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Abstract

As a novelty, in this paper we present an event-based
stereo vision matching approach based on time-correlation
using segmentation to restrict the matching process to ac-
tive image areas, exploiting the event-driven behavior of
a silicon retina sensor. Stereo matching is used in depth
generating camera systems for solving the correspondence
problem and reconstructing 3D data. Using convention-
ally frame-based cameras, this correspondence problem is
a time consuming and computationally expensive task. To
overcome this issue, embedded systems can be used to speed
up the calculation of stereo matching results. The sili-
con retina delivers asynchronous events if the illumination
changes instead of synchronous intensity or color images.
It provides sparse input data and therefore the output of the
stereo vision algorithm (depth map) is also sparse. The high
temporal resolution of such event-driven sensors leads to
high data rates. To handle these and the correspondence
problem in real time, we implemented our stereo matching
algorithm for a field programmable gate array (FPGA). The
results show that our matching criterion, based on the time
of occurrence of an event, leads to a small average distance
error and the parallel hardware architecture and efficient
memory utilization results in a frame rate of up to 1140fps.

1. Introduction
Embedded vision systems are used in applications of our

daily life. Especially in automation, ranging from the in-
dustrial sector to consumer electronics, vision systems in-
cluding sensors for 3D reconstruction are omnipresent. For
example cars we drive are assembled nearly completely

autonomously, driver assistance systems improve safety in
traffic, transport systems (rail shuttles) drive completely au-
tonomous without human interaction using the data of sen-
sors retrieving depth data. In all these applications not only
the depth data are important, but also the processing and
availability of the depth data in real-time is crucial.

Sensors for calculating depth data comprise active sen-
sors, such as laser range finders or laser scanners, time-
of-flight (TOF) cameras, ultrasonic detectors, radar, light-
section, and structured light as well as passive technologies,
including structure from motion, optical flow, and stereo vi-
sion. Especially high resolution in space and time lead to
huge amounts of data, which makes it difficult to do the
depth calculation in real-time. In many computer vision ap-
plications the observed scene does not change all the time
and the processing of redundant data is occupying the re-
sources for processing the results. This means processing
the whole image at each algorithm cycle would end up in
lots of redundant work.

To overcome the processing of redundant data we use
a so-called silicon retina sensor in a stereo set-up, where
only changes in the observed scene are detected by the sen-
sor. On the one hand, with this sensor only the relevant
data has to be processed, but on the other hand the sensor
has a high temporal resolution which means high data rates
must be handled. This lead us to the usage of a Field Pro-
grammable Gate Array (FPGA) based embedded system for
calculating results in real-time. Thus, in this work we put
attention on the implementation of a stereo matching algo-
rithm for sparse silicon retina data in an FPGA to analyze
the real-time capability of such stereo vision system. How-
ever, such an algorithm can significantly benefit from appli-
cation specific customizations of the underlying system ar-
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chitecture by using optimized memory access patterns and
special computation units.

The remainder of the paper is organized as follows. In
Section 2 an overview about the silicon retina technology is
given. Section 3 presents the related work of silicon retina-
based stereo matching algorithms implemented in software
as well as in hardware. The implementation of the stereo vi-
sion algorithm is explained in detail in Section ??. Section 5
presents the evaluation of the implemented algorithm with
real world data, and the final Section 6 gives a conclusion
and outlook of future work.

2. Technology review - Silicon retina
As mentioned, in this work we use two Silicon Retina

cameras in a stereo vision system to calculate depth data
of a scene. In comparison to conventional complementary
metal oxide semiconductor (CMOS) or charge coupled de-
vice (CCD) imagers, every pixel of a silicon retina sensor
independently delivers data only on changes of the lumi-
nance. This frame-free, asynchronous, time-continuous,
logarithmic photoreceptor offers three substantial advan-
tages:

• The asynchronous illumination change dependent
event data generation obviously leads to an significant
data reduction because only dynamic parts of the scene
are detected and static parts are completely suppressed.

• The construction of the pixel array and the event-based
signal processing facilitates a very high temporal reso-
lution of up to 10ns.

• The logarithmic measurement of the photo current
yields to a high dynamic range, therefore the sensor
is suitable for fast transient light conditions.

