
 

4321 

 

Abstract 
 

Recently, regression analysis based classification 

methods are popular for robust face recognition. These 

methods use a pixel-based error model, which assumes that 

errors of pixels are independent. This assumption does not 

hold in the case of contiguous occlusion, where the errors 

are spatially correlated. Observing that occlusion in a face 

image generally leads to a low-rank error image, we 

propose a low-rank regularized regression model and use 

the alternating direction method of multipliers (ADMM) to 

solve it. We thus introduce a novel robust low-rank 

regularized regression (RLR
3
) method for face recognition 

with occlusion. Compared with the existing structured 

sparse error coding models, which perform error detection 

and error support separately, our method integrates error 

detection and error support into one regression model. 

Experiments on benchmark face databases demonstrate the 

effectiveness and robustness of our method, which 

outperforms state-of-the-art methods. 

1. Introduction 

Automatic face recognition has been a hot topic in the 

area of computer vision and pattern recognition due to the 

increasing need for real-world applications [1]. Recently 

regression analysis becomes a popular tool for face 

recognition. Naseem et al. presented a linear regression 

classifier (LRC) for face classification [13]. Wright et al. 

proposed a sparse representation based classification (SRC) 

method to identify human faces with varying illumination 

changes, occlusion and real disguise [2]. A test sample 

image is coded as a sparse linear combination of the training 

images, and then the classification is made by identifying 

which class yields the least reconstruction residual. 

Although SRC performs well in face recognition, it lacks 

theoretical justification. Yang et al. gave an insight into 

SRC and sought reasonable supports for its effectiveness [3]. 

They thought that the L1-optimizer has two properties, 

sparseness and closeness. Sparseness determines a small 

number of nonzero representation coefficients and 

closeness makes the nonzero representation coefficients 

concentrate on the training samples having the same class 

label as the test sample. However, the L0-optimizer can only 

achieve sparseness. Yang et al. constructed a Gabor 

occlusion dictionary to improve the performance and 

efficiency of SRC [4]. Yang and Zhang proposed a robust 

sparse coding (RSC) model for face recognition [6]. RSC is 

robust to various kinds of outliers (e.g., occlusion and facial 

expression). Based on the maximum correntropy criterion, 

He et al. [7, 8] presented robust sparse representation for 

face recognition. Recently, some researchers have begun to 

question the role of sparseness in face recognition [9, 10]. In 

[11], Zhang et al. analyzed the work rule of SRC and 

believed that it is the collaborative representation that 

improves the classification performance, rather than the 

L1-norm sparseness. They further introduced the 

collaborative representation based classification (CRC) 

with the non-sparse L2-norm to regularize the representation 

coefficients. CRC can achieve similar results as SRC and 

significantly speed up the algorithm.  

The regression methods mentioned above all use the 

pixel-based error model [6], which assumes that errors of 

pixels are independent. This assumption does not hold in the 

case of contiguous occlusion, where errors are spatially 

correlated [5]. In addition, characterizing the representation 

error pixel by pixel individually neglects the whole structure 

of the error image. To address these problems, Zhou et al. 

incorporated the Markov Random Field model into the 

sparse representation framework for spatial continuity of 

the occlusion [5]. Li et al. explored the intrinsic structure of 

contiguous occlusion and proposed a structured sparse error 

coding (SSEC) model [12]. These two works share the same 

two-step iteration strategy:  (1) Detecting errors via sparse 

representation or coding, and (2) Estimating error supports 

(i.e. determining the real occluded part) using graph cuts. 

The difference is that SSEC uses more elaborate techniques, 

such as the iteratively reweighted sparse coding in the error 

detection step and a morphological graph model in the error 

support step for achieving better performance. However, 

SSEC does not numerically converge to the desired solution; 

it needs an additional quality assessment model to choose 

the desired solution from the iteration sequence. 
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Some recent works point out that the visual data has low- 

rank structure [17]. Most of the exiting methods aim to find 

a low-rank approximation for matrix completion. However, 

the rank minimization problem is NP hard in general. In 

[14], Fazel et al. applied the nuclear norm heuristic to solve 

the rank minimization problem, where the nuclear norm of a 

matrix is the sum of its singular values. Based on these 

results, robust principle component analysis (RPCA) is 

proposed to decompose an image into two parts: data matrix 

(low-rank) and the noise (sparse) [15, 16]. Zhang et al. 

introduced a matrix completion algorithm based on the 

Truncated Nuclear Norm Regularization for estimating miss 

values [17]. Ma et al. integrated rank minimization into 

sparse representation for dictionary learning and applied the 

model for face recognition [18]. Chen et al. presented a 

novel low-rank matrix approximation algorithm with 

structural incoherence for robust face recognition [19].  

