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Abstract

Recognizing activities in wide aerial/overhead imagery

remains a challenging problem due in part to low-resolution

video and cluttered scenes with a large number of moving

objects. In the context of this research, we deal with two un-

synchronized data sources collected in real-world operating

scenarios: full-motion videos (FMV) and analyst call-outs

(ACO) in the form of chat messages (voice-to-text) made by

a human watching the streamed FMV from an aerial plat-

form. We present a multi-source multi-modal activity/event

recognition system for surveillance applications, consisting

of: (1) detecting and tracking multiple dynamic targets from

a moving platform, (2) representing FMV target tracks and

chat messages as graphs of attributes, (3) associating FMV

tracks and chat messages using a probabilistic graph-based

matching approach, and (4) detecting spatial-temporal ac-

tivity boundaries. We also present an activity pattern learn-

ing framework which uses the multi-source associated data

as training to index a large archive of FMV videos. Finally,

we describe a multi-intelligence user interface for querying

an index of activities of interest (AOIs) by movement type

and geo-location, and for playing-back a summary of as-

sociated text (ACO) and activity video segments of targets-

of-interest (TOIs) (in both pixel and geo-coordinates). Such

tools help the end-user to quickly search, browse, and pre-

pare mission reports from multi-source data.

1. Introduction

Streaming airborne Wide Area Motion Imagery (WAMI)

and Full-Motion Video (FMV) sensor collections afford on-

line analysis for various surveillance applications such as

crowded traffic scenes monitoring [18]. In a layered sens-

ing framework, such sensors may be used to simultaneously

observe a region of interest to provide complimentary capa-

bilities, including improved resolution for improved target

discrimination, identification, and tracking [5]. Typically,

forensic analysis, including pattern-of-life detection and ac-

tivity/event recognition, is conducted off line due to huge

volumes of imagery. This big data out-paces users’ avail-

able time to watch all videos in searching for key activity

patterns within the data. To aid users in detecting patterns

in aerial imagery, robust and efficient computer vision, pat-

tern analysis and data mining tools are highly desired [9].

1.1. Multi-Source Data and Problem Statement

For data collection and reporting, the aerial video is re-

viewed by humans (called hereafter reviewed FMV data)

as the imagery is streamed down from an airborne plat-

form. During a real-time FMV exploitation process, hu-

mans could call out significant AOIs, where a voice-to-text

tool converts audible ACOs to text (see examples in Fig-

ure 5) and a computer then saves the ACOs to storage disks

along with the aerial imagery. Additional contextual infor-

mation besides ACOs include additional reviewers’ (inter-

nal) chat as well as discussions about the area of coverage

of the overhead video from external sources. Together, the

ACOs, internal discussions, and external perspectives pro-

vide a collective set of “chat messages” [2].

However, these two data sources (chat messages and

FMV) are not synchronized in time nor in space. They are

not recorded with corresponding time stamps. Furthermore,

the called-out targets and activities are not marked in video

frames with bounding boxes nor with a start and an end of

each activity. It is worth noting that the use of ACOs rad-

ically differs from a traditional video annotation paradigm

that is typically done manually for training and/or bench-

marking of computer vision algorithms. The incorporation

of the user’s ACO requires advances in automation, human-

machine interaction, and multi-modal fusion. In addition,

during the overhead imagery review process, there is no

advanced equipment such as an eye tracker [11] or touch

screen employed to determine screen locations of the TOIs
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corresponding to ACOs.

1.2. Paper Contributions

The ACO messages present a rich source of informa-

tion allowing for a fast retrieval of activities and provid-

ing a summary of events over FMV. They provide a refer-

ence ground-truth of the AOIs which occur in the reviewed

FMV data. Hence, correlating these two data sources

would produce four novel products: (1) a video summary

of AOIs/TOIs allowing non-linear browsing of video con-

tent, (2) annotated text-over-video media where only TOIs

are highlighted with bounding boxes and synchronized with

chat messages, (3) an activities index where activities of the

same type are grouped together, and (4) adaptive data play-

back allowing for user-selected filtering by geographic lo-

cation. For instance, the end user may submit a query like

this: pull-out all video segments of activity types “turn then

stop” near this house on the map (see Figure 7).

