt, h) are considered (depicted with different
intensities) for different values of h ≤ hmax.

hence allowing more informed associations. Constraint (6)
is fulfilled whenever T xt is equivalent to T δ(xt), or a slight
perturbation of it, formalized by the ≈ operator5. This al-
lows the map to tolerate small changes in the geometry of
the receptive field, that may be due to the assumed smooth
changes that incur between It−1 and It. The inequality of
(7) is required to keep a valid association with respect to
the ε-net of Section 3. The last constraint (8) introduces
d ξ

δ(xt)

t−1 , that is the distance between the receptive input at
coordinates δ(xt) and its associated ξδ(xt), computed while
processing the previous frame. The constant ζ > 1 enforces
an improvement in the matching distance (left hand side), or
it limits the eventual worsening to a fixed factor.

We minimize (4) in a greedy way, by performing a re-
duced search. Let hmax be the maximum allowed dis-
placement of the map δ(·). We use the notation Z(x, h)
to refer to the set of coordinates belonging to the h × h
squared contour centered in x, with h ∈ [1, hmax] (Fig-
ure 2). For each xt, we search for a feasible solution by
restricting the codomain of δ(xt) to iteratively increasing
contours Z(xt, h), from h = 1 to h = hmax, in order to
minimize R[δ] (4). Whenever we find a solution that sat-
isfies (5,6,7,8) for a given h, we stop the search procedure,
avoiding any additional increment of Z(xt, h). Moreover,
the codomain element that corresponds to such found solu-
tions (that is δ(xt)), is excluded from any other instances
of the codomain of δ(·), i.e. it cannot be associated to any
other pixel different from xt. We also have to update the
distance-to-Q value d ξ

δ(xt)

t−1 , that will be used in (8) when
estimating the optical flow for the next pair It, It+1. We set
it to min

(
d(ξxt , ξ(xt, T

xt , It)), d ξ
δ(xt)

t−1

)
in order to avoid

a progressive relaxation of the ζ-based bound (8). In other
words, we track a receptive input among several consecu-
tive frames, geometrically transforming it, until the match-
ing quality is good enough (and ζ tunes the quality level).

For each value of h, the proposed greedy search is per-
formed over all the still-unsolved coordinates xt ∈ X . This

5We limit perturbations to a single transformation parameter (out of 4)
of the tuple Txt , that can be substituted with one of its nearest neighbors
in the selected discrete grids.

715

approach strongly reduces the number of conflicting solu-
tions with respect to a complete search for all the contours
h = 1, . . . , hmax that is sequential on the coordinate xt.
Consider that for a given value of h we can have multi-
ple coordinates xt for which δ(xt) maps to the same xt−1,
and we tolerate this due to the assumption of δ not being
a strictly-speaking bijective function (border effects, scene
changes, etc.).

Evaluating the feasibility of a solution requires to com-
pute a receptive input for the considered T xt (2) and to eval-
uate its distance from the candidate ξxt (7,8). Some candi-
dates may be repeated along Z(xt, h) for the same T xt , so
that we can reduce the number of computations by keeping
track of the already computed distances. As long as we in-
crease h, the number of still-unsolved coordinates xt ∈ X
is reduced, so that tracking large displacements will be usu-
ally performed only on a few pixels.

The pixels xt for which no solution was found up to
Z(xt, hmax), are processed with the full searches of Sec-
tion 3, and their displacement field is discarded. The same
holds for large constant regions, that give rise to constant re-
ceptive inputs that cannot be normalized to unitaryL2 norm.

