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We describe a robust method to estimate egomotion in

highly dynamic environments. Our application is a head

mounted stereo system designed to help the visually im-

paired navigate. Instead of computing egomotion from 3D

point correspondences in consecutive frames, we propose to

find the ground plane, then decompose the 6DoF egomotion

into the motion of the ground plane, and a planar motion

on the ground plane. The ground plane is estimated at each

frame by analysis of the disparity array. Next, we estimate

the normal to the ground plane. This is done either from the

visual data, or from the IMU reading. We evaluate the results

on both synthetic and real scenes, and compare the results

of the direct, 6 DoF estimate with our plane-based approach,

with and without the IMU. We conclude that the egomotion

estimation using this new approach produces significantly

better results, both in simulation and on real data sets.
Keywords-visually impaired; visual odometry; dynamic en-

vironment;

I. INTRODUCTION

The term “visual impairment” describes any kind of vision

loss which can’t be cured by standard glasses or medical

treatment. According to the statistics from World Health

Organization (WHO) [26], there are 285 million people

currently suffering from visually impaired worldwide. Visual

impairment leads to loss of independence in performing

several routine and life-enabling tasks. For instance, indoor

and outdoor mobility continues to be a major challenge

for the visually impaired such as detecting and avoidance

of obstacle. With advances technology, Electronic Travel

Aids (ETA) [8] are sophisticated electronic displacement

aids designed to improve mobility for the visually impaired.

For instance, GPS-based ETA solution was proposed such

as the latest blind map [34]. However, GPS reception may

be unreliable or not available in the presence of trees or

large buildings. Therefore, vision-based ETA solutions are

proposed to bridge over GPS outages with different imaging

sensors, such as monocular [25], RGBD [22] and stereo

cameras [27], [28]. Some of them show promising results

but are mostly restricted to static environments.

Here, we present a real-time visual odometry algorithm

using wearable stereo cameras as shown in Figure 1a to

(a) (b)

Figure 1: (a) Wearable stereo camera (b) Crowded scenes
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Figure 2: Block diagram of our approach

facilitate human navigation for the visually impaired even

in dynamic outdoor environments such as busy urban area.

Many stereo-based visual odometry methods have been

proposed and benchmarked with the automobile dataset in

KITT Vision Benchmark Suite [11]. However egomotion es-
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timation from a walking user (first person vision) is radically

different from that of a moving vehicle. The motion of the

head mounted camera on a walking person is significantly

more complex than that of a car-mounted camera: the former

is a combination of 6-Dof head motion and body motion,

the latter is dominated only by the forward velocity and yaw

angle. In addition, visually impaired applications require

a higher rate of visual odometry update. Hence the dead-

reckoning error accumulated over time may grow faster

than the moving speed of the camera. Furthermore wearable

camera has trade-off for small form factor from the image

quality and the length of stereo baseline.

In order to overcome the restriction of the static en-

vironment assumption made by standard approaches, we

propose to detect the ground plane first, then compute

the motion of the ground plane followed by solving the

motion on the plane as illustrated in Figure 2. This approach

is very different from standard methods which make use

of all 3D points from the scene. The final output is the

relative camera motion (or egomotion) in six-degrees-of-

freedom (6DoF) from the previous to current frame which

can be used by other high level navigation tasks such as

obstacle avoidance, path planning, visual SLAM [1] and

self-localization frameworks [5].

Our contributions are:

• an effective pipeline to compute real-time egomotion

in cluttered dynamic environments as shown in Figure

1b. This is accomplished by decomposing 6 DoF ego-

motion using the ground plane.

• we present two robust methods to estimate the ground

plane.

• we perform our experiments based on real datasets

collected in different areas.

The structure of the rest of this paper is as follows. A

summary of the related works is given in Section II. Section

III gives an overview of our method. The issue and our

method in ground plane detection are discussed in Section

IV-A. The two different methods in plane normal estimation

are presented in Section IV-B and IV-C. The egomotion

algorithm is described in Section V. Experiment results are

demonstrated in Section VI. Finally, the conclusion of the

study is summarized in Section VII.