The silicon retina research goes back in the 1980s, where
the first integration of a silicon retina on a single chip was
done by Mead and Mahowald [19] in 1988. This model dif-
fers in its function from conventional camera sensors and
imitates basic steps of the human visual system. In 1989
Mahowald and Mead introduced the term Silicon Retina and
presented an implementation of a retina sensor based on sil-
icon in [18] and [16]. Different photo-detector technolo-
gies and data encoding methodologies have been developed
since this time, ranging from simple light to variable im-
pulse rate transformation [7], time-to-first-spike encoding
(TFS) [30], motion sensing and computation systems [2],
silicon retinas sensing spatial contrast by doing more on-
chip signal processing [6], and a model for a mammalian
retina [32, 33]. These sensor technologies have two at-
tributes in common: the read-out of the information is initi-
ated by the pixel itself, and they use an address-event repre-
sentation (AER) protocol [28, 16] for transmitting the event

data from the sensor to the subsequent processing system.
The work of Boahen [3] presented an implementation of the
AER protocol for a point-to-point communication between
neuromorphic chips.

The silicon retina sensor considered in this work (called
ATIS, Asynchronous, Time-based Image Sensor) has a spa-
tial resolution of 304×240 pixels, a temporal resolution of
up to 10ns, and a dynamic range of 143dB. Details about
the sensor and its characteristics can be found in the work
of Posch et al. [21, 22]. For hardware consideration and
evaluation a 128×128 sensor is considered as well, which
is presented in the work of Lichtsteiner et al. [14, 15]. For
generating events whenever the illumination of the observed
scene changes, the silicon retina sensor uses an illumination
change detector circuit. An event is defined as e(p, t) [23],
where p = (x, y)T is the spatial location of the pixel which
fires the event, and t is the time of occurrence given in the
units of timestamps. One timestamp corresponds to the tem-
poral resolution of the sensor (1 timestamp , 10ns, in the
case of the ATIS). Due to the slow motion of the objects in
our test cases, we use a temporal resolution of 100µs for
one timestamp.

Depending on the polarity of the change of illumination
I over a period of time ∆t, an event can either be positive
(on-event) or negative (off-event):

e(p, t) =

{
+1 I(p, t)− I(p, t−∆t) > ∆I

−1 I(p, t)− I(p, t−∆t) < −∆I
, (1)

with the adjustable on- and off-threshold ∆I .
Especially the asynchronous behavior of the pixels is dif-

ficult to handle, because edges and contours build up over
a period of time, where not all pixels of an edge are simul-
taneously active. We chose stereo vision as application for
this work because matching sparse input data in real-time is
a challenging task. For using the events with stereo match-
ing algorithms the importance of the timestamps and the
time period considered for the matching process need to
be explained, because this parameters depend on the dy-
namics of the scene. Generally, static parts of the scene,
e.g. non-moving objects, are not recognized by the sensor
and therefore completely suppressed. In Figure 1(a) the
intensity image of a non-moving person captured from a
monochrome camera is shown. Figure 1(b) shows the same
non-moving person captured by the silicon retina camera,
where off-events are white and on-events are black. The
pixels in gray represent pixels, where no event information
was received from the silicon retina camera, e.g. stationary
background. Because the person is not moving, the contour
of the person is not visible and only very few events rep-
resenting noise are received from the sensor. In contrast,
Figure 1(c) shows the intensity image of the same person,
but walking this time. The person observed with the silicon
retina induces the event generation behavior of such sensor.
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a b c d e f g h
Figure 1. Silicon retina sensor in comparison to a conventional monochrome sensor. White pixels (off-events), Black pixels (on-events),
Gray pixels (no events). (a) Person without movement in front of monochrome sensor, (b) silicon retina output without movement, (c)
person walking in front of monochrome sensor, (d)-(h) silicon retina data from the walking person with collected events over a time period
of 5ms, 10ms, 20ms, 40ms and 60ms.

The high temporal resolution of the sensor results in quite
incomplete contours (Figure 1(d)) even with a collection of
events over a period of time of 50 (5ms) timestamps. The
object’s shape gets more complete when more events of sev-
eral timestamps are collected before they are converted into
an image. Figure 1(e-h) show the events collected within
a time period of 100 (10ms), 200 (20ms), 400 (40ms), and
600 (60ms) timestamps before visualizing them in an im-
age. The time period should be chosen to get complete ob-
ject contours as shown in Figure 1(f), but without blurred
object edges as illustrated in Figure 1(h). This means the
time period (time history) is not a fixed parameter, because
it depends on the scene dynamics where the speed of the
objects within the scene is very important.