This paper focuses on face recognition with occlusion. 

We observe that contiguous occlusion in a face image 

generally leads to a low-rank representation error image (i.e. 

error image or noise image), as shown in Fig. 1. Motivated 

by this observation, we add a rank function (which is 

replaced by a nuclear norm for easy optimization) of the 

representation error image into a regression model. The 

model can be solved via the alternating direction method of 

multipliers (ADMM) [22]. The proposed method has the 

following merits: 

(1) Compared with state-of-the-art regression methods 

such as SRC, RSC and CESR, which characterize the 

representation error individually and neglect the whole 

structure of the error image, our model views the error 

image as a whole and takes full use of its low-rank 

structure.  

(2)  Compared with SSEC [12] and Zhou’s method [5], 

which perform the error detection step and the error 

support step iteratively but cannot guarantee the 

convergence of the whole algorithm, our method 

integrates error detection and error support into one 

regression model, and its ADMM algorithm 

theoretically converges well.  

2. Low-Rank Regularized Regression  

In this section, we present the low-rank regularized 

regression model to code the image and use the alternating 

direction method of multipliers [22] to solve the model.  

2.1. Low-Rank Regularized Regression 

Suppose that we are given a dataset of n matrices 

1, , d l

n R A A and a matrix d lR Y . Let us represent Y 

linearly by taking the following form:  

F( ) Y x E    ,                            (1) 

where 
1 1 2 2F( ) n nx x x  x A A A ,  1, ,

T

nx xx  is the 

representation coefficient vector. E is the noise 

(representation error). 

Generally, the x can be determined by solving the 

following optimization problem (linear regression): 
2

min F( )
F


x

x Y  ,                            (2) 

where 
F

 is the Frobenius norm of a matrix. 

To avoid over fitting, we often solve the following 

regularized model (ridge regression) instead: 
2 2

2
min F( )

F
 

x
x Y x .                         (3) 

The above optimization problem can be solved in a closed 

form.  

The rank of a matrix is a good tool to describe the 

structural characteristics of an error image. The error 

(representation error) image, as shown in Fig. 1, is typically 

low rank as opposed to the full rank original image. 

However, the existing linear regression models do not make 

use of this kind of structural information. To address this 

problem, we introduce the low-rank regularization to the 

ridge regression model. Specifically, the optimization 

problem is formulated as follows:  

2 2

2
min F( ) rank(F( ) )

F
    

x
x Y x Y x ,         (4) 

where  is the balance factor and  is the regularized 

parameter. 

The optimization problem of Eq. (4) is extremely difficult 

to solve due to the discrete nature of the rank function. 

Fortunately, as suggested by the matrix completion method 

[14, 20, 21], the rank minimization problem can be replaced 

by the nuclear norm minimization problem: 

2 2

2
min F( ) F( )

F
 


   

x
x Y x Y x .                 (5) 

In the following section, we will develop the optimization 

algorithm to solve Eq. (5) by using the alternating direction 

method of multipliers [22]. 
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Figure 1: The image with block occlusion is linearly represented by six different images and the residual (noise) image.  
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2.2. Optimization via ADMM 

In this section, we show how the alternating direction 

method of multipliers (ADMM) can be adopted to solve Eq. 

(5) efficiently. For more details of ADMM, we refer readers 

to [22]. To deal with our problem, the model in Eq. (5) is 

rewritten as: 

                 
2 1

, * 2
min || || || || ,    

. .  F( ) .

T

F

s t

  

 

x E E E x x

x Y E
                (6) 

The augmented Lagrange function is given by: 

  

2

2
,

1( , , ) || || || || +
2

                   Tr F( )

F( )
2

T

F

T

F

L  




  

  

 

x E Z E E x x

Z x E Y

x E Y

              (7) 

where 0  is a penalty parameter, Z  is the Lagrange 

multiplier, and )(Tr   is the trace operator. 

