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Abstract—3D microstructures are important for material
scientists to analyze physical properties of materials. While
such microstructures are too small to be directly visible
to human vision, modern microscopic and serial-sectioning
techniques can provide their high-resolution 3D images in the
form of a sequence of 2D image slices. In this paper, we
propose an algorithm based on the Edge-Weighted Centroid
Voronoi Tessellation which uses propagation of the inter-slice
consistency constraint. It can segment a 3D superalloy image,
slice by slice, to obtain the underlying grain microstructures.
With the propagation of the consistency constraint, the pro-
posed method can automatically match grain segments between
slices. On each of the 2D image slices, stable structures
identified from the previous slice can be well-preserved, with
further refinement by clustering the pixels in terms of both
intensity and spatial information. We tested the proposed
algorithm on a 3D superalloy image consisting of 170 2D slices.
Performance is evaluated against manually annotated ground-
truth segmentation. The results show that the proposed method
outperforms several state-of-the-art 2D, 3D, and propagation-
based segmentation methods in terms of both segmentation
accuracy and running time.

Keywords-3D image segmentation, segmentation propaga-
tion, grain segmentation, centroidal Voronoi tessellation

I. INTRODUCTION

Superalloy materials have been widely used in both

commercial and military applications [14], [16] because of

their excellent tensile strength and resistance to creep under

high temperatures [21]. Such physical properties are mainly

determined by the underlying micro-structures of superalloy

samples, which are usually in the form of set of grains [14].

These grains are too small to be visible to human vision.

In practice, high-performance electron microscopy is usually

used to get the 2D surface image of the material sample [14].

To better identify the microstructures, various chemicals, like

acids, may be applied to the material surface to highlight

the grain boundaries. In addition, to achieve the underlying

3D grain structures, a serial-sectioning technique is usually

applied to unveil the internal structure of the material to the

microscopy [21]. Example image slices from a 2D serial

section of a 3D superalloy material sample are shown in the

first column of Figure 1 where each cell is a grain. In order to
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Figure 1. Microscopic grain images and segmentation. From left to right:
original image slices with ground-truth grain boundaries, segmentation
using a 2D method, segmentation using a 3D method, and segmentation
using the proposed algorithm, respectively.

reveal grain structures from such 2D image slices, material

scientists must manually annotate the grain boundaries on

each of the 2D slices, and then correspond 2D grains across

all the slices to reconstruct the 3D grain structure. This

manual annotation process is tedious, time-consuming, and

often prone to error, given a large number of grains and

serial-sectioned slices in a high-resolution 3D superalloy

image. This calls for efficient and effective automatic grain

segmentation, which not only captures the grain boundaries

accurately, but also completes quickly.

In principle, 2D image segmentation methods [1], [4],

[13], [15], [18], [6], [5] can automate this process. However,

these 2D methods usually perform segmentation on the

2D image slices without considering segmentation consis-

tency between slices, and this may make it very difficult

to correspond the 2D segments across slices for 3D re-

construction. The second column of Figure 1 shows 2D

segmentation results on three consecutive image slices using

the so-called edge-weighted centroidal Voronoi tessellation
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(EWCVT) algorithm [18]. Clearly many grains are over-

segmented/undersegmented in these slices and it is difficult

to correspond them between slices. Another approach is to

directly apply 3D image segmentation methods to the whole

volume [10], [23], [20], [7], [17]. However, most of these 3D

methods require a number of initial seeds in the 3D volume

provided automatically, or by human interaction. Without

any prior knowledge about the size of the grains, it is difficult

to choose the proper location and number of seeds.

More recently, two automatic 3D EWCVT-based meth-

ods (MCEWCVT and CMEWCVT) [3], [2] were proposed

for superalloy image segmentation. These two clustering

methods perform 3D segmentation by minimizing an energy

function which considers both voxel intensity similarity

and the smoothness of the segmentation boundaries. During

the energy minimization, these two 3D clustering methods

enumerate every voxel and collect smoothness information

around the neighborhood of each voxel, which leads to

very high algorithmic complexity. Additionally, the L∞-

norm used in these two methods makes the centroids difficult

to calculate. Although these two EWCVT-based methods

capture grain boundaries accurately, as claimed in [3], they

typically require 10 hours to segment a 3D 671×671×170
image; the same as we use in our later experiments in

Section III. Furthermore, strong noise in the dense 3D image

space is usually grouped into separate clusters as shown in

the third column of Figure 1.