In this paper we propose a multi-source probabilistic

graph-based association framework to automatically: (1)

identify targets-of-interest corresponding to chat messages,

(2) detect activity boundaries (i.e., segmenting FMV tracks

into semantic sub-tracks/segments), (3) learn activity pat-

terns in low-level feature spaces using the reviewed FMV

data, (4) index non-reviewed FMV data (i.e., archived

videos), as well as (5) assist FMV analysts with tools for

fast querying and non-linear browsing of multi-source data.

Such an automatic linking process of multi-source data

enhances data association by eliminating the tedious pro-

cess of manually collecting and correlating the data. As a

side benefit, pattern recognition typically requires training

data for activity pattern learning; however, the chat mes-

sages provide a notional real-time training template. This

problem has been well reported in the literature. For in-

stance, [20] emphasizes the need to collect high-quality ac-

tivity/event examples with minimal irrelevant pixels for the

activity learning modules. Also, during the manual annota-

tion process, Oh et al. [20] define very specifically the start

and end moments of activities to ensure proper learning on

non-noisy data. Here, we demonstrate a paradigm shift in

tracking and classification of imagery that does not require

training data for real-world deployment of methods.

1.3. Paper Organization

Section 2 details related work. The following sections

describe various components of our “Video-Indexed by

Voice Annotations” (VIVA) system. Section 3 provides a

video processing overview with extensions to our methods.

Section 4 describes the mapping of a single FMV target

track to multiple graphs of attributes. In Section 4.2 we de-

scribe our 2-step algorithm to decompose a single track into

semantic segments. Section 5 focuses on parsing of chat
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messages (or ACO) and their graphical representation. In

Section 6 we present the multi-source graph-based associ-

ation framework and the activity class assignment process.

In Section 7 we briefly provide an overview of our approach

for learning activity patterns from the reviewed FMV tracks

(i.e., training data) and querying the unlabeled FMV data.

Sections 8 and 9 outline our Multi-media INdexing and ex-

plorER (MINER) interface and evaluates several scenarios

to provide performance details of the proposed framework,

respectively. We conclude this paper in Section 10.

2. Related Work

Visual activity recognition – the automatic process of

recognizing semantic spatio-temporal target patterns such

as “person carrying” and “vehicle u-turn” from video data

– has been an active research area in the computer vi-

sion community for many years [17]. Recently, the focus

in the community has shifted toward recognizing activi-

ties/actions over large time-scales, wide-area spatial reso-

lutions [10], and multi-source multi-modal frequencies in

real-world operating conditions [13]. We assume here that a

pattern is bounded by event changes and target movement in

between events is an ”activity.” In such conditions the ma-

jor challenge arises from the large intra-class variations in

activities/events including variations in sensors (e.g., view-

points, low-resolution, scale), target (e.g., visual appear-

ance, speed of motion), and environment (e.g., lighting con-

dition, occlusion, and clutter). The recognition of activities

in overhead imagery poses many more challenges than from

a fixed ground-level camera mostly because of imagery’s

low resolution. Additionally, the need for video stabiliza-

tion creates noise, tracking, and segmentation difficulties

for activity recognition.

The key algorithmic steps in visual activity recognition

techniques are (1) extract spatio-temporal interest point de-

tectors and descriptors [7], (2) perform clustering (e.g.,

K-means) in the feature space (e.g. histogram of gradi-

ent (HOG), histogram of flow (HOF), histogram of spatio-

temporal gradients (3D-STHOG) and 3D-SIFT) to form

codebooks after principal component analysis (PCA)-based

dimension reduction, and (3) label tracks using a Bag-Of-

Words approach [15, 20]. We follow a similar process when

it comes to learning activity patterns from the reviewed

FMV tracks. That being said, we first perform multi-source

data association to generate training data from the reviewed

FMV tracks where FMV tracks are assigned activity labels.