II. RELATED WORK

Many stereo-based visual odometry works have been

published recently. The open-source Libviso2 [12] computes

visual odometry of the vehicle by minimizing the sum

of reprojection errors over four views obtained from two

consecutive stereo image pairs. To handle dynamic scene,

the wheeled robot in [30] computes egomotion only from

the points sampled on ground region. All these methods

rely on RANSAC [10] to handle outliers induced by object

movements and they will work as long as outliers are

a minority of observations. Beside detect-and-reject, the

position and velocity of moving objects can be estimated

by Extended Kalman filters (EKF) [2]. Some projects make

use of the prior knowledge of the environment. The method

in [3] recovers structure-from-motion from two views of

a piecewise planar scene. [24] computes relative camera

motion with weak Manhattan world assumption and IMU

measurements.

Instead of using stereo, PTAM [19] is a monocular

algorithm which estimates camera pose from localization.

While PTAM produces good egomotion in small-scale en-

vironment, we found that the system cannot detect good

keyframes robustly and fails to expand the map continuously

in larger outdoor environments.

Recently some visual odometry works have been proposed

to make use of the ground surface. The system in [18] uses

ground plane to resolve the scale of the visual odometry by

using prior knowledge of fixed camera height and depression

angle. The flying robot in [20] uses the geometry of the

ground plane to speed up bundle adjustment. Some systems

[6], [7], [23], [17] exploit the ground plane constraint in

visual odometry estimation but they are all designed for

automobile platforms.

In our application, we use wearable stereo cameras with a

baseline as short as 6cm while the others use longer baseline

ranging from 12cm to 70cm. In addition, we captured our

datasets by walking through different environments similar

to [2], so there is no wheel odometry available and our

system must be robust to any motion-blur caused by body

motion, whereas data acquired by wheeled robots is rela-

tively stable.

As there are many ongoing research works on visual

navigation for the blind [22], [28], none of them have been

tested in crowded urban areas. Experimental results show

that our approach is significantly better in computing con-

tinuous visual odometry in dynamic environments, compared

to the standard approach.

Although our work is similar to [30] which suggests to

estimate visual odometry of the wheeled robot by tracking

feature points on the ground, our proposed algorithm is

designed to work with smaller stereo camera worn at the

eye level for adults. The slant distance between our stereo

camera and the ground plane is longer. Hence the texture of

the ground surface become less prominent and the ground

feature points are more likely to be occluded by pedestrians

in crowded environments.

III. OVERVIEW OF THE METHOD

The conventional direct stereo odometry methods first

compute the 3D coordinates of the feature point by means

of standard triangulation equations. Camera motion is com-

puted by minimizing the sum of reprojection errors of

3D points found in entire scene. Outliers are detected by

RANSAC during optimization. However, inconsistent mo-

tion vectors (or outliers) are difficult to detect and reject
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from dynamic environments that are rich in moving objects.

Hence existing visual odometry algorithms fail to produce

reliable camera estimation for the rest of the navigation

modules in the pipeline such as obstacle avoidance and

planning.

To overcome this, we make use of the global motion field

property of the ground planar surface and decompose the 6

DoF egomotion into 1) motion of the ground plane and 2)

motion on the plane. Figure 2 illustrates the key components

of this approach. The pose of the ground plane must be

inferred in order to determine a unique camera pose from

the optical flow of coplanar 3D points. To accomplish this,

ground regions are detected in every frame from the disparity

image. We evaluate two approaches to estimate the normal

of the ground plane: one from the stereo measurements

and the other from the IMU (Inertial measurement unit)

measurements. We then perform robust estimation of the

egomotion as a composition of these two motions.

IV. GROUND PLANE MODEL ESTIMATION

In this section, we detect and model the ground plane, Π,

with the standard 3D plane equation:

Π : AX +BY + CZ +D = 0 (1)

where n = [A,B,C]T is the normal unity vector of the

plane and D denotes the distance from the camera origin

to the plane. We assume the Z axis of the world coordinate

system is aligned with the camera optical axis, the X and Y
axes are aligned with the image axes x and y, focal length

f is known.

A. Ground plane detection for short baseline stereo

The standard V-disparity algorithm [15] works very well

in detecting the road regions with stereo camera. We mod-

ified the algorithm for our wearable stereo camera to deal

with different head movements and crowded scenes. Given

a calibrated head mounted stereo camera with depression

angle, θ, to the horizontal ground plane and zero roll angle,

the work in [15] shows that the disparity, d, of the ground

plane surface is linearly related to the y-coordinate on the

image plane by hd = b(y − py)cosθ + fsinθ where f is

focal length, b is base line, py is the y-coordinate of the

principle point, h is the positive height of the camera above

the ground plane.