4.1. Parallel computational scheme

The optical flow estimation described in Section 4 can
be easily implemented on parallel hardware architectures,
such as GPUs and multi-core CPUs. For each contour size
h, the search procedure can be parallelized on the pixel co-
ordinates, i.e. each computational unit (core) can focus on
searching a valid solution for a single pixel or for a small
batch of still-unsolved pixels. Each value of h defines a
computational stage, while full searches (Section 3) on the
unmatched pixels represent an additional stage. There are
no data races to check, and write operations are indepen-
dently performed for each pixel. During the first stages (in
which most of the pixels have to be processed) the aver-
age speedup is almost linear in the number of computational
units. Moreover, parallel architectures are popular for their
efficiency in convolution operations such as (2). We imple-
mented the proposed algorithm by exploiting a multi-thread
scheme that can efficiently run on multi-core CPUs, allow-
ing scalability to large resolution images.

5. Experiments
We present some preliminary experiments on three dif-

ferent videos taken from the LTDT workshop data set: Sit-
com, 09 carchase and NissanSkylineChaseCropped, pro-
cessed at their original resolution. If not otherwise stated,
we employed a discrete grid of 16 angles for the in-plane ro-
tation quantization (ϕ1), 3 values for tilt angles (ϕ2), up to
6 values for ϕ3 (whose quantization depends on the value
assumed by ϕ2 [15]) and 5 values for the scale σ. These
parameters produce |T | = 880 tuples.

0.6 0.7 0.8 0.9 1
Threshold ∊

0

10

20

30

40

50

60

70

Q
 s

iz
e

CarChase
Nissan
Sitcom

0.6 0.7 0.8 0.9 1
Threshold ∊

0

500

1000

1500

Q
 s

iz
e

CarChase
Nissan
Sitcom

0.6 0.7 0.8 0.9 1
Threshold ∊

0

1000

2000

3000

4000

5000

Q
 s

iz
e

CarChase
Nissan
Sitcom

(a) (b) (c)
Figure 3. Q size as a function of the tolerance ε: we report results
for 3×3 (a), 5×5 (b) and 7×7 (c) receptive fields, respectively.

A first experiment was designed o analyze the number
of stored templates |Q| as a function of tolerance ε. We
considered five different values for ε (0.6, 0.7, 0.8, 0.9, 1.0)
and three different receptive field dimensionsN (3×3, 5×5
and 7×7 grids), running our algorithm on the three selected
videos. Results in Figure 3 show that, with the same thresh-
old ε, larger receptive fields produce larger Q sets, as more
different details are captured by wider grids.

A second experiment was conceived so as to measure the
impact of transformation invariance on the number of stored
templates. To this aim, we tested the algorithm by selecting
three additional different sets of transformation tuples: in
the first case we only incorporate in-plane rotations (ϕ1 an-
gle), in the second case, we consider in-plane rotations and
scale changes (ϕ1 and σ), while in the third case we embed
all three rotations (ϕ1, ϕ2, ϕ3). Figure 4 shows the results
obtained on the three different videos, highlighting the cru-
cial impact of using invariances for reducing |Q|. Note that
we set a memory budget of 512MB, therefore enforcing a
maximum available size forQ: with only in-plane rotations,
such maximum number of templates is always stored.

Figure 5 shows some examples of the produced optical
flow for three frames extracted from each of the considered
videos (with ε = 0.7 and 5×5 grids). Each pixel is col-
ored with the angle of the predicted motion, using the hue
angle color wheel (same color indicate same motion direc-
tion, while similar colors indicate similar angles).

The computational cost of the algorithm greatly depends
both on the receptive fields size, and especially on Q set
size. In the experiments reported in Figure 5, our system
can process around 3-4 fps at their original resolution using
6 threads of a i7-3970X cpu at 3.50GHz. While processing
videos at 320×240 resolution, real-time performance can
be achieved even on a two years-old Intel Core-i7 laptop.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Sitcom CarChase Nissan

Q
 s

iz
e

In-plane rotations
In-plane rotations + scale

All angles (no scale)
All affine transformations

Figure 4. Size of Q when not exploiting all invariances.