In order to efficiently segment 3D volumes, propagation-

based 3D image segmentation has attracted much attention,

especially for video processing. In [8], the authors propagate

the result of previous video frame as the initialization for

segmenting the current frame. After a modified active-

contour based segmentation, the algorithm further merges

and splits segments according to the partial shape match-

ing across video frames. However, this algorithm is not

applicable to grain image segmentation for two reasons: 1)

The interslice resolution of a grain image is much lower

than the intraslice resolution which causes the 2D shape of

a grain to vary substantially when serial-sectioned by two

consecutive slices, and 2) unlike video, which may contain

structures with different shapes, many grains in superalloy

images bear very similar shapes, and this may increase

the ambiguity of the partial shape matching. In [22], the

StreamGBH algorithm is proposed for segmenting streaming

videos. StreamGBH segments a sequence of video frames

by merging an over-segmentation on each frame, guided by

the segmentation on the previous frame. Without specific

constraints on boundary smoothness, StreamGBH usually

generates highly fragmented and scattered segments, and is

not suitable for grain segmentation.

By combining the advantages of the EWCVT-based and

the propagation-based methods, we propose a modified

EWCVT clustering algorithm which propagates inter-slice

consistency constraints for accurate and fast segmentation of

3D grains in superalloy images. Specifically, the proposed

algorithm performs a 2D-constrained EWCVT segmentation

on each image slice using the segmentation of the previous

slice as the initialization, and during the clustering process

the stable grain structure of the previous slice is also

preserved. On the first image slice, we use the segmentation

result of the EWCVT algorithm as the initialization. This

way, the proposed algorithm obtains a segmentation on

the new image slice while simultaneously preserving the

segment correspondence with the previous image slice.

The remainder of this paper is organized as follows,

we first introduce the proposed method in Section II and

then present the experimental results in Section III. Finally,

Section IV concludes the paper.

II. THE EWCVT WITH PROPAGATION OF THE

CONSISTENCY CONSTRAINT

We first revisit the classical CVT and EWCVT, and next

define the constraints need to be satisfied for corresponding

segmentations together on two adjacent image slices. Then

we propose the modified EWCVT algorithm in which the

correspondence constraints are well preserved during the

segmentation process.

A. The classical CVT and EWCVT

An image slice I can be regarded as an intensity function
u on a 2D domain. Since the pixels in the slice are
indexed by integer tuples, we can treat u as a discrete
function defined over a set of points with integer coordinates.
Thus the domain of u for an image slice is an index
set D = {(x, y) | x = 1, . . . , X, y = 1, . . . , Y }. Let
U = {u(x, y)}(x,y)∈D denote the set of intensity values

of an image slice. Given W = {wl}Ll=1 a set of distinct
intensity levels, we can compute the corresponding Voronoi
regions Vl in U by

Vl = {u(x, y) ∈ U : |u(x, y)− wl| ≤ |u(x, y)− wk|

for k = 1, . . . , L and k 6= l}, (1)

where | · | denotes a predefined metric measure. The set of

chosen intensities W = {wl}
L
l=1 are referred as the Voronoi

generators. {Vl}
L
l=1 can be viewed as a special partition of

U because ∪L
l=1Vl = U and Vp ∩ Vq = ∅ for any pair of

Voronoi regions.
Given a partition of U, denoted as V = {Vl}

L
l=1, we

normally define the centroid (cluster center) of each Vl

as w̄l = minw∈Vl

∑
u(x,y)∈Vl

|u(x, y) − w|2. We call the

Voronoi tessellation {Vl}
L
l=1 a Centroidal Voronoi Tessella-

tion (CVT) of U if and only if

wl = w̄l, for l = 1, . . . , L.