We compute a dense disparity image using the Semi-

Global Block Matching (SGBM) method [13] and convert

it into a V-Disparity image [15] as input to the ground

detection algorithm. Image regions corresponding to road

surface are located by fitting a straight line in the V-disparity

domain using Hough transform [14].

Due to the range limitation of short baseline stereo cam-

era, the width of the V-disparity map is very narrow. Hence

the diagonal line corresponding to the horizontal plane may

be almost vertical and Hough transform may detect both as

one single line.

We made two modifications to the V-Disparity method

in [21] to extract the diagonal line. After thresholding the

V-Disparity image, we first apply the thin and clean morpho-

logical operations to clean up the V-Disparity domain. Sec-

ond, instead of detecting the diagonal line, we remove those

regions in V-Disparity that do not correspond to horizontal

plane. This is done by summing up the binary intensity of

each column in V-Disparity domain, the column with highest

sum corresponds to the vertical line. All columns of the V-

Disparity image on the left of the vertical line are set to zero

because nothing should appear at a distance further than that

disparity value. We also remove the upper portion of the

V-Disparity map spanned by the vertical line. The diagonal

line can then be extracted quickly by Hough transform in the

left over region. If no vertical line is detected, we proceed

to diagonal line extraction with Hough transform over the

entire V-Disparity image.

Finally we check the largest connected region in the

disparity map that satisfies the extracted line. If the largest

region covers at least 10% of the image, it is used as

road mask to estimate the ground plane model in the next

step. Otherwise, our algorithm assumes the camera moving

in constant velocity and predicts the camera motion using

Kalman filter which will be described in Section V-A. An

example road mask is highlighted in yellow in Figure 3.

Figure 3: The output road mask is highlighted in yellow

B. Ground plane normal estimation from stereo

We first compute the 3D coordinates of all the points on

the ground by means of standard stereo geometry equations.

The next task is to estimate [A,B,C,D] in (1) by fitting a

linear model that point cloud. Since we have the dense dis-

parity data of the road region, plane fitting is accomplished

by weighted least square fitting [31] due to its speed and low

computational complexity. Each 3D point is weighted by the

sigmoid function w(d) = (1 + e−(d−α))−1 of the disparity

d with the tuning parameter α=20 and more weight, w, is

assigned to points nearer to the camera.

C. Ground plane normal estimation from IMU

Alternatively, the plane normal nnn = [A,B,C]T can be

approximated by projecting the up vector of the IMU, nnnup =
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[0,−1, 0]T , using nnn = Rimunnnup where Rimu ∈ SO(3) is the

rotation matrix form by pitch and roll angle measurements.

V. EGOMOTION ESTIMATION

A. Classical egomotion estimation directly from all points

If the camera is moving in space with translational vector

ttt = [tx, ty, tz]
T and angular velocity ωωω = [ωx, ωy, ωz]

T ,

standard egomotion algorithm decomposes the 6 DoF cam-

era motion into F ck
ck−1

= F ck
Ik
F Ik
Ik−1

F
Ik−1
ck−1 where F

Ik−1
ck−1 is

the camera to image plane transformation at previous frame

k − 1, F Ik
Ik−1

is the transformation from previous frame to

current frame which is directly measured by optical flow, and

F ck
Ik

is the image plane to camera transformation at current

frame.

By assuming pin-hole camera model with zero skew,

the transformations (F
Ik−1
ck−1 , F ck

Ik
) relate 3D points PPP =

[X,Y, Z]T to image coordinates ppp = [u, v, 1]T by ppp = f PPP
Z

where f is focal length. Note that these two matrices are

not global transformations in the presence of non-rigid

structure because Z depends on disparity. Therefore in case

of dynamic scene, standard visual odometry may converge

to the wrong solution of F ck
ck−1

when minimizing the sum

of reprojection errors, E, over all 3D points in (2) 1.

E = arg min
{ωωω,ttt}

N∑

i=1

‖xi − ρ(XXXi;ωωω, ttt)‖2 (2)

Here xi denotes the feature locations in the current

left images. ρ(XXXi;ωωω, ttt) computes the homogeneous pixel

coordinates uuui of 3D point XXXi = [X,Y, Z]Ti in the left

image plane using uuui = KKK(RRRXXXi + ttt) with rotation matrix

RRR ∈ SO(3) is formed by ωωω = [ωx, ωy, ωz]
T and translation

vector ttt = [tx, ty, tz]
T , KKK denotes the projection matrix.