Xiey et al. [24] proposed a method for discovering

meaningful structures in video through unsupervised learn-

ing of temporal clusters and associating the structures with

meta data. For a news-domain model, they presented a

co-occurrence analysis among structures and observed that

temporal models are indeed better at capturing the seman-

tics than non-temporal clusters. Using data from digital TV
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news, [8] proposed a framework to determine the corre-

spondences between the video frames and associated text

in order to annotate the video frames with more reliable la-

bels and descriptions. The semantic labeling of videos en-

ables a textual query to return more relevant correspond-

ing images, and enables an image-based query response

to provide more meaningful descriptors (i.e., content-based

image retrieval). Our proposed activity recognition frame-

work discovers meaningful activity structures (e.g., seman-

tically labeled events, activities, patterns) from overhead

imagery over challenging scenarios in both reviewed and

un-reviewed FMV data.

3. Video Target Tracking

Tracking multiple targets in aerial imagery requires first

to stabilize the imagery and then detect automatically any

moving target.

Video Stabilization Our Frame-to-frame stabilization

module aligns successive image frames to compensate for

camera motion [23]. There are several steps involved in our

2-frame registration process: (1) extract interest points from

the previous image that possess enough texture and contrast

to distinguish them from one another, and (2) match the 2D

locations of these points between frames using a robust cor-

respondence algorithm. Establishing correspondences con-

sists of two stages: (a) use “guesses”, or putative matches,

established by correlating regions around pairs of feature

points across images, and (b) perform outlier rejection with

RANdom SAmple Consensus (RANSAC) to remove bad

guesses.

The VIVA stabilization algorithm runs in real-time on

commercial off the shelf (COTS) hardware and it was

specifically designed to be robust against large motions

between frames. The enhanced robustness against large

motion changes is essential since analog transmission of

electro-optical/infrared (EO/IR) airborne data to the ground

can be corrupted, frames can be dropped, time-delays long,

and can vary in sample rates. As long as the two frames

being registered have greater than 35% overlap, we are usu-

ally able to establish enough correspondences for reliable

stabilization.

Target Detection and Tracking Our moving target track-

ing algorithm – Cluster Objects Using Recognized Se-

quence of Estimates (COURSE) – makes few assumptions

about the scene content, operates almost exclusively in the

focal plane domain, and exploits the spatial and temporal

coherence of the video data. It consists of three processing

steps. First, the frame-to-frame registration is used to find

regions of the image where pixel intensities differ – this is
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done through frame differencing (see Figure 1). Underly-

ing frame differencing is the assumption that pixel intensity

differences are due to objects that do not fit the global im-

age motion model. Clearly, other effects – such as parallax

– also cause false differences, but these false movers are

filtered using subsequent motion analysis. Second, point

features with high pixel intensity difference are used to es-

tablish correspondences between other points in the pre-

vious frame, which produces a set of point-velocity pairs.

Third, these point-velocity pairs are clustered into motion

regions that we assume are due to individual targets. Re-

gions that persist over time are reported as multiple target

detections. The tracker provides two very important capa-

bilities: (i) it removes false detections generated by the up-

stream target detection module, and (ii) extends detection

associations beyond what can be accomplished by using

only the image-based target detection module. COURSE

achieves enhanced robustness by (i) removing isolated de-

tections that are inconsistent with the presence of a mov-

ing object, and (ii) exploiting large time-event information

to deal with brief interruptions caused by minor occlusions

such as trees or passing cars. The COURSE tracker gener-

ates a mosaic tracking report (see Figures 2 and 3) to be

used as input to our multi-source association framework.

Figure 1: VIVA’s movement detection module. First regis-

tered frames (top left) are differenced to produce a change

detection image (lower right). That image is thresholded to

detect changing pixels. Point correspondences within those

detection pixels are established between the two frames and

used to generate motion clusters (right).