Using the correspondence between pixel indexes and
colors through u, we can easily construct a corresponding
partition of the physical domain D of the image slice I .
Let D = {Dl}

L
l=1 be a partition of D, the CVT energy is

defined as

Ẽ(W;D) =

L∑

l=1

∑

(x,y)∈Dl

|u(x, y)− wl|
2

(2)
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The CVTs can be constructed by minimizing the CVT

clustering energy.
In addition to considering the intensity similarity only, the

Edge-Weighted Centroidal Voronoi Tessellation (EWCVT)
clustering model also includes an edge energy term in order
to smooth the segmentation boundary. The EWCVT energy
is defined as

E(W;D) =

L∑

l=1

∑

(x,y)∈Dl

|u(x, y)− wl|
2

+ λ
∑

(x,y)∈D

∑

(x′,y′)∈Nω(x,y)

χ(x,y)(x
′
, y

′), (3)

where Nω(x, y) denotes a circle neighboring area of the
pixel (x, y) with radius ω, χ(x,y)(x

′, y′) is defined as

χ(x,y)(x
′
, y

′) =

{
1, if π(x′, y′) 6= π(x, y),

0, otherwise,

where π(x, y) is the cluster index function that tells the

Voronoi region to which the pixel (x, y) belongs.
Based on Eq. (3), the corresponding EWCVT distance

from a pixel (x, y) to a generator wl can be defined as

dist((x, y), wl) =
√

|u(x, y)− wl|2 + 2λñl(x, y), (4)

where ñl(x, y) = |Nω(x, y)| − nl(x, y) − 1 denotes the

number of pixels within Nω(x, y) \ (Dl ∪ (x, y)). Thus

we can construct the EWCVT by minimizing the EWCVT

energy using the traditional CVT/k-means algorithms with

the EWCVT distance.

The EWCVT segmentation result of an image slice can

be represented as a set of simply connected segments

S = {s1, . . . , sm} where ∪m
i=1si = D and si ∩ sj = ∅

for any pair of segments. Remember that an edge-weighted

Voronoi region Dl could be disconnected (i.e., in this case

the Voronoi region contains more than one segments) and

S often are constructed by extracting and relabeling all of

the connected components in each of the edge-weighted

Voronoi region Dl ∈ D. In our 3D superalloy image

segmentation problem, many grains may be assigned with

the same Voronoi generator after the clustering of a slice.

In order to guarantee the simple connectivity of each grain

segment (i.e., no grain is completely contained in the interior

of any of others), we follow the approach of the VCells

method proposed in [19] which is based on the EWCVT

model. The simple connectivity of individual segments in

VCells is mainly achieved by only allowing cluster index

transfer between neighbor segments, of pixels located on the

boundaries of the physical segments with some topological

constraints.

However, without further correspondence constraints, it is

still hard to obtain consistent segmentation results and then

correspond them between two adjacent image slices (see

discussions in Section I). The resulting 3D superalloy image

segmentation will contain plenty of truncated grains. In the

proposed method, we use the segmentation of the previous

image as the initialization of the EWCVT algorithm, and

we add consistency constraints during the clustering energy

minimization process in order to propagate and preserve the

stable segment structure contained in the initialization.

B. Stable segment structure and its propagation

Given two consequent image slices Ii and Ii+1, their

segmentation results can be defined as Si = {si1, . . . , s
i
mi

}
and Si+1 = {si+1

1 , . . . , si+1
mi+1

} where mi and mi+1 are the

number of segments (grains) in Ii and Ii+1 respectively. The

segment structure of the segmentation Si on the image slice

Ii can be represented by a graph of segments in Si, denoted

as Gi
(
Vi, E i

)
, where each vertex in Vi is a segment and the

edge weights in E i measure the strength of the adjacency of

two neighbor segments (directly connected). Typically, given

two segments, we use the number of pixels located on the

boundary shared by them as their edge weight.
The stable segment structure of Si on Ii can be defined

as a connected subgraph Gi
∗

(
Vi
∗
, E i

∗

)
of Gi. Specifically, it

holds that

Vi
∗ =

{
s
i
p ∈ Vi |

∣∣∣sip
∣∣∣ ≥ α

}
(5)

and

Ei
∗ =

{
Ei
(p,q) ∈ Ei | Ei

(p,q) ≥ β, S
i
p, S

i
q ∈ Vi

∗

}
, (6)

where the parameter α > 0 is the minimal size of segments

that are defined as stable ones, and the parameter β > 0
is the minimal length of boundaries that are stable. In our

3D superalloy image segmentation problem, the stable grain

structure of Si on Ii should be preserved in Si+1 on Ii+1.

Unstable grains and their adjacency, caused by the difference

of two consequent image slices, are determined by the image

information on Ii+1.