To handle dynamic environment, the visual odometry [30]

solves the cost function (2) by sampling optical flow only

on the ground instead of entire scene. In other words, 6 DoF

camera motion is decomposed into F ck
ck−1

= F ck
gk
F gk
gk−1

F
gk−1
ck−1

where (F ck
gk
, F

gk−1
ck−1 ) are the transformations between the

camera and image regions corresponding to the ground

at time k and k − 1 respectively, F gk
gk−1

is measured by

optical flow found in ground regions. (F ck
gk
, F

gk−1
ck−1 ) are

global transformations because the ground is a rigid struc-

ture. However computing 3D motion directly from motion

estimates produced by coplanar points may lead to two

solutions. This is because same planar motion field can be

induced by two different planes undergoing two different 3D

motions [33]. We can determine unique solution by using the

ground plane structure (computed in either Section IV-B or

IV-C) as discussed below.

1Libviso2 improves the accuracy by minimizing the cost function (2)
over four views obtained from two consecutive stereo image pairs.

B. Egomotion estimation from ground plane
We assume the camera is moving in space with trans-

lational vector ttt and angular velocity ωωω while observing

a planar surface, Π in (1). Let PPP be a point on Π, the

equation of Π is nnnTPPP = D, where nnn = [nx, ny, nz]
T is

the unit vector normal to Π, and D is the distance between

Π and the center of projection. We can further decompose

(F ck
gk
, F

gk−1
ck−1 ) into (F ck

pk
F pk
gk

, F
gk−1
pk−1 F

pk−1
ck−1 ). Hence the 6 DoF

egomotion becomes F ck
ck−1

= F ck
pk
F pk
gk

F gk
gk−1

F
gk−1
pk−1 F

pk−1
ck−1

where F ck
pk

and F
pk−1
ck−1 are transformation between the cam-

era and ground plane, which is a function of (nnn,D).
Given the parameters of the ground plane, (F ck

gk
, F

gk−1
ck−1 )

become global transformations because the depth Z of the

ground pixel (u, v) is a function of global parameters (nnn,D):
Z = (Df)/(nxu+ nyv + nzf)

By taking the ground plane geometry (nnn,D), a set of

pixels GGG within the road mask estimated in previous section,

a set of tracked ground feature points xj = (u, v, 1)Tj for

j ∈GGG in current left image, and their corresponding feature

points x′
j = (u′, v′, 1)Tj and disparity d′j in previous left

image, we estimate the vector ωωω and ttt by minimizing the

sum of reprojection errors, E, over all points in the road

mask:

E = arg min
{ωωω,ttt}

∑

j∈GGG
‖xj − ρ(XXXj ;ωωω, ttt)‖2 (3)

where XXXj = [(u′ − px)b/d
′ (v′ − py)b/d

′ Z]T and b de-

notes the baseline. Hence the original visual odometry is

re-formulated as quadratic curve fitting problem.
We use Kanade Lucas Tomasi (KLT) feature tracker [4]

to select and track feature points between two consecutive

frames in the left camera. To improve speed and robustness,

the KLT tracker only processes the image regions within the

road mask. Although we also tested other feature match-

ing algorithms such as the feature matching algorithm in

Libviso2 [12] and FAST detector [29], we found that KLT

is more accurate in tracking the ground features for our

application. In addition blind people do not walk at high

speed, so the difference between consecutive frames can

be easily handled by the pyramidal implementation of KLT

tracker.
We derive the Jacobian matrix from (3) and iteratively

minimize it using Gauss-Newton optimization with respect

to the transformation parameters ωωω and ttt. RANSAC [10]

is used during optimization to improve the robustness of

motion estimation against outlier motion vectors. The pa-

rameters (ωωω, ttt) are first estimated for N trials based on m
randomly selected motion vector on the ground plane. We

choose the set parameters {ωωωi, ttti}Ni=1 from the trials with the

largest number of inliers and use all these inliers to compute

the final (ωωω, ttt). N is adjusted during the trials with the

standard RANSAC equation: N = log(1− p)/log(1− um)
where m=3, p=0.99 and u denotes the highest ratio of inliers

to the total number of motion vectors up to current trial.
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We also include the same Kalman Filter as in [12] to

smooth the egomotion output, as well as predict the camera

motion when not enough ground region features are detected

within the field of view.