4. Multi-Graph Representation of a Single

FMV Track

The multi-source association framework is based on a

graph representation and matching of target tracks and chat

messages. In this section, we describe how to build a graph-

based model of a tracked target and how to divide “rich”

tracks into semantic track-segments and hence represent a

single track with multiple graphs.
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Figure 2: Example of track profiles of vehicles generated

by COURSE using sample videos from the VIRAT aerial

dataset (ApHill) [20].

Figure 3: Illustration of a noisy tracking trajectory of a sin-

gle dismount (from the ApHill VIRAT aerial dataset) gen-

erated by COURSE. The track is broken into several seg-

ments (i.e., several tracking labels) due to quick changes in

motion direction, cluttered background, and multiple stop-

and-move scenarios.

(a) (b)

Figure 4: Illustration of our assignment of tracking states

into (a) direction and location zones (e.g. south-east direc-

tion, top-left screen zone, etc.) and (b) semantic segments

based on changes in direction and speed using RDP.

4.1. Mapping Tracks to Graphs

Each target track is cast by a combination of graphs

where nodes represent targets’ attributes and edges charac-

terize the relationship between nodes. We divided attributes

into common and uncommon based on their saliency over

the life time of a target track. For instance, color and shape

of a vehicle remain unchanged, while direction and spatial

location vary over time (t). The targets-of-interest are clas-

sified into “vehicle” vs. “human” (i.e., actor attribute) based

on motion, blob size, and shape. The shape attribute is di-

vided into “car” vs. “SUV” vs. “truck” for vehicle, and

“adult” vs. “child” for human actor/dismount [1]. Each

actor is characterized with a unique color attribute (e.g.,

black truck, human with red-shirt, etc.) and a spatial lo-

cation (i.e., xys position on the screen and lat/lon on the

geographic map). The location is mapped into gross zones

(see Figure 4(a)) on the screen to match with gross locations

in the chat messages. We divided the video frame into a 3x3

grid (center screen, top left, etc). The direction attribute is

derived from the velocity vectors (Vx(t), Vy(t)) at time t

such that θ(t) = arctan(
Vy(t)
Vx(t)

), which in turn is mapped to

a geographical direction using the gross divisions of direc-

tions as shown in Figure 4(a). In order to reduce noise in the

mapping of θ and xys to gross direction and location zones,

we applied a sliding window to smooth these values over

time. The last attribute is mobility which specifies whether

the target is moving or stationary (mt).

4.2. Dividing Tracks Into Semantic Segments

When a track exhibits major changes in uncommon at-

tributes, especially in direction, location and speed; it be-

comes necessary to break it down into multiple semantic

segments, and hence multiple graphs, to match them with

multiple chat messages in the association framework. This

is the case when multiple chats correspond to a single track

generated by our video tracker. Figure 4(b) shows three

minutes of a tracked vehicle moving toward the east, mak-

ing a u-turn then moving toward the west. We apply a 2-step

algorithm to break down tracks into semantic segments:

1. Smooth the tracking locations (xys) using the Ramer-

Douglas-Peucker (RDP) algorithm [21]. This will pro-

duce a short list of un-noisy position points (XYs) (dis-

played as green points in Figure 4(b)).

2. Detect directional changes computed from XYs(t)
points. The beginning of a new semantic track seg-

ment is marked when a peak is detected. The end of

a new semantic segment is flagged when the second

derivative of XYs(t) is near zero. Figure 4(b) illus-

trates the results of this step where 7 segments were

detected.

5. Parsing and Graph Representation of Chats

In our data collection setup, the chat messages follow the

following format for a target of type vehicle [3]:

“Non-Technical Data - Releasable to Foreign Persons.”
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At <time> <quantity> <color> <vehicle>

<activity> <direction> <location>

where:

<time> = 0000Z - 2359Z

<activity> = (travel | u-Turn ...)

<direction> = (north | south ...)

<location> = screen (middle | left ...)

<color> = (red | black ...)

<shape> = (truck | car ...)

