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Abstract

Among the components of a pedestrian detector, its
trained pedestrian classifier is crucial for achieving the
desired performance. The initial task of the training
process consists in collecting samples of pedestrians and
background, which involves tiresome manual annotation
of pedestrian bounding boxes (BBs). Thus, recent works
have assessed the use of automatically collected samples
from photo-realistic virtual worlds. However, learning from
virtual-world samples and testing in real-world images may
suffer the dataset shift problem. Accordingly, in this paper
we assess an strategy to collect samples from the real world
and retrain with them, thus avoiding the dataset shift, but
in such a way that no BBs of real-world pedestrians have
to be provided. In particular, we train a pedestrian classi-
fier based on virtual-world samples (no human annotation
required). Then, using such a classifier we collect pedes-
trian samples from real-world images by detection. After, a
human oracle rejects the false detections efficiently (weak
annotation). Finally, a new classifier is trained with the ac-
cepted detections. We show that this classifier is competitive
with respect to the counterpart trained with samples col-
lected by manually annotating hundreds of pedestrian BBs.

1. Introduction

The task of an image-based pedestrian detector consists
in locating the pedestrians that a given image contains, e.g.
by framing each one with a bounding box (BB). Such an
ability is the core of different emerging applications like
in the fields of surveillance and driver assistance. Pedes-
trian detection is a difficult task due to the variability in
the appearance of both pedestrians (size, pose and clothes)
and their surrounding environment (illumination and back-
ground). Not surprisingly, recent surveys [5, 10, 3] reveal

image-based pedestrian detection as a very active research
topic.

The most widespread detection framework consists of
several stages [10]: (1) a selection of candidates (image
windows) to be classified as containing a pedestrian or
not; (2) the classification of such windows; and (3) a non-
maximum suppression process to remove redundant detec-
tions. For videos (4) tracking is also used to remove spu-
rious detections, and deriving information like pedestrian
motion direction. All these stages are quite relevant and
can contribute on their own to achieve a reliable pedestrian
detector in terms of processing time and detection perfor-
mance. However, since the number of candidates per image
runs from thousands to hundred of thousands, the classifi-
cation stage is specially critical in such processing pipeline.
Accordingly, most of the work done on image-based pedes-
trian detection has been focused on classification, i.e. given
a candidate window decide if it contains a pedestrian or not.

Key components of a pedestrian classifier are the pedes-
trian descriptors and the machine learning algorithm em-
ployed to obtain the classifier. Thus, most works on pedes-
trian detection have focused on these aspects [5, 10, 3].
The initial task of the learning process consists in collecting
examples of pedestrians (positives) and background (nega-
tives), which is critical since with poor examples even the
best combination of descriptors and learning machine can-
not provide a good classifier. Accordingly, different pedes-
trian datasets have been collected through manual annota-
tion (e.g. INRIA [2], Daimler [5], Caltech [3], ETH and
TUD [18], CVC02 [9]), where annotating a pedestrian
means to provide its BB at least.

Since manual annotation is a never ending tiresome pro-
cess, not only for pedestrian detection but for object detec-
tion in general, different methods have been proposed to al-
leviate it. For instance, a new annotation paradigm consists
in crowd-sourcing with web-based tools. A well known ex-
ample is Amazon’s Mechanical Turk (MTurk) [13], which
allows researchers to define human intelligence tasks (HITs:
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Figure 1. Virtual image with corresponding automatically gener-
ated pixel-wise ground truth for pedestrians.

what and how) of different difficulty (e.g. from marking
points of interest to drawing polygons) to be taken by hu-
man online workers (turkers) which are paid for their work.
Thousands of annotations can be collected through MTurk.
Unfortunately, most turkers are not Computer Vision ex-
perts and have not scientific motivation, which makes anno-
tation quality very sensitive to both annotation instructions
[4] and economic reguard [15]. In fact, due to such rea-
sons and even to malicious workers, it is necessary to col-
lect multiple annotations from the same image/object and
assess annotation quality from them [15]. Thus, how to col-
lect data on the internet is a non-trivial question that opens
a new research area [15].

Another interesting alternative was presented in [12] for
pedestrian detection. In particular, photo-realistic virtual
worlds were proposed for collecting training samples. Fol-
lowing such an approach, detailed ground truth is automat-
ically available for each virtual-world pedestrian, i.e. its
BB and silhouette (Fig. 1). Pedestrian-free images are
automatically generated as well. Yet, the challenge con-
sists in achieving good pedestrian detection performance
with real-world images using classifiers learned from such
virtual-world samples. Even results are rather satisfactory,
this procedure shows the dataset shift problem [14] since
virtual- and real-world images have inherent differences.
Therefore, without designing appropriate domain adapta-
tion techniques [17] it can be a loss of performance when
training in virtual world and testing in real world, i.e. as
when training with data from a camera and testing with data
from another one [16].