3. Related Work
Different approaches and methods have been developed

over years to solve the correspondence problem in stereo
matching algorithms. In classical stereo vision the ap-
proaches can be subdivided in area-based and feature-
based matching methods. Area-based methods correlate
patches to find the best corresponding match based on simi-
larity measures in contrast to feature-based techniques [26],
where features are extracted and used for the matching pro-
cess. Another way is using a local transform, where inten-
sity relations between the actual pixel and the pixels in a cer-
tain window are considered before a correlation is applied.
Such transforms are the rank transform and census trans-
form, which are introduced in the work of Zabih and Wood-
fill [31]. A general summary and performance evaluation of
area-based stereo matching algorithms is presented in the
work of Brown et al. [4] and Scharstein and Szeliski [24].

Stereo matching for neuromorphic sensors started with
the development of the silicon retina sensors, and in 1989
Mahowald and Delbrück [17] presented a stereo match-
ing approach applied on event-based data using static and

dynamic image features. Schraml et al. [25] evaluated in
their work an area-based approach with different image dis-
tance functions. A comparison between area-based tech-
niques and a feature-based center matching algorithm was
evaluated 2009 in the work of Kogler et al. [13]. One
year later Kogler et al. [11] presented an algorithm using
weighted time differences as a correlation criterion for solv-
ing the correspondence problem. In 2011 Kogler et al. [12]
proposed an event-image matching algorithm based on
a local transform. The work of Benosman et al. [1],
shows the correspondence search using coactivation sets
and Rogsiter et al. [23] proposed in 2012 an event-based
matching using the spatial distance to epipolar lines as a
matching criteria. Another event-based stereo matching
approach is presented in the work of Carneiro et al. [5]
which uses multiple camera views to increase the accu-
racy of the matching output. Recently, in the work of Pi-
atkowska et al. [20], a cooperative approach was presented,
where a positive (excitatory) feedback from matches within
the same disparity and a negative (inhibitory) feedback from
matches of competing disparity planes are considered for
calculating the final matching results.

All these approaches, either frame-based or event-based,
use the sparse silicon retina data with its dynamics and
high temporal resolution to solve the correspondence prob-
lem. These calculations are mainly done on desktop plat-
forms, and therefore have no capabilities for processing
the sparse silicon retina output in real-time. In 2008 Shi-
monomura et al. [27] proposed a neural network using a
disparity energy model to emulate the stereo matching in
the visual cortex (V1), which was implemented on a FPGA
platform. An area-based SAD algorithm was implemented
from Eibensteiner et al. [8] in hardware with the goal to
evaluate the performance of the events to image conversion
necessary for executing frame-based stereo matching algo-
rithms. The frame rate of this systems depends mainly on
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the framing duration used for gathering incoming events
to an image. Using a frameing period of 1ms, a frame
rate of 820fps could be achieved. The approach in the
work of Kogler et al. [11], which is based on time correla-
tion was implemented on a DSP as proposed by Sulzbach-
ner et al. [29]. This approach was redesigned and adapted
for a realization on an FPGA by Eibensteiner et al. [9].
They proposed an algorithmic concept, but no implemen-
tation was outlined.

In our work we present an approach implementing the
stereo matching algorithm in hardware, such as FPGA plat-
forms, facilitating a real-time computation of depth maps
based on event-driven silicon retina sensors. To do this we
introduce an effective time-based distance measure based
on a logarithmic weighting function which can be easily
computed and gives promising results. Furthermore, by
using segmentation to isolate active image areas, the real-
time capabilities of the implementation are increased sig-
nificantly.

4. Event-based Stereo Matching Algorithm
Basis of the implementation of the stereo vision core in

hardware is the algorithmic concept outlined in [9]. Due
to the low density of information, a retina delivers only on-
and off-events, so the polarity and the time of occurrence of
an event are used as major matching criterion. Thus, as con-
sequence of the asynchronous behavior, concerning the data
delivery, for the correspondence search not only the current
timestamp is considered, but also a predefined history. As
Eibensteiner et al. proposed in [9], here also a logarithmic
weighting function for calculating the matching probability
is used.