Basic search for keywords in a chat message is employed

to extract relevant information such as “activity type”, “di-

rection”, and “location”. In our dataset, we have 9 activi-

ties (vehicle turn, u-turn, human walking, running, etc.; see

Section 9), eight direction zones (north, south, etc.) and

nine location zones (middle, top-left screen zone, etc; see

Figure 4). These chat messages represent an analyst call-

ing out activities in the FMV, intra-viewer discussions, or

other related external discussions. In turn, a chat message is

represented as a graph of attributes. However, more elabo-

rated Information Extraction (IE) from a chat message (i.e.,

micro-text) or a document (e.g., using Sphynx or Apache

NLP) as an automated approach [19, 6, 14, 4] could be em-

ployed to handle miss-spelled words and larger dictionaries.

Figure 5(b) illustrates a chat message decomposed into

multi-modal attributes. An example can come from any

modality (e.g., video, text, radar, etc.) so the goal is to de-

compose the data into these meaningful parts [2].

(a) (b)

Figure 5: Example of representation of a video track (a) and

a chat message (b) as graphs.

6. Multi-Source Graph Association And Activ-

ity Class Assignment

A mission goal includes allowing the image processing

method to answer a user-defined query. The user calling-

out significant activities in the image would desire an au-

tomated processor to match the target being called out to

that of a target-of-interest (TOI). With an image, there could

be many movers, targets, and events happening. The sys-

tem must choose the TOI among several tracked objects in

the imagery that corresponds to a meaningful content (at-

tributes) in the chat message by a user. Because users re-

view FMV tracks from streaming airborne video, the call-

outs flag AOIs. Association between reviewed FMV tracks

and chat messages can be achieved by performing proba-

bilistic matching between graphs from both data sources. It

is important to note that, as explained in the introduction,

a chat message is the only source to describe the true ac-

tivity of the TOI. By performing multi-source graph-based

association, the true activity of the TOI is mapped to a cor-

responding track segment from FMV.

The multi-source multi-modal association framework

consists of the following stages:

1. In a given time interval, [t− T, t+ T ] (with t the time

stamp from a chat message and T : a pre-defined time

window to search for the tracked objects), the chat

message and all video tracks are extracted from the

data sets.

2. Graph representations of video-tracks and chat mes-

sages are generated as explained in Sections 4 and 5).

3. Partial graph matching uses a probabilistic distance

measure (see Equation 1) of ensemble similarity be-

tween a chat message (j) and track segment (i). There

are three main reasons to use a probabilistic distance

metric: (i) to associate the graphs even if there are

missing attributes, (ii) to reduce the effects of errors

coming from the video processor and chat messages

(e.g., a user may assign a vehicle color as black while

a tracked object from the video processor might be

marked as gray), and (iii) to impute the weights of at-

tributes based on the quality of videos. The associated

graphs with the highest probabilities are assigned as

match.

P (Ti|Cj , ci) = waPa + wsPs + wtPt + wclPcl+

wdPd + wlPl + wcnPcn + wmPm (1)

where wa, ws, wt, wcl, wd, wl, wcn, and wm are the user-

defined weights of attributes for actor, shape, time, color,

direction, spatial location, tracking confidence and target
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mobility, respectively. Pa, Ps, Pt, Pcl, Pd, Pl, and Pm rep-

resent the probabilities of corresponding attributes, and Pcn

is the track confidence value generated by COURSE.

(a) (b)

Figure 6: Successful identifications of AOIs/TOIs in exem-

plar clips from the ApHill VIRAT aerial dataset using our

multi-source association framework. (a) and (b) show mul-

tiple vehicle tracks and a single chat message being called-

out; the tracks in white circles (1, 2, 3, and 4) were highly

matched with the chat message graphs while targets in green

circles (A,B,C and D) scored low matching probabilities.

An illustrative result of this framework is shown in Fig-

ure 6. This framework handles 1-to-1, 1-to-N, and N-to-M

association cases. Further this framework not only marks

the target of interest but also the rendering of activities. Us-

ing labeled track profiles, the boundaries of each activity are

determined by using the process described in Section 4.2.