716

(a)

(b)

(c)
Figure 5. Optical flow directions depicted over three sample
frames (rightmost images). Same color indicate same motion di-
rection, while similar colors indicate similar angles. In (a), the boy
is sitting and his contour is mostly green/cyan, while the camera
is zooming, hence the border objects look as if moving towards
outside the image (pink/left or orange/right). In (b), the car is in-
dentified by a red/yellow pattern, while the street is mostly pink
and violet, due to camera movements. In (c), the blue car is over-
taking the grey one, the optical effect being that of two different
movement directions.

6. Conclusions and future work
We presented an optical-flow estimation algorithm for

online video streams, based on the idea of affine-invariant
receptive inputs. Information coming from the neighbor-
hood of each pixel is exploited by enforcing coherence
between pairs of receptive inputs. The extracted affine-
invariant patterns can be used to build higher-level decision
mechanisms, hence exploiting motion in feature extractors,
object detectors, and trackers. The algorithm can be eas-
ily parallelized. Additional noise filtering and informative
spatial regularization are planned in future work.

References
[1] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,

and R. Szeliski. A database and evaluation methodology for

optical flow. Int. Journ. of Comp. Vis., 92(1):1–31, 2011.
[2] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-

stein. The generalized patchmatch correspondence algo-
rithm. In Eur. Conf. on Comp. Vis., pages 29–43, 2010.

[3] K. L. Clarkson. Nearest-neighbor searching and metric space
dimensions. Nearest-Neighbor Methods for Learning and
Vision: Theory and Practice, pages 15–59, 2006.

[4] D. Decarlo and D. Metaxas. Optical flow constraints on
deformable models with applications to face tracking. Int.
Journ. of Comp. Vis., 38(2):99–127, 2000.

[5] I. Dumer. Covering spheres with spheres. Discrete & Com-
putational Geometry, 38(4):665–679, 2007.

[6] M. Gori, S. Melacci, M. Lippi, and M. Maggini. Information
theoretic learning for pixel-based visual agents. In Eur. Conf.
on Comp. Vis., pages 864–875, 2012.

[7] S. Har-Peled and B. A. Raichel. Net and prune: A linear time
algorithm for euclidean distance problems. In ACM Sympos.
on theory of computing, pages 605–614. ACM, 2013.

[8] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Art. Int., 17(1-3):185–203, 1981.

[9] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular
interaction and functional architecture in the cat’s visual cor-
tex. The Journal of Physiology, 160(1):106, 1962.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1106–1114, 2012.

[11] Y. LeCun and Y. Bengio. Convolutional networks for images,
speech, and time series. The handbook of brain theory and
neural networks, 3361, 1995.

[12] M. Leordeanu, A. Zanfir, and C. Sminchisescu. Locally
affine sparse-to-dense matching for motion and occlusion es-
timation. In ICCV, pages 1721–1728, 2013.

[13] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense corre-
spondence across scenes and its applications. IEEE Trans.
on Patt. Anal. and Mach. Int., 33(5):978–994, 2011.

[14] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. Journ. of Comp. Vis., 60(2):91–110, 2004.

[15] J.-M. Morel and G. Yu. Asift: A new framework for fully
affine invariant image comparison. SIAM Journal on Imag-
ing Sciences, 2(2):438–469, 2009.

[16] Y. Rabani and A. Shpilka. Explicit construction of a small
ε-net for linear threshold functions. SIAM Journal on Com-
puting, 39(8):3501–3520, 2010.

[17] P. Sand and S. J. Teller. Particle video: Long-range motion
estimation using point trajectories. Int. Journ. of Comp. Vis.,
80(1):72–91, 2008.

[18] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow
estimation and their principles. In Int. Conf. on Comp. Vis.
and Patt. Rec., CVPR, pages 2432–2439, 2010.

[19] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajec-
tories by gpu-accelerated large displacement optical flow. In
Eur. Conf. on Comp. Vis., pages 438–451, 2010.

[20] W. Sutherland. Introduction to metric and topological
spaces. Oxford University Press, 1975.

[21] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
Deepflow: Large displacement optical flow with deep match-
ing. In Int. Conf. on Comp. Vis., pages 1385–1392, 2013.

717