As a novelty, the image plane is segmented into blocks
of a predefined size m × n, e.g. for this work we used seg-
ments with a size of 16×16 pixels, and the correspondence
search is done only for image fields with a certain activity
and not for each pixel of the whole image. The benefit of
this approach is twofold: The stereo matching is done only
for regions of interests, where events occurred respectively,
combined with the advantages of significantly minimizing
memory accesses and an efficient parallel memory architec-
ture because for each segment a separate memory is used.
Both lead to a faster matching process.

The event-based algorithm is briefly shown in Algo-
rithm 1. First, new events from the left l and the right r
sensor are written to an array of image memories Bhis ∈
Rc×b×m×n recognizing a history this, where c denotes the
available channels (l or r), and b defines the amount of seg-
ments and m and n specify the dimensions of the segments.

Bhis[g][k][i, j] = e(p, t) (2)
∀i ∈ {0, . . . ,m− 1} ∧ j ∈ {0, . . . , n− 1}

∧k ∈ {0, . . . , b− 1} ∧ g ∈ {l, r} ∧ t > tcur − this,

where g defines the channel (left or right), k is the segment
number, i and j are the coordinates within a segment, tcur
is the current time, and this the recognized history. The
position p is mapped onto entries in Bhis according to the
rule

p 7→ k, i, j := {i = x mod m, j = y mod n, (3)

k = b x
m
c+ b y

n
c · bcw

m
c},

where cw denotes the width of the sensor array in pixels.
Furthermore, the functions used in Algorithm 1 work on

segment level which leads to

Bseghis(g, k) = Bhis(g, k, [0 : m− 1], [0 : n− 1]). (4)

Old events are overwritten by new ones if they are at
the same spatial location and events which are older than
this are deleted. Subsequently, a segment queue q ∈ Rb

is calculated by counting the events within the segments in
the left image memories. Since the left sensor is used as
reference for the depth map, a segment queue for the right
channel must not be determined because the required seg-
ments for the consistency check results form the left seg-
ments. The amount of events determines not only the order
for the matching process, therefore the queue is sorted de-
scending, but also can be used for noise filtering by reject-
ing all segments from the queue which are below a certain
threshold. After this, the stereo matching and the consis-
tency check are done, and finally the resulting disparity map
Dcc is returned.

4.1. Hardware Realization

The hardware implementation of this algorithm is de-
picted in the block diagram in Figure 2. In order to achieve

Algorithm 1 Event-based Stereo Matching Algorithm
Require: Two retinas Rl, Rr

Require: rectified event streams El and Er

for all events el(p, t) in El do
Build history by
Bseghis(k, l) = merge(Bseghis(k, l), el(p, t));
Determine segment queue by
q = count(Bseghis([0 : k − 1], l));
Prioritize queue by sorting qs = sort desc(q);

end for
Build history for right event stream
Bseghis(k, r) = merge(Bseghis(k, r), er(p, t));
for all segments si in qs do

Compute disparities according to
D = match(Bseghis(si, l), Bseghis([0 : k − 1], r);

end for
Do consistency check Dcc = check(D);
return Dcc
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Figure 2. Block diagram of the hardware architecture of the event-based stereo vision core, coupled with dual port memories and a AHB
interfaces to a SoC. The direction of the arrows shows the data flow.

a high processing speed and a high throughput, parallel
processing, pipelining mechanisms, and efficient memory
architectures must be used. Similar to the approach of
Eibensteiner et al. [9], the algorithm is divided into: read
and write interface, forward rectification unit, prioritization
and scheduling unit where the segment queue is calculated,
memory controller and a unit managing the history, match-
ing pipeline and consistency check units. In the current im-
plementation only internal on-chip memories of the FPGA
are used, resulting in optimal memory access patterns and a
very high memory bandwidth. By the standard AHB inter-
face and the dual port memories, the core can be embedded
into a SoC.

4.1.1 Segment Management

As a novelty, after the rectification step incoming events are
segmented by calculating the segment number and the ad-
dress within the segment from the pixel’s coordinates which
fires the event. Figure 3 shows the segmentation of the im-
age plane using a block size of 16× 16 pixels and a resolu-
tion of 128× 128 pixels.

0 71 2

6356

max

max

max

Figure 3. Segmentation of an image plane with a resolution of
128 × 128 pixels, using a block size of 16 × 16 pixels. Priori-
tization is done in two steps: search highest row counter, and from
these the highest count value is computed.