For example, after labeling each track segment by associ-

ating chat messages, track segments 1, 3, and 5 are marked

as travel, segments 2 and 7 are u-turn and track segments 4
and 6 are labeled as turn in Figure 4(b).

7. Learning Activity Patterns from Multi-

Source Associated Data

The chat messages provide the ground truth of the AOIs

occurring in the reviewed FMV video (see Section 6).

These correlated data serve as training data for activity pat-

tern learning in aerial imagery. Here we employ BAE Sys-

tems’ Multi-intelligence Activity Pattern Learning and Ex-

ploitation (MAPLE) tool which uses the Hyper-Elliptical

Learning and Matching (HELM) unsupervised clustering

algorithm [22] to learn activity patterns. This is done

through extracting features from each labeled track seg-

ment, clustering features in each activity space, and finally

representing each track by a sequence of clusters (i.e., chain

code). In terms of features, we used simple descriptors for

vehicles including speed, heading relative to segment start,

and position eigenvalue ratio. By measuring the change rel-
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ative to a fixed starting value, rather than the instantaneous

change, the heading feature is robust to variations in how

quickly the targets turns from its initial course. The position

eigenvalue ratio is a measure of the mobility of the target.

It is the ratio of eigenvalues calculated from the target’s po-

sition within a short time duration. As for people tracking,

we compute the histogram of motion flow and neighboring

intensity variance which describes the extent to which the

target is moving toward or away from potential interaction

sites.

The goal of this learning process is to be able to match

an unlabeled track (i.e., without chat) to the learned activ-

ity patterns. This allows indexing a large amount of un-

reviewed FMV data. First we use HELM to classify each

instance of a new track to one of the clusters of the index.

Second we use Temporal Gradient Matching distance to ob-

tain matches between the representation of the new track

and the indexed learned patterns. The similarity score be-

tween a new track j and an index i is defined as follows:

σij =
tij + cij

2
(2)

where tij represents similarity metric which considers only

the common clusters and cij is the similarity score of tem-

poral gradient for the cluster sequence.

8. Event/Activity Report Visualization and

Querying by Activity Type and Geo-

Location

The VIVA framework presented in this paper produces

three useful products for the end-users to visualize in the

same interface (see Figure 7): (1) a video summary of

AOIs allowing non-linear browsing of video content, (2)

text-over-video media where only TOIs are highlighted

with bounding boxes and synchronized with chat messages

which describe their activities, and (3) an index of activities.

The benefit of the compiled index of videos is that a user (or

machine) could find related content over a geographic loca-

tion and text. For instance, the end-user may submit a query

like this: pull-out all video segments of activity types “turn

then stop” near this house with specific latitude and lon-

gitude coordinates. We converted each track to geo-tracks

using both meta-data and reference imagery. If the AOI is

detected in archived video using the activity classification

framework presented above, the chat panel in our Multi-

media INdexing and explorER (MINER) interface shows

the automatically generated description (i.e., target category

and activity type).

9. Experimental Results

To validate the proposed framework, we used our own

dataset consisting of EO/IR airborne videos (about 25 min-

“Non-Technical Data - Releasable to Foreign Persons.”

242



Figure 7: Illustration of the event-report visualization inter-

face (MINER) allowing users to visualize and query corre-

lated chats, Pattern-Of-Life, and activity-labeled track seg-

ments.

utes long) and 100 chat messages. The activity list is lim-

ited to vehicle travel, stop, turn, u-turn, maintain-distance,

accelerate and decelerate, and human walking and run-

ning. In this small dataset we had more vehicles than dis-

mounts. The VIVA video tracker generated about 3200 dif-

ferent tracks. The percentage of false tracking is about 15
percent and could be reduced through fusion of both EO and

IR [16]. This is mainly due to camera zoom-ins and zoom-

outs. Each object was automatically classified as human

vs. vehicle and specific low-level features (see Section 4.1)

were computed prior to running the proposed multi-source

multi-modal association framework.