ADMM consists of the following iterations: 
1 arg min ( )k L

 
x

x x                           (8) 

1 arg min ( )k L

 
E

E E                          (9) 

1 1 1(F( ) )k k k k     Z Z x E Y              (10) 

Updating x  

Denote 1[Vec( ), ,Vec( )]nH A A , 1Vec( )


 g E + Y Z ,

where Vec( ) convert matrix into a vector, then the objective 

function ( )L x in Eq. (8) is equivalent to 

  21

2 2
( ) Tr F( ) || F( ) ||T T

FL


     x x x Z x x E Y           (11) 

 

21 1

2 2

1

2

|| F( ) ( ) ||

   Tr ( ) .

T

F

T T







     

 

x x x E Y Z

E Y Z ZZ
 

The problem of Eq. (8) can be reformulated as:  

 1 2 1
22 2

arg min || ||k T    
x

x Hx g x x .           (12) 

Eq. (12) is actually a ridge regression model. So we can 

obtain the solution of Eq. (12) by: 

1 1( )k T T



  x H H I H g                        (13) 

Updating E 

The objective function ( )L E  in Eq. (9) can be rewritten by  

 2 2

* 2
( ) || || || || Tr || F( ) ||T

F FL


      E E E Z E x E Y   (14) 

 

   

2

*

2

|| || || || Tr

Tr (F( ) ) F( )

T

F

T T

  

    

E E Z E

x Y E x E Y
 



  

2

* 2

1

2

|| || Tr

2 ( ) 1

T

T T T const

 





 

 



 

   

E E E

F x Y Z E
 

 
2

2 1
* 2 2

|| || F( )

2

T
T T T

F

const

 

 
 


    



E E x Y Z
 

where const1 and const2 are constant terms, which are 

independent of the variable E. The optimization problem Eq. 

(9) can be reformulated as 

 

1

*2

2
1 1

2 2

arg min || ||

F( )

k

F






 









   

E
E E

E x Y Z
             (15) 

As suggested by [23], the above optimization problem is 

solved by 

  
2

1

1

2

[ ] ,

where ( , , ) svd F( ) .

k

T

T 




 









 

                  E U S V 

 U S V = x Y Z
  (16) 

The singular value shrinkage operator 
2

[ ]T 


S is defined as 

 
2

, 12
[ ] diag {max(0, )}j j j nT S







 

 S  .   (17) 

Stopping criterion  

As suggested in [22], the stopping criterion of the 

algorithm is: the primal residual must be small: 
1 1||F( ) ||k k

F    x E Y , and the difference between 

successive iterations should also be small: 

 1 1max || || ,|| ||k k k k

F F    x x E E , where  is a given 

tolerance. 

In summary, the pseudo code of our method to solve Eq. 

(6) is shown in Algorithm 1. 

Algorithm 1 can be interpreted as using the two-step 

iteration strategy for robust face recognition as those used in 

[5, 12]. The step of updating x is actually an error detection 

Algorithm 1 Solving LR
3
 via ADMM 

Input: A set of matrices nAA ,,1   and a 

matrix p qR Y , the model parameter  , the termination 

condition parameter  . 

Initialize 0 0, ,E Z  

while  1 1|| F( ) ||k k

F    x E Y or 

 1 1max || || ,|| ||k k k k

F F    x x E E   

do 

         
1 1( ) ,k T T



  x H H I H g  

         

 

1

*2

21 1

2 2

arg min || ||

|| F( ) || ,

k

Y

F






 









   

E E

E x Y Z
 

         1 (F( ) ).k k k k    Z Z x E Y  

end while 

Output: Optimal representation coefficient x. 
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step for determining the representation coefficients and 

representation errors, and the step of updating E is actually 

an error support step for determining the real occluded part. 

So we can say that LR
3
 provides a unified framework to 

integrate error detection and error support detection into 

one simple model. 

3. Classification based on Robust Low-Rank 

Regularized Regression  

We notice that SSEC [12] adopts a robust sparse 

representation model, i.e. iteratively reweighted sparse 

coding in the error detection step, but our low-rank 

regularized regression (LR
3
)

 
only uses a simple ridge 

regression model for updating x. To further improve the 

robustness of the proposed method, in this section we 

borrow the idea of robust regression to our model and 

introduce a robust low-rank regularized regression model 

(RLR
3
): 

2

2
min (F( ) (F( )

F
 


   

x
W x Y) W x Y) x  . (18) 

where W is a weight matrix of the representation error, and 

  denotes the Hadamard product of two matrices. 