In addition, for each segment a counter exists, which is
incremented if a new event is stored into the corresponding
memory block. After all events of the current timestamp
have been rectified, too old events are deleted by the unit
manage history. The unit processes always two segments
at the same time, one from the left image and the corre-

sponding segment from the right image. After updating all
events, the counter values for the segments are decremented
accordingly. As indicated in Figure 2, this unit can exist
more than once, although each unit works on different ar-
eas. How many units are needed depends on the history
length and amount of segments.

After that, the prioritization is carried out in two steps as
shown in Figure 3. First, the highest counter of each row
is determined, this is done for all rows in parallel, and in
the second step from these again the highest count value is
searched which schedules the first segment for the matching
process.

As depicted in Figure 4, in order to do the consistence
check, not only disparities for the reference segment in the
left image must be calculated, but also the disparities for
segments from the right image.

ROI Left Image ROI Right Image

1 12345

Figure 4. Segments which must be processed in order to calcu-
late disparities for one segment in the left image. In the case of a
disparity range of 50 and a block size of 16 × 16 pixels, the dis-
parities of 6 segments (1 in the left and 5 in the right image) must
be computed, hence the consistency check can be done.

The memory controller commands the access to the seg-
ments, using a three port memory architecture with one
write and two read channels. In order to take advantage
of the flexible embedded on-chip memories and to increase
the bandwidth, per access 4 events are processed in parallel.
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4.1.2 Matching Process and Consistency Check

The matching pipeline is designed as a 3-stage pipeline and
works on segment level, this means in each stage another
segment is processed. In the current implementation, two
matching pipelines are used, processing up to 6 segments
simultaneously. The pipeline composes of the stages load
L, weight W, and aggregate A. The execution is as follows:
first the data of a whole segment line from the left image
and the corresponding disparity range of the right image is
loaded. In the second step, the events are weighted together
with

w(teval) =
⌈
(10this−1−∆t)

1
this

⌋
·
⌈
(10teval−1)

1
this

⌋
, (5)

where teval is the timestamp of the currently processed
event, this is the length of the history considered in the
matching process, and ∆t is the difference of the timestamp
of the evaluated event and the timestamp of the correspond-
ing event from the data stream of the other image sensor.
For performance reasons, the weights are not calculated at
run-time but stored in a lookup table.

Since an area based matching technique is used, the
weights are aggregated and the maximum weight in the dis-
parity range, which actually defines the disparity, is deter-
mined. Thus, a stage works on one segment line, the height
of the matching window defines how many iterations are
needed before the first valid results are calculated.

As soon as results from all segments in the matching
pipeline are available, the consistency check is done line
by line. Thus, the unit increases the latency only by the cal-
culation time of one line which is minimal compared with
the overall time.

5. Experimental Results
The introduced implementation was evaluated with two

real world indoor scenarios, where the sensor was static and
observes a dynamic scene. In Figure 5 the achieved depth
maps of both data sets, a rotating disc and moving persons,
are shown.

As evaluation metric the average distance error in depth,
calculated from a comparison with ground truth data is
used. For the latter we use a different stereo sensor con-
sisting of monochrome cameras which achieves an accu-
racy of 3% at a distance of 3.4m. More details about the
ground truth generation and the registration of the depth re-
sults from both stereo sensors onto each other are presented
in the work of Kogler et al. [10]. Figure 6 shows the aver-
age distance error achieved by the event-based stereo vision
algorithm (triangles) compared to an area-based SAD algo-
rithm (squares) which is explained in [12]. This approach
uses the events and generates grayscale images used for the
matching with the SAD algorithm. In our experiments for
both algorithms we use a correlation window size of 5× 5,

Testset BTestset A

Figure 5. Depth maps of all data sets calculated by the event-driven
stereo vision algorithm. Testset A a rotating disk in1.5m, and
testset B two persons walking in 2.5m and 3.5m.

9 × 9, and 15 × 15. The history length varies between 50,
100, and 150 for test set A, and between 200, 250, and 300
for test set B.

5 9 15 5 9 15 5 9 15 5 9 15 5 9 15 5 9 15
0

0.2

0.4

0.6

50 100 150 200 250 300
Disc Persons

[m] Average Distance Error

SAD
Time

Figure 6. Average distance errors of both test data sets achieved
with the time-based approach and compared with the area-based
SAD algorithm.