Table 1 summarizes the results of the association frame-

work. Correct associations are marked when the tracks or

sub-tracks (i.e., semantic segments) in the overhead im-

agery are associated with their corresponding chat mes-

sages. A false association is flagged when the chat mes-

sage is linked to the wrong target or semantic segment (see

Section 4.2). This could occur when multiple targets are

moving in the same area at the same time and in the same

direction. A miss is defined as a chat message without an

associated target in the overhead imagery. On this data set

we scored 76.6% correct association, 10.3% misses associa-

tion, and 12.9% wrong association (i.e., false alarms). Dur-

ing these experiments we set the time window in which to

perform the multi-source associations to 15 seconds. Mak-

ing this window shorter leads to less false alarms but also

higher miss rate. Also we only used target’s direction, lo-

cation, and speed as attributes, which do not include other

rich content to reduce false alarms.

The association framework for activity recognition han-

dles complex scenarios with multiple tracked objects. Fig-

ures 6(a) and (b) show eight different tracks (different track

labels) of six moving objects and a single chat message

called-out within the same time window. The chat message

is parsed automatically into four different graphs which are

Detection Miss False

76.6% 10.3% 12.9%

Table 1: Qualitative assessment of the multi-graph associa-

tion and activity class assignment framework.

matched to all ten graphs representing the video tracks. The

additional 2 video graphs (initially we got 8 tracks) came

out from the splitting process of a single track into seman-

tic segments (or sub-tracks as described in Section 4.2) due

to changes in vehicle direction while traveling. The VIVA

framework associated the four chat graphs to the correct

four FMV semantic tracks due to strong matches between

common attributes. Our approach was also challenged by

broken tracks (e.g., case of a dismount/TOI with three dif-

ferent tracking labels in Figure 3). In spite the fact that the

same TOI is represented by three consecutive tracks, VIVA

provides correct associations with events boundaries (i.e.,

shorter and semantic track segments). Thus, it is robust to

scenario variations.

These preliminary results are very promising. Both the

direction and the location attributes play an important role

in the association of chat messages to tracks. The list of po-

tential matches is reduced drastically using these attributes.

Nevertheless in order to make 1-to-1 association, additional

attributes such as shape, color and size, and spatial rela-

tionships such as target near an identifiable landmark in the

scene, would be very helpful to resolve association ambi-

guities. Due to the chat description, the extracted target’s

direction and location are cast to gross zones (i.e., middle

screen region, north-east direction, etc.) rather than fine

ranges, causing ambiguities in the association. Extracting

buildings from available imagery [12] would greatly bene-

fit the association because the chats refer to such attributes

when describing activities involving human-object interac-

tions.

Figure 8: Illustration of an exemplar target track (from the

ApHill VIRAT aerial dataset) being matched to the proper

activity pattern model (a u-turn in this example) learned us-

ing the training data generated by the proposed multi-source

association approach.

We used the multi-source associated data to learn activ-

ity patterns and then index un-reviewed data (see Section

7). Preliminary results are illustrated in Figure 8. It shows a
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track segment from an unlabeled video correctly matched

to a u-turn pattern model with a highest matching score

σq,uTurn ≈ 1.0 compared to other models. This work is

still in progress as we are doing more extensive experiments

to ensure that we have enough training data to build reli-

able pattern activity models in challenging conditions with

enough intra-class variations using high dimensional activ-

ity descriptors over a larger activity list.

10. Conclusion

In this paper, we developed a novel concept of graphical

fusion from video and text data to enhance activity analysis

from aerial imagery. We detailed the various components

including VIVA association framework, COURSE tracker,

MAPLE learning tool and the MINER visualization inter-

face. Given the exemplar proof of concept, we highlighted

the benefits for a user in reviewing, annotating, and report-

ing on video content. Future work will explore the met-

rics and associations used to increase robustness and reduce

false alarms. However, it is noted that the end user can

check the final results presented in our MINER interface

to remove false alarms and generate mission reports effort-

lessly.
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