VI. RESULTS

A. Sensors

We demonstrate our approach using image sequences cap-

tured by Vuzix2, a off-the-shelf wearable stereo camera with

IMU, while walking through different outdoor environments.

The stereo camera are mounted on a plastic sunglasses

frame, as shown in Figure 4. The stereo rig is not only

lightweight and comfortable to wear but also gives a natural

appearance to the visually impaired user when navigating

outdoor. The downside is that it is made up of two low

quality image sensors with a very short baseline of 6cm

(half of Bumblebee2).

Figure 4: The primary sensor of our system: Vuzix Wrap

920 AR with integrated IMU [9]

B. Implementation

We have implemented our algorithm in C++ and tested it

in desktop with quad i7 CPU core running at 3.4 GHz. The

resolution of input images is 320x240 pixels and the average

number of feature points being tracked is about 370.

C. Methods

For the rest of the experiments, we run our visual odome-

try algorithm with and without IMU and compare the output

trajectories with Libviso2 and Libfovis[16]. Libfovis is an-

other open source stereo-based visual odometry developed

for unmanned aerial vehicle.

When the IMU is not used, the ground plane normal

is measured by fitting plane to the 3D points found on

the ground (Section IV-B). When the IMU is used, the

ground plane normal is approximated from the roll and

pitch measurements using Section IV-C. Note that none

of the algorithms uses any form of bundle adjustment nor

loop-closure technique. Therefore, like all dead-reckoning

systems, our system output degrades with elapsed time

and distance travelled in all experiments. The accuracy

can be easily improved by incorporating other optimization

frameworks such as [32] or [27].

2http://www.vuzix.com/UKSITE/ar/products wrap920ar.html/

D. Data

Although there are common benchmarking datasets [11]

available for visual odometry, the data was captured by

stereo camera mounted on automobiles. Since the motion

of the head mounted camera on a walking person is sig-

nificantly different from the car-mounted camera. We argue

that meaningful comparison is to run all visual odometry

algorithms on our dataset, rather than running our software

on standard dataset. We will be happy to make the data

publicly available.

Our datasets consist of stereo image pairs captured at

30fps as well as IMU data which was logged at 100Hz.

GPS measurements are not accurate enough for ground truth

because our trajectories are surrounded by buildings and

trees. Therefore we extracted the ground truth trajectories

using Google Earth software. This is done manually by com-

paring the ground texture found in the recorded images with

the Google satellite map. We select anchored frames, which

are the left camera images having some distinctive ground

texture pattern visible, at regular interval along the path we

walked. We approximate the spots where the frames were

captured from Google Earth and use the corresponding UTM

coordinates (WGS84) as the ground truth camera location

for those frames. The height of all ground truth are set to

zero. The locations of anchored frames are shown as red dots

in three satellite maps. Rotational error cannot be evaluated

quantitatively as accurate orientation measurements are not

available. However the rotational error can be evaluated

qualitatively by comparing the shape of the output trajectory

with the ground truth path.

E. Evaluation Criteria

Since bundle adjustment is not used by any of the algo-

rithms in evaluation, we use a similar criteria described in

[11] to evaluate the accuracy of the estimated trajectory.

We compute the translational error between all possible

pairs of anchored frames and take the average of them. For-

mally, given anchored frames 1...M , the translational error,

Terr(i, j), between two anchored frames i and j is defined as

Terr(i, j) = ‖(pj − pi)− (p̂j − p̂i)‖2 where p̂, p ∈ R
3 are

the estimated camera location and the corresponding ground

truth location lookup from Google Earth respectively. We

normalized each translational error with the length of the

corresponding subpath. The average translational error for

entire trajectory with M anchor frames is defined as

Eave =
2

M(M − 1)

M−1∑

i=1

M∑

j=i+1

Terr(i, j)

‖pj − pi‖2
(4)

We assume the location of the first frame is known. The

first heading is obtained from compass but subsequence

camera orientations are computed by the visual odometry

algorithms.
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Algorithm/ LibFovis Libviso2 Ours Ours
Dataset (with IMU) (no IMU)

Cafeteria 66.31% 52.27% 10.38% 51.64%
Football 72.03% 68.69% 15.47% 29.60%
Shopping 64.71% 71.92% 18.91% 30.42%
Average Eave 67.68% 64.29% 14.92% 37.22%