In general, the results show that larger window sizes and
longer histories tend to lead to a smaller average distance
error. In case of the rotating disc many events are spiking
in a small neighborhood, and sharp contours blur to bigger
edges resulting in more mismatches of the time-based al-
gorithm because of repeating event sequences. The SAD
algorithm overcomes this problem with the generation of
grayscale images, where many events are represented by
gray values, which are better for the matching process due
to the higher information density. Considering the results
of using the test set with the two persons, short histories
do not generate enough gray value information for the cor-
respondence search, but the time-based approach achieves
good matching results because of only the on- and off-event
data and the timestamps are correlated. With increasing his-
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tory length the event data is better summarized during the
grayscale conversion process and, thus, the SAD algorithm
achieves a better average distance error.

Despite the low density of information of the event data,
the hardware implementation almost achieve the quality of
the SAD algorithm using grayscale images for the matching
process. However, the generation of the grayscale image is
very memory-intensive because all events occurred within
the considered history must be stored. Due to the efficient
memory utilization, only a fraction of the resources are re-
quired for the hardware implementation. Own representa-
tive evaluations have proved memory savings by a factor of
about 7 for the management event history.

The impact of larger correlation windows is lower for the
time-based approach as for the SAD algorithm. This can
mainly be attributed to the fact that the time-based imple-
mentation only uses the event data for the matching process
and SAD algorithm also considers the background informa-
tion.

Table 1. Cycle count of the individual units of the stereo vision
core for the calculation of one segment. In the case is an image
plane of 128 × 128 pixels, a segment size of 16 × 16, a window
size of 5× 5, and disparity range of 36 assumed

Uint Cycles
Manage History 66

Prioritization and scheduling 18
Matching Pipeline 1268
Consistency Check 18∑

1370

The performance of the hardware implementation in
terms of execution time and data throughput mainly de-
pends on the segment size, the size of the correlation win-
dow, and the disparity range. Table 1 shows the cycle count
needed to calculate disparities for one segment. In this ex-
ample we assume an image plane of 128× 128 pixels, seg-
ment size of 16 × 16, a window size of 5 × 5, and dispar-
ity range of 36. Using a clock frequency of 100MHz, this
leads to a calculation time of 13.7µs. Even in the worst-
case scenario where all 64 segments must be calculated a
frame rate of 1140fps can be achieved, referring the match-
ing process. In real world scenarios the frame rate will be
even higher, because changes in all segments at the same
time are highly improbable and so less segments must be
processed per calculation step, or timestamp, respectively.
In comparison with the implementation outlined in [8] the
event-driven approach works 28% faster.

The latency caused by the rectification unit depends on
the event rate. In test case A the average event rate was
about 4 events per timestamp per channel and in the case
of the moving persons about 10 events per timestamp per
channel. So in those cases, the latency will be increased

only by 22 cycles or 28 cycles, respectively, which hardly
influences the frame rate of the stereo vision core.

The distance measure used for the time-based approach
can more easily be turned into a parallel hardware archi-
tecture and in addition the segmentation further increases
the real-time capabilities which leads to a short process-
ing time. The direct processing of the event data enables
a resource-saving realization which obtains almost a small
distance error as the SAD algorithm.

6. Conclusion
In this work we presented an event-driven stereo vision

algorithm for a silicon retina stereo camera system imple-
mented in hardware. The advantages of the novel approach
using segmentation and pipelined parallel event processing
are twofold: first the amount of memory accesses is sig-
nificantly reduced because only changed segments are pro-
cessed, and that, second, the efficient hardware architec-
ture leads to a very high frame rate of up to of 1140fps
at 100MHz. In addition, the results show that despite the
low information density and the simple matching criterion
almost the same accuracy can be achieved as the SAD al-
gorithm but at a significantly higher processing speed. Fur-
thermore, the advantages of a FPGA are exploited by us-
ing parallel architectures and optimized memory access pat-
terns and due to the standard on-chip bus interface the ex-
tensibility and reusability of the stereo vision core is abso-
lutely enhanced.

Future work may include the evaluation of the restriction
of the search space because by knowing which segments
are active the required amount of segments for the match-
ing process can be reduced. Another possibility to increase
the frame rate is a further parallelization of the matching
process by using more pipelines.
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