We first use the segmentation Si on the previous image

slice Ii as the initialization, i.e., let Si+1 = Si. Then

by combining Gi
∗

with the image information Ii+1, we

can construct the segment structure G̃i+1
∗

on Si+1 that

is invariant to the change of image information from Ii

to Ii+1. The vertexes in G̃i+1
∗

are the segments in Si+1

that are corresponding with stable segments in Si, and

the edges indicate corresponding stable segments’ neighbor

relationships. Thus G̃i+1
∗

can be viewed as a propagation of

the stable segment structure Gi
∗

from image slice Ii to Ii+1.
Specifically, we define the corresponding distance be-

tween a segment sip on Ii and a segment si+1
q on Ii+1 as

d(sip, s
i+1
q ) =

|ui+1(sip)− ui+1(si+1
q )|

|sip ∩ si+1
q |

(7)

where ui+1(sip) denotes the average intensity of pixels inside

segment sip on Ii+1:

u
i+1(sip) =

1

|sip|

∑

(x,y)∈sip

u
i+1(x, y).
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For each segment sip ∈ Vi
∗
, we find its nearest segment

si+1
q ∈ Si+1 and add si+1

q into Ṽi+1
∗

, with respect to the
distance defined in Eq. (7), i.e.,

s
i+1
q = arg min

s
i+1

k
∈Si+1

d(sip, s
i+1
k ). (8)

The intuition here is that two corresponding segments should

be similar not only in the intensity space but also in the

spatial domain. Otherwise the segment adjacency in Gi
∗

and

G̃i+1
∗

are not consistent. The edges Ẽ i+1
∗

can be simply

derived from Gi
∗
.

C. Algorithms for computing the EWCVT satisfying consis-

tency constraint

1) Cluster initialization satisfying consistency constraint:

Given the segmentation Si and the propagated stable seg-

ment structure Gi
∗
, we now compute a good initial clustering

Di+1 = {Dl}
L
l=1 of the image slice Ii+1 for the iterative

construction of the EWCVT, and this initial configuration

also must satisfy the segment structure G̃i+1
∗

inherited from

Gi
∗
. This is done through a CVT/k-means-type iterative

process on Si+1.
We treat each segment si+1

q ∈ Si+1 as a point and

define its value as ui+1(si+1
q ) i.e., the average inten-

sity of pixels inside segment si+1
q . Then we can define

a new intensity domain on the segments as USi+1 ={
ui+1(si+1

q ) | si+1
q ∈ Si+1

}
. Let D̂ = {D̂l}

L
l=1 be a par-

tition of Si+1 into L clusters, then the CVT tessellation of
Si+1 can be constructed based on the new average intensity
according to the weighted CVT energy

Ê(W, D̂) =

L∑

l=1

∑

s
i+1
q ∈D̂l

∣∣∣si+1
q

∣∣∣
∣∣∣ui+1(si+1

q )− wl

∣∣∣
2

. (9)

and its corresponding CVT distance is

d̂ist(si+1
q , wl) =

∣∣∣ui+1(si+1
q )− wl

∣∣∣ . (10)

Notice that two initially neighbor segments may be
merged into a single segment if they are assigned to the
same cluster. In this way the propagated stable segment

structure G̃i+1
∗

can not be preserved. In order to guarantee
the resulting partition preserves the segment neighboring
relationship defined in Si+1, the clustering result should
satisfy

∀ s
i+1
k ∈ N

s
i+1
q

, π
i+1(si+1

q ) 6= π
i+1(si+1

k ), (11)

where Ns
i+1
q

denotes the neighbor segments of si+1
q and

πi+1(si+1
q ) tells the index of the Voronoi region the segment

si+1
q belongs to. During the classic CVT construction based

on
{
ui+1(si+1

q ) | si+1
q ∈ Si+1

}
, any new cluster assignment

that violates Eq. (11) should be prevented. The whole cluster

initialization process is described in Algorithm 1, which will

be used as part of input for further computing the EWCVT

with consistency constraint.

Algorithm 1 (Cluster Initialization Satisfying Consistency

Constraint)

Inputs: The image slice Ii+1 and ui+1

Si: Segments of the image slice Ii

πi: The cluster index function of the image slice

Ii

L: Number of clusters

niter: Number of iterations

0 Initialization: Create the stable segment structure

Gi
∗

of Si. Set Si+1 = Si and create G̃i+1
∗

for

Si+1. Set πi+1 = πi.