We are interested in minimizing the annotation effort
required for developing object detectors in general, and
pedestrian detectors in particular. Thus, indeed we think
that virtual worlds are an interesting framework to explore.
However, rather than devising domain adaptation proce-
dures, we propose to use the virtual-world data for devel-
oping a pedestrian classifier to be used for collecting pedes-
trian detections from real-world images. Then a human or-
acle validates the detections as right or false. The idea is
that at the end of the process we can end up with a large
number of real-world pedestrian BBs without manually an-

Figure 2. Detections are presented to the oracle ordered by clas-
sifier score and in CW size. The oracle marks right detections
individually or in groups indicated by initial and final clicks.

notating them, i.e. the virtual-world-based pedestrian detec-
tor provides BBs for us, while the human oracle just provide
easy yes/no-feedback to validate such BBs. In this paper we
show that accurate BBs can be obtained through this proce-
dure, saving a lot of oracle time. Moreover, the procedure
is adaptable to work in crowd-sourcing style but allowing to
propose a simpler task less prone to errors.

The rest of the paper is organized as follows. In Sect. 2
we detail our proposal. In Sect. 3 we draw our experimental
settings. In Sect. 4 we present and discuss the obtained
results. Finally, in Sect. 5 we summarize our conclusions.

2. Weakly supervised training

2.1. Our proposal in a nutshell

In this paper we use a virtual city to automatically col-
lect samples for training a pedestrian classifier. Since such
a classifier must operate in real-world images we should ei-
ther design a domain adaptation procedure using a few real-
world annotations, or use the classifier to collect many real-
world annotations. Both cases require re-training. In this
paper, we follow the second approach proposing a weakly
supervised annotation procedure, i.e. pedestrian BBs are not
manually annotated. We first train a pedestrian classifier us-
ing only virtual-world data. Then, such a classifier collects
pedestrian examples from real-world images by detection.
A human oracle rejects false detections through an efficient
procedure. Thus, at the end of the process we obtain pedes-
trian examples without requiring manual annotation of BBs.
Real-world examples are then used to train the final pedes-
trian classifier.

In order to learn pedestrian classifiers we employ the
components proposed in [2], i.e. histograms of oriented gra-
dients (HOG) as descriptors and linear support vector ma-
chines (LinSVMs) as base learners. HOG/LinSVM is still
a competitive baseline and a key component of state-of-
the-art detectors [3]. Under these settings, we show that
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Figure 3. Ground truth (top row) and detections (bottom row). Left block of five pedestrians contains detections with classifier score in
[−1, 0), those in mid block are in [0, 1), and those in left block correspond to values ≥ 1. In our current settings, left and mid blocks are
discarded and only the detections of the right block would arrive to the human oracle for validation (along with some hard negatives).

our weakly supervised approach provides classifiers analo-
gous to their counterparts trained with examples collected
by manually annotating the BBs of all the available pedes-
trians.

2.2. Weakly annotation of BBs

Assume the following definitions of training sets:

∙ Source domain. Let ℑ𝑡𝑟+
𝒱 be the set of avail-

able virtual-world images with automatically anno-
tated pedestrians, and ℑ𝑡𝑟−

𝒱 the set of pedestrian-free
virtual-world images automatically generated as well.

∙ Target domain. Let ℑ𝑡𝑟+
ℛ be a set of real-world im-

ages with non-annotated pedestrians, and ℑ𝑡𝑟−
ℛ a set

of pedestrian-free real-world images.

Define:

∙ Classifier basics, i.e. pedestrian description process
(D, i.e. features computation) and base learner (ℒ).

∙ Detections, i.e. provide a threshold 𝑇ℎ𝑟 such that an
image window is said to contain a pedestrian if its clas-
sification score is greater than 𝑇ℎ𝑟.

Our weakly supervised training consists of the following
steps:

(s1) Train in virtual world using D and ℒ with samples
from {ℑ𝑡𝑟+

𝒱 ,ℑ𝑡𝑟−
𝒱 }. Let us term as 𝒞𝒱 the learned classifier

and as 𝒟𝒱 its associated detector. Let 𝒯 𝑡𝑟+
𝒱 be the set of

pedestrian examples used for obtaining 𝒞𝒱 (i.e. coming
from ℑ𝑡𝑟+

𝒱 ), and 𝒯 𝑡𝑟−
𝒱 the set of background examples

(i.e. coming from ℑ𝑡𝑟−
𝒱 ). Examples in 𝒯 𝑡𝑟+

𝒱 and 𝒯 𝑡𝑟−
𝒱

are assumed to follow standard steps in the training of
pedestrian classifiers, namely, they are in canonical window
(CW) size, 𝒯 𝑡𝑟+

𝒱 includes mirroring, and 𝒯 𝑡𝑟−
𝒱 includes

bootstrapped hard negatives (previous to bootstrapping, the

initial classifier is trained with the same number of positive
and negative samples). Let 𝒞 denote the current classifier
during our learning procedure, and 𝒟 its associate detector.
Now we provide the initialization 𝒞 ← 𝒞𝒱 (thus, 𝒟 is 𝒟𝒱
at the start).