The robust low-rank regularized regression model can be 

solved by using the iteratively reweighted process [6]. Each 

iteration step is to solve a low-rank regularized regression 

problem. Specifically, given a test sample Y, we compute 

the representation coefficient x via Algorithm 1 and the 

representation error E of Y in order to initialize the weight. 

The representation error E is initialized as 
ini E Y Y , 

where Yini is the initial estimation of the images from the 

gallery set. In this study, we simply set Yini as the mean 

image of all samples in the coding dictionary since we do 

not know which class the test image Y belongs to. With the 

initialized Yini, our method can estimate the weight matrix 

W iteratively. Wi,i  is the weight assigned to each pixel of 

the test image. The weight function [6] is: 

2

,

, 2

,

exp( ( ) )

1 exp( ( ) )

i j

i j

i j

 

 




 

E
W

E
,                   (19) 

where and  are positive scalars. 

The convergence is achieved when the difference 

between the weights in successive iterations satisfies the 

following condition: 

( ) ( 1) ( 1)

2 2
/t t t   W W W .                (20) 

Based on the optimization solution x via the iterative 

process, we obtain a weighted dictionary 1[ ]nB B B , 

where i iB W D , 1, ,i n   and D is the coding 

dictionary which is composed of the training samples. The 

test sample Y is reconstructed as ,

( )

ˆ

i

i j i j

j

x


 
x

Y B ,  where 

( )i x  is the function that selects the indices of the 

coefficients associated with the i-th class. The 

corresponding reconstruction error of the i-th class is 

defined as:  

ˆr ( ) ( ) .i i


 y W Y Y                   (21) 

The decision rule is: if r ( ) min r ( )l i
i

y y , then y is 

assigned to Class l. 

Table 1 The recognition rates (%) of each classifier for face 

recognition on the AR database with disguise occlusion. 

Methods Sunglasses Scarves 

CRC 65.5 88.5 

LR
3
 75.0 90.0 

SRC [2] 87.0 59.5 

CESR [8] 99.0 42.0 

SSEC 96.5 94.0 

RSC [6] 99.0 97.0 

RLR
3
 99.0 100 

4. Experiments  

In this section, we compare the proposed methods LR
3
 

and RLR
3 

with CRC, SRC, CESR, SSEC and RSC. In our 

experiments, there are five parameters of the proposed 

RLR
3
. The parameters  and  in Eq. (19) follows the 

suggestion in [6]. The default value for penalty parameter 

  is 1. Both the balance factor   and the regularized 

parameter are introduced in the following experiments. 

4.1. Face Recognition with Real Disguise 

In our experiments, we only use a subset of AR face 

image database [24]. The subset contains 100 individuals, 

50 males and 50 females. All the individuals have two 

session images and each session contains 13 images. The 

face portion of each image is manually cropped and then 

normalized to 4230 pixels. 

The first experiment chooses the first four images (with 

various facial expressions) from session 1 and session 2 of 

each individual to form the training set. The total training 

images is 800.  There are two test sets: the images with 

sunglasses and the images with scarves. Each set contains 

200 images (one image per session of each individual with 

neutral expression). The balance factor  is 10
2
 and 10

-1
 for 

the test images with sunglasses and scarves, respectively. 

The regularized parameter  is 4  10
4
. Table 1 lists the 

recognition rates of CRC, SRC, CESR, SSEC, RSC, LR
3
 

and RLR
3
. From Table 1, we can see that RLR

3
 achieves the 

best performance among all the methods. LR
3
 also gives 

better results than CRC. Both RSC and CESR obtain the 

same results as RLR
3
 when the test images are with 

sunglasses. However, the results of SRC and CESR are 

24
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significantly lower than those of RLR
3
 when the test images 

are with scarves.  

In the second experiment, four neutral images with 

different illumination from the first session of each 

individual are used for training. The disguise images with 

various illumination and glasses or scarves per individual in 

session 1 and session 2 for testing. The balance factor  is 

10
-2

 and the regularization parameter   is 4  10
4
. The 

recognition rates of each method are listed in Table 2. From 

Table 2, we can see that RLR
3
 significantly outperforms 

CRC, LR
3
, SRC, CESR, SSEC and RSC on different test 

subsets. SRC and CESR perform well on images with 

sunglasses and poorly on images with scarves.  SSEC gives 

similar results as RSC in different cases. Compared to RSC, 

3.0%, 2.0%, 4.0% and 4.6% improvement are achieved by 

RLR
3
 on four different testing sets.  