Table I: Average translational error (Eave) for different

algorithms in different environments

The quantitative results are summarized in Table I. Our

proposed algorithm gives the lowest error in all three datasets

when IMU is used to estimate the ground plane. It also

gives better results with stereo camera alone comparing with

other state-of-the-art methods. Although Libviso2 works

great with the KITTI Vision Benchmark Suite, it suffers

from excessive accumulated odometry error when processing

at our walking data at 30 frames per sec (fps). It gives

more accurate results when we subsampled our dataset to

1 fps but this frame rate is too slow for our visual impaired

application. Our system alleviates the accumulated error by

improving the accuracy of depth measurement using (i) KLT

tracking, (ii) dense stereo disparity and (iii) depth correction

using the fitted ground plane model. The details of individual

dataset are given below. Video of experiment results is

avilable at http://youtu.be/0gcasjQpAcY.

F. Cafeteria Area

The first dataset was taken around a crowded cafeteria

area as indicated by the ground truth path in light blue in

Figure 5e. The route is about 218 meters. The environment

was crowded and there were people walking around in front

of our stereo camera except the last 50 meters of the route

but the images were overexposed as shown in Figure 5d.

Some snapshots along the route are shown in the thumb-

nails in Figure 5. The yellow curve in Figure 5e shows the

trajectory generated by our algorithm when IMU is used to

approximate ground plane normal. This trajectory is closest

to the ground truth comparing to Libviso2 and Libfovis. The

green curve is the output of our algorithm without IMU and

the ground plane was estimated using RANSAC 3D plane

fitting. The output trajectory is relatively straight between

corners until it drifted after the second turn (about 20m

after label C in Figure 5e) before entering a shaded corridor.

Figure 5f shows the average translational error of the four

algorithms for different subpath lengths. Our algorithm with

IMU (red curve) clearly gives lowest translational error with

different path length. However when IMU is not in used,

our algorithm only performed slightly better than Libviso2

on average as shown in the first row of Table I.

G. Football Match

The second dataset is the most challenging one, as it

was collected right after a football game. The route is

about 351 meters. As shown in the thumbnails in Figure

6, the environment was crowded with spectators leaving the

(a) (b) (c) (d)

(e) Ground truth and estimated trajecto-
ries
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Figure 5: Cafeteria area test result

stadium. Our camera moved in the direction opposite the

crowd in the first half of the route, and then followed the

crowd at the second half. The yellow curve in 6e clearly

shows that our visual odometry is the most insensitive to

the dynamic change in the environment when IMU is used.

When IMU is not used, the accuracy of the green trajectory

is degraded but does not drift as badly as the other two

algorithms. Although the green curve bends away from

the ground truth after the first U-turn due to accumulated

rotational error, the trajectory remain relatively straight until

the second U-turn. Our proposed algorithm maintain the

lowest translational error throughout the route as shown in

6f even though they gives large end-point error shown in the

satellite map.

H. Shopping Area
Figure 7 shows the dataset that we collected in a shopping

area. The route is about 268 meters. This dataset is less

crowded but the road is surrounded by buildings as shown

in the thumbnails and satellite image in Figure 7e. Due to

the sunlight was blocked by some buildings, parts of the

image sequence are overexposed (Figure 7c) and some are

underexposed (Figure 7d). The shape of the two trajectories

computed by our proposed algorithm with and without IMU

come the closest to the ground truth as shown in the yellow

and green curves in 7e. Figure 7f shows that our algorithm

gives the lowest average translation error with and without
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(a) (b) (c) (d)

(e) Ground truth and estimated trajecto-
ries
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Figure 6: Football match dataset

IMU in ground plane estimation. Note that the translation

error of Libviso2 exceeds 100%. This indicates that the

navigation errors accumulate much faster than the moving

speed of the camera.

VII. CONCLUSION

We have presented a new robust visual odometry method

that works with head-mounted wearable stereo camera. In

order to handle environments that are rich in moving objects,

our method computes egomotion only from the optical flow

observed on the ground plane. We described our robust

ground detection method for short baseline stereo. We also

presented two different approaches to estimate ground plane

normal. Experimental results show that our system outper-

forms existing visual odometry which relies on motion field

from the entire scene. Furthermore, by comparing the results

with and without IMU, estimating the ground plane normal

with IMU clearly improve the egomotion estimation. Thanks

to these encouraging results, we are performing experiments

with real patients at the Braille Institute’s Sight Center in Los

Angeles.
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