1 FOR iter = 1, . . . , niter
2 FOR l = 1, . . . , L
3 Compute the centroid

wl =

∑
s
i+1
q ∈D̂l

|si+1
q |ui+1(si+1

q )
∑

s
i+1
q ∈D̂

|si+1
q |

4 FOR each si+1
q ∈ Si+1

5 Find the nearest wk ∈ {wl}
L

l=1 to si+1
q

w.r.t. the distance function d̂ist(si+1
q , wk)

6 IF the relation (11) and G̃i+1
∗

are satisfied

7 Set πi+1(si+1
q ) = k

8 IF there is no cluster change among Si+1

9 Break

Output: The cluster index function πi+1 and {wl}Ll=1

2) Construction of EWCVT with consistency constraint:

The initialization through Algorithm 1 guarantees the ini-

tialized partition Di+1 = {Dl}
L

l=1 (obtained through πi+1)

preserves the propagated segment structure G̃i+1
∗

. Now we

present a modified EWCVT clustering algorithm such that

the propagated segment structure is preserved during the

clustering process. Meanwhile new segments/grains can be

identified using the image information. The basic idea is,

during the EWCVT clustering process, 1) preventing any

cluster assignment that breaks the propagated segment struc-

ture G̃i+1
∗

; and 2) adjusting the number of segments in Si+1.

Specifically, we only consider pixels located at the bound-

aries of stable segments in Ṽi+1
∗

and inside unstable seg-

ments Si+1−Ṽi+1
∗

, denoted as (x, y) ∈ Ω. Those pixels can

only be assigned to a cluster which is physically connected

to them, i.e., πi+1(x, y) ∈
{
πi+1(N(x,y))

}
where N(x,y) =

{(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)}. By checking

the propagated stable segments adjacent relations defined

in G̃i+1
∗

, in each new cluster assignment, we only allow

assignments that preserve the stable segments adjacency.

After each assignment, if the clusters of the surrounding

segments are different from the cluster of the center pixel,

we identify this center pixel as a new segment/grain and

add it into Si+1. The whole process can be described in

Algorithm 2.

Notice that, we propagate the previous segmentation in-

formation by using Si as the initialization directly. Therefore
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Algorithm 2 (EWCVT Construction Maintaining Consis-

tency Constraint)

Inputs: The image slice Ii+1 and ui+1

Si: Segments of the image slice Ii

πi: The cluster index function of the image slice

Ii

L: Number of clusters

niter: Number of iterations

0 Initialization: Run Algorithm 1.

1 FOR iter = 1, . . . , niter
2 Construct the set of candidate pixels for

transferring, Ω from Si+1

3 FOR each (x, y) ∈ Ω
4 Find the nearest

wk ∈
{
wl | l ∈

{
πi+1

(
N(x,y)

)}}
to (x, y)

w.r.t. the distance function dist((x, y), wk)

5 IF no segments adjacency in G̃i+1
∗

is violated

6 Set k̃ = πi+1 (x, y), πi+1 (x, y) = k
7 Update wk and wk̃

8 IF πi+1 (x, y) /∈ πi+1
(
N(x,y)

)

9 Add a new segment that contains

(x, y) in Si+1

10 IF there is no cluster change among Ω
11 Break

Outputs: The final cluster index function πi+1 and

segmentation Si+1 of the image slice Ii+1

the segment indexes are consistent across image slices.

Furthermore, new identified segments will be also included

in the updated Si+1 as described in Algorithm 2. Finally,

we can easily correspond segments across 2D image slices

and then construct 3D segments/grains.

III. EXPERIMENTS

In this section, we first describe the test dataset, parameter

settings, and evaluation criterion used in the experiments.

Then we compare the proposed algorithm with several

2D/3D segmentation methods in terms of accuracy and

running time. Finally, we discuss how the accumulated

propagation error affects the segmentation accuracy of the

proposed algorithm when segmenting a long sequence of 2D

image slices.