Table 2 The recognition rates (%) of each classifier for face 

recognition on the AR database with disguise occlusion. 

Methods 
Sunglasses Scarves 

Session1 Session2 Session1 Session2 

CRC 61.3 26.3 56.3 37.0 
LR

3
 75.7 38.3 72.0 45.3 

SRC [2] 89.3 57.3 32.3 12.7 

CESR [8] 95.3 79.0 38.0 20.7 

SSEC 95.3 72.0 89.7 75.3 

RSC [6] 94.7 80.3 91.0 72.7 

RLR
3
 97.7 82.3 95.0 77.3 

4.2. Face Recognition with Random Block 

Occlusion 

The extended Yale B face image database [25] contains 

38 human subjects under 9 poses and 64 illumination 

conditions. All frontal-face images marked with P00 are 

used in our experiment, and each is resized to 96×84 pixels.  

In the first experiment, we use the same experiment 

setting as in [2] to test the robustness of RLR
3
. Subsets 1 and 

2 of Extended Yale B are used for training and subset 3 with 

the unrelated block images is used for testing. Both   and 

 are set to 10. Fig. 2 (a) plots recognition rates of CRC, 

SRC, CESR, SSEC, RSC, LR
3
 and RLR

3
 under different 

levels of occlusions (from 10% to 50%). With the increment 

of the level of occlusion, RLR
3
 begins to significantly 

outperform the other methods. When the occlusion 

percentage is 50%, the recognition rate of RLR
3 

is 10.4%, 

11.6%, 36.9% and 29% higher than RSC, SSEC, CESR and 

SRC, respectively.  

The second experiment setting is similar to that of the 

first experiment. The only difference is that subset 3 with 

noise block images is used for testing.  is 0.1 and the 

regularization parameter  is set to10. The recognition rates 

of each method versus the various levels of occlusion (from 

(a) 

(b) 

(c) 

Figure 2: The recognition rates (%) of CRC, SRC, CESR, 

SSEC, RSC, LR3 and RLR3 with the occlusion percentage 

being from 0% to 50%. (a) the test images are with unrelated 

block images; (b) the test images are with noise block images; 

(c) the test images are with mixture noise. 
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10% to 50%) are shown in Fig. 2 (b). From Fig. 2 (b), we 

observe that the proposed RLR
3 

significantly outperforms 

CRC, SRC, CESR, SSEC and RSC. The performances of 

SRC and CESR are not good in this case. SSEC gives good 

performance when the occlusion level is higher. However, 

SSEC cannot perform well when the occlusion level is 

lower. RSC achieves comparable results when the occlusion 

percentage is lower than 40%. However, the recognition 

rate of RLR
3 

is 16.1% higher than that of RSC when the 

occlusion percentage is 50%.  

In the third experiment, subsets 1 and 2 of Extended Yale 

B are used for training and subset 3 with the mixture noise 

(pixel corruption and block occlusion) is used for testing. 

 is 1 and the regularization parameter  is set to10. The 

recognition rates of each method with different level of 

pixel corruption (and occlusion) are shown in Fig. 2 (c).  

Although the performance of each method degrades with 

the increment of the mixture noise level, RLR
3
 still achieves 

the best results among all the methods. The recognition 

rates of SSEC are poor when facing with the mixture noises 

(pixel corruption and image occlusion). A probable reason 

is that SSEC mainly addresses the contiguous occlusion 

problem.  

5. Conclusions 

In this paper, we present a novel low-rank regularized 

regression model and apply the alternating direction method 

of multipliers to solve it. The robust low-rank regularized 

regression based classification (RLR
3
) method is introduced 

for face recognition. RLR
3
 takes advantage of the structural 

characteristics of noise and provides a unified framework 

for integrating error detection and error support into one 

regression model. Extensive experiments demonstrate that 

the proposed RLR
3
 is robust to corruptions: real disguise 

and random block occlusion, and yields better performances 

as compared to state-of-the-art methods.  
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