(s2) Weakly annotating real world. Run 𝒟 on ℑ𝑡𝑟+
ℛ .

Show the detections to the human oracle (𝒪) ordered by 𝒞
score, and let 𝒪 to mark the true detections in groups or
individually (Fig. 2), i.e. like when selecting visual items
with a graphical interface. Equivalently, we could mark
false detections, however, usually true detections are quite
far less than false ones. We term as 𝒯 𝑡𝑟+

ℛ the set of such
new pedestrian examples in CW size and augmented by
mirroring. Note that we do not annotate BBs here. This
means also that miss detections are not provided by 𝒪.
In order to collect hard false negatives we can just take
the false detections in ℑ𝑡𝑟+

ℛ (the detections not marked by
𝒪). However, for an easier comparison of our proposal
with the standard learning methods used in pedestrian
detection, we run 𝒟 on ℑ𝑡𝑟−

ℛ in order to collect real-world
negative samples. Let us term such set of samples as 𝒯 𝑡𝑟−

ℛ .
Moreover, by doing so it is not necessary to mark all true
positives, since not marked detections are not assumed to
be false positives.

(s3) Retrain in real world. Train a new classifier 𝒞 with
the pedestrian examples collected as validated detections,
using D and ℒ. The new pedestrian detector 𝒟 is now
based on the new 𝒞.

During step s2, 𝒟 is applied for all images in ℑ𝑡𝑟+
ℛ and

ℑ𝑡𝑟−
ℛ , then, step s3 is applied once. During s2 we take

one negative example per each positive one (same cardi-
nality of 𝒯 𝑡𝑟+

ℛ , and 𝒯 𝑡𝑟−
ℛ ) and leave for step s3 collecting

more hard negatives by training with bootstrapping using
the ℑ𝑡𝑟−

ℛ pool.
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Figure 4. Miss rate vs FPPI curves with the maximum amount of validated detections (’Det’ 75%) and corresponding manually annotated
BBs (’GT’ 75%) from INRIA training set, for different testing sets. ’Real’ stands for the case of training with the full INRIA training set,
while ’Virtual’ refers to training with the virtual-world data. The number in parenthesis is the average miss rate (%) of the respective curve.

3. Experimental settings

3.1. Datasets

For evaluating our weakly supervised annotation pro-
posal, we use the INRIA training set [1] as training real-
world dataset, since it is the most well-known baseline and
still used to train different state-of-the-art detectors [3]. It
contains color images of different resolution (320×240 pix,
1280×960 pix, etc.) with persons photographed in different
scenarios (urban, nature, indoor). INRIA data includes a set
of training images with the BB annotation of 1208 persons
(that can be vertically mirrored to obtain 2416 positive sam-
ples). In addition, 1218 person-free images are provided for
training. It is worth to note that the BB annotations of the
INRIA training and testing sets are considered as precise
[15].

As in [12], the virtual-world dataset used to train the cor-
responding classifier has been generated with Half Life 2
videogame by city driving. It is composed of color images
of 640×480 pix. From the provided virtual-world data we
mimic the settings of the INRIA training set. Thus, we use
1,208 virtual-world pedestrians that are vertically mirrored
to obtain 2416 ones, as well as 1218 pedestrian-free virtual-
world images. Of course, since such virtual-world pedes-
trians have pixel-wise groundtruth, their respective BBs are
automatically and accurately computed.

For testing, in addition to INRIA testing set, we use
a group of well established pedestrian testing video se-
quences: Caltech-Testing (Reasonable set) [3], ETH-0,1,2

and TUD-Brussels [18]. So in total, six testing sets.

3.2. Simulating weak annotations

In order to perform fair performance comparison among
pedestrian classifiers, for any training we need to rely on the
same imaged pedestrians. Thus, we only consider those de-
tections whose BB actually overlap with some correspond-
ing INRIA training ground truth BB (manually annotated).
We use the usual PASCAL VOC criterion [6], which de-
fines a level of overlapping of 50%. Paired results termed
as ’Det’ and ’GT’ correspond to pedestrian detectors whose
classifiers have been trained with the same pedestrians (IN-
RIA training set), but in the first case the BBs of the pedes-
trians are given by the validated detections (’Det’) while in
the second one such BBs are given by the human oracle
(’GT’).