The experiments are conducted on the IN100 dataset1

which contains 170 sequential 2D image slices of a su-

peralloy material sample. These image slices are obtained

by photographing (using microscope) the top surface of a

superalloy sample block during a top-to-bottom abrading

process. Each slice in the IN100 dataset contains 4 grayscale

images taken under different microscope configurations. For

1Provided by our material scientist collaborates and can be downloaded
at http://www.bluequartz.net/Data/.

Table II
COMPARISON ON RUNNING TIMES OF 2D/3D/STREAMING

SEGMENTATION METHODS.

Methods MCEWCVT
[3]

StreamGBH
[22]

Proposed

Time (s) 37243.23 8808.7 7651.72

the proposed algorithm, we combine them into a single 4-

channel image, analogous to typical RGB 3-channel images

and use L2-norm as the distance metric. We do not suppress

any channel, which is different from the L∞-norm used

in MCEWCVT [3]. For comparison methods that cannot

handle multi-channel images directly, we first apply such

methods to each of the four grayscale images independently.

We then combine these independent segmentations into an

additional fifth segmentation, either using the logic OR oper-

ation (for solid boundary segmentation algorithms, e.g. the

NormalizedCuts [15] method), or assigning the maximum

probability boundary (pb) value to each pixel (e.g. for the

gPb [1] method). For each such comparison method, we

report the result (out of the above five results) which yields

the best performance.

The proposed algorithm is implemented in C/C++. For

comparison methods, we used implementations published by

the respective authors. All the experiments are conducted on

a Linux workstation with Quad-Core 3.20GHz Intel Xeon

CPU and 6G memory.

For the proposed algorithm, there are two key parameters

that can be tuned: the radius ω of the local smoothness

region and the edge weight λ. We performed a grid search

over this parameter space using the whole dataset and

selected ω = 4 and λ = 30 which achieved the best

performance. Additionally, we set the number of clusters in

the color space as k = 40. For the remaining parameters, the

minimum size of stable segments α and the minimum length

of stable boundaries β, are set according to the average grain

size: α = 80 and β = 5.

We use the boundary-overlap criterion suggested in the

Berkeley segmentation benchmark [11] to evaluate the

results quantitatively. Specifically, detected segmentation

boundaries are compared with the ground-truth boundaries

to calculate precision, recall and the F-score

F-score = 2 ·
Precision × Recall

Precision + Recall
.

As mentioned before, in the proposed algorithm we use

the segmentation obtained by the EWCVT algorithm on the

first slice as an initialization, propagating it to segment the

remaining 169 slices sequentially. We evaluate the segmen-

tation accuracy on all 170 slices.

Comparison with 2D segmentation methods – We

compare the proposed algorithm with several automatic 2D

segmentation methods, including MeanShift [4], the graph-

based (GraphBased) method of [9], SRM [13], gPb [1],
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Table I
QUANTITATIVE COMPARISON OF 2D/3D/STREAMING SEGMENTATION METHODS.

Methods Precision Recall F-score

2D
Methods

EWCVT [18] 0.838385 0.962131 0.896005

MeanShift [4] 0.911927 0.844106 0.876707

GraphBased [9] 0.704163 0.928424 0.800891

SRM [13] 0.81018 0.800006 0.805061

gPb [1] 0.828988 0.866076 0.847126

NormalizedCuts [15] 0.736609 0.691646 0.71342

3D/Streaming
Methods

MCEWCVT [3] 0.845894 0.927918 0.885009

3D Levelset [20] 0.739025 0.581001 0.650554

3D Watershed [12] 0.864594 0.589135 0.700767

StreamGBH [22] 0.454185 0.792653 0.577479

Proposed 0.957377 0.896125 0.925739

and NormalizedCuts [15]. Additionally, we also compare the

proposed algorithm with the original EWCVT [18] method

on 2D image slices. The NormalizedCuts method requires

the number of desired segments, which we set to the number

of ground truth segments in this dataset. Parameters of other

methods are set either to their default values, or the setting

that provides the best performance from a coarse grid search.

The quantitative results are shown in the middle six

rows of Table I, from which we can see that the original

2D EWCVT already achieves a very good performance

with an F-score of 89.6%, while the proposed EWCVT-

based propagation algorithm further significantly improves

the segmentation accuracy by another 3% to 92.5%. This

indicates that, aside from the excellent performance of the

EWCVT clustering algorithm, the consistency constraints

in the proposed algorithm indeed boost the performance

further.

Comparison with 3D/Streaming segmentation methods

– We compare the proposed algorithm with the MCEWCVT

method in [3], the 3D levelset method [20], the 3D watershed

method [12] and the StreamGBH method in [22]. We select

StreamGBH because it is a propagation-based method and it

achieves state-of-the-art performance on video segmentation

tasks [22], which is similar to the 3D grain image segmenta-

tion application. Another related work is the method in [8],

however the authors have not released the implementation

of this method.

For the MCEWCVT method, we use the parameter con-

figuration provided in the original paper [3]. For the 3D

levelset method, the number of seeds are the same as the

number of grains contained in the ground truth segmentation,

and the seeds are evenly distributed in the 3D space. For

StreamGBH, we set the number of consecutive image slices

involved in the propagation (i.e., the parameter “range”)

to be 2, which is equivalent to only using the previous

image slice to do propagation, as in the proposed algorithm.

After performing a coarse grid search, other parameters of

StreamGBH are set to be: nhie = 10, c = 60, creg = 200,

min = 100 and σ = 0.8.

The quantitative results are shown in the bottom two rows

of Table I, the proposed algorithm clearly outperforms the

comparison methods. MCEWCVT underperforms because

it groups strong noise in the dense 3D image space into

separate clusters. StreamGBH shows lower performance

because it lacks structure consistency constraints and bound-

ary smoothness in the propagation, leading to isolated and

jagged boundaries.

Moreover, in order to demonstrate the computational

efficiency of the proposed algorithm, we also compare

its running time with that of the MCEWCVT and the

StreamGBH methods. All these methods are implemented

in C/C++ and their running times are shown in the last

column of Table II. The proposed algorithm exhibits the

fastest running time, with a speedup of 5× compared with

the MCEWCVT method.

Qualitative segmentation results on three consecutive im-

age slices of both 2D image segmentation methods and

3D/Streaming segmentation methods are shown in Figure

2 and Figure 3 respectively. We can clearly see that the

segmentation from the proposed algorithm aligns with grain

boundaries much better than the segmentation from the

comparison methods. For 2D comparison methods, without

considering inter-slice correspondence, they often produce

isolated fragments inside a grain. In contrast, the proposed

algorithm maintains the consistency and correspondence

among grains across image slices. For the 3D methods,

compared with the proposed algorithm, they are sensitive to

strong noises in the dense 3D space. For StreamGBH, with-

out considering the structure consistency and the boundary

smoothness, its results contain many fragments along grain

boundaries.

Propagation error – Intuitively, the segmentation error

accumulates when the segmentation propagates through a

large number of slices. Therefore, we may expect a mono-

tonic decrease of the segmentation accuracy with more steps

of propagation. However, as shown in the top panel of Figure

4, the segmentation accuracy only oscillates occasionally

during the propagation. The main reason is that, aside from

the propagation of structural consistency constraints, the pro-

posed algorithm also includes a EWCVT clustering process
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to refine the segmentation using the image information when

processing a new slice. Also note hat the F-score on the first

image is relatively low. This is due to the EWCVT result

being used as the initialization. Even from this imperfect

initialization, the proposed method is able to improve the

performance by considering both structure and image infor-

mation in propagation. Similarly, one slice of corrupted or

highly noisy image, as shown in the bottom panel of Figure

4, has little effect on the segmentation performance on the

other slices because of the use of structure constraints in the

proposed algorithm.

IV. CONCLUSIONS

In this paper, we proposed an Edge-Weighted Centroid

Voronoi Tessellation based algorithm that can propagate

structural consistency constraints from slice to slice, which

is used to automatically segment 3D grain images. As a

volumetric segmentation algorithm, the proposed algorithm

can automatically extract grain structures on all the slices,

starting from the segmentation on the first slice, which

can be constructed by any automatic 2D segmentation

method. The proposed propagation-based algorithm is able

to: 1) segment a large number of superalloy image slices

efficiently, 2) preserve structural consistency across slices,

and 3) easily correspond the segments across slices. We

conducted experiments on a 3D superalloy image dataset

with 170 image slices. Both qualitative and quantitative

results indicate that the proposed algorithm outperforms the

comparison methods and is robust even when propagated

through a large number of slices, and in the presence of

strong noise and corruption.
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