For the experiments presented in Sect. 4, we also sim-
ulate the interaction of the human oracle. In particular, in-
stead of having a person marking the true positives, these
are automatically indicated to our system thanks to the IN-
RIA training ground truth. This allows to boost the testing
of different alternatives at the current stage of our research.
However, in Sect. 4 we evaluate the annotation cost of our
proposal by performing experiments with an actual human
oracle in the loop.

3.3. Pedestrian classifier and detector

Pedestrian classifiers process image windows, and
pedestrian detectors process full images. As we have men-
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Figure 5. Average miss rate at different testing sets when training with different amounts of validated detections (’Det’) and corresponding
manually annotated groundtruth (’GT’) from INRIA training set. Each bar shows its average miss rate (%).

tioned previously, we rely on HOG descriptors and LinSVM
to learn our pedestrian classifiers. For that, we use the same
parameters of the original proposal [2]. In order to build
the pedestrian detector we also apply the pyramidal slid-
ing window approach as proposed in [1]. However, as done
in [8], for all down-sampling operations we rely on stan-
dard bilinear interpolation with anti-aliasing, which usu-
ally boosts the performance of HOG/LinSVM. Moreover,
while for testing we use the same parameters of the pyrami-
dal sliding window than [1] (i.e. scale step 1.2, and strides
△𝑥 = △𝑦 = 8), for collecting more precise detections to
be used in training we follow a finer search (scale step 1.05,
and△𝑥 = △𝑦 = 4).

Detection over multiple scales and different positions
usually yields several detections which frequently refer to
a single object. In order to obtain a unique detection per ob-
ject (pedestrian), we apply the non-maximum-suppression
approach proposed in [11]. Note that we decide if an im-
age window is a detection or not according to the classifica-
tion score and threshold 𝑇ℎ𝑟 (Sect. 2.2). Here we have set
𝑇ℎ𝑟 = −1.0, i.e. the oracle gives yes/no-feedback for win-
dows with classification score ≥ −1.0. Note that for SVM
classifiers this is in the ambiguity region. Thus, in prac-
tice most of the windows presented to the human oracle for
yes/no-feedback will be pedestrians, but some of them will
be hard negatives.

3.4. Evaluation methodology

In order to evaluate the performance of the pedestrian
detectors we reproduce the procedure proposed in [3]. This
means that we use performance curves of miss rate vs. false

positives per image. We focus on the range FPPI=10−1 to
100 of such curves, where we provide the average miss rate
by averaging its values taken at steps of 0.01.

4. Results

Figure 3 provides visual insight about BB localiza-
tion accuracy for the detections of the virtual-world-based
pedestrian detector applied to the INRIA training set. Fig-
ure 4 plots the results comparing the performance of the
pedestrian detectors resulting from manually annotated BBs
vs. the BBs resulting from our method (i.e. using validated
detections) for the same pedestrian examples. For sake of
completeness, the results of training with both the full IN-
RIA training set and the virtual-world one are plotted as
well. Our validated detections reach almost the 80% of the
INRIA training pedestrians, so we decided to set 75% as the
limit of our method for such a training set. Figure 5 plots
the average miss rate of the ’Det’ and ’GT’ pedestrian de-
tectors according to different amounts of training data used,
being 75% the maximum.

From these results we can draw two main conclusions.
On the one hand, the ’Det’ and ’GT’ performances are so
close that we think that BBs from validated detections are
as accurate as precise pedestrian BB annotations for devel-
oping good classifiers. The difference would be even more
negligible by using the HOG/Latent-SVM method for learn-
ing deformable part-based models [7], since it is able to re-
fine the annotated BBs. On the other hand, the randomly se-
lected 75% of the annotations seems to already convey the
same information than the 100% since the two cases give
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Figure 6. Annotation effort with our weakly supervised method.

rise to a very similar performance.
In order to quantify the human annotation effort of our

weakly supervised method, i.e. in comparison with the hu-
man annotation of BBs, we provide Fig. 6. Note that anno-
tation time is reduced drastically for the human oracle.

For instance, around only 10 minutes are required to an-
notate the 75% of the pedestrians (906) since no BBs must
be provided. We experimented manual annotation of pedes-
trian accurate BBs and found an average required time of
6 seconds per BB. Thus, annotating the BBs of the 75%
would require 90 minutes (9 times more).

5. Conclusions

In this paper we have presented a method for training
pedestrian classifiers without manually annotating their re-
quired full-body BBs. The two core ingredients are the use
of virtual world data, and the design of a weakly supervised
procedure to validate detections by just yes/no human feed-
back. Presented results indicate that the obtained classifiers
are on pair with the ones based on manual annotation of
BBs. Besides, the human intervention is highly reduced in
terms of both time and difficulty of the annotation task. Fi-
nally, notice also that our method can be applied to other
